The Scholar’s Curse

*Ned Kock*

(Acceptance speech; Texas A&M International University’s Scholar of the Year Award; September 1, 2005)

I would like to thank my faculty colleagues at TAMIU for nominating me and selecting me for this award, and TAMIU’s administration for supporting the award. I would also like to thank our hard-working and dedicated staff members, and our polite and inquisitive students.

Since this is the “Scholar of the Year” award, it is reasonable to ask the question: What is a “scholar”? What does that word mean? I asked a student of mine what it meant, and that student responded that: “A scholar is a person who writes books and stuff.”

A colleague of mine, who works as an information technology manager, gave me a different answer: “A scholar is someone who spends a long time studying something, and then tells me what I already know … in a very convoluted way.”
At first glance, it is hard to argue with those definitions when we look at the example of Charles Darwin, perhaps one of the greatest scholars of all time. He thought about his theory of mutation, inheritance, and selection of biological traits for more than 20 years, and finally published it as a book in 1859. At that time, many animal breeders are believed to have said something like this: “So what? We knew this already.”

In fact George Washington, who died in 1799 (many years before Darwin’s famous book came out), had tried his hand at what today would be called “genetic engineering.” He produced many interesting breeds of domestic animals through selective breeding. Those include a breed of giant mules – the “Mammoth Jackstock” breed. Those mules are so big and strong that they were used to pull large boats filled with coal along artificial canals in Pennsylvania.

So, not only did animal breeders, like George Washington, had known about the principles of mutation, inheritance, and selection of biological traits; but they also had been putting that knowledge into practice for quite some time before Darwin’s famous book “The Origin of Species” was published.
Yet, Darwin’s theory has applications that extend well beyond animal breeding. There are thousands of phenomena that would look very “mysterious” today without Darwin’s theory. Among the most amazing and counterintuitive are those in connection with the design of our brain.

Recent research, for instance, suggests that “surprise” improves cognition. Let me illustrate this with a simple example. If you were studying a subject online that required memorization of key pieces of information (say, historical facts) and a surprise stimulus was “thrown” at you (say, a video clip of an attacking rattlesnake was shown on the screen), you would remember the key pieces of information (about historical facts) much better than if the surprise stimulus was not present!

The underlying Darwinian reason for this phenomenon is that it is adaptively advantageous for our brain to enhance our memory in dangerous situations (e.g., an attack by a poisonous snake), because that would help us avoid those situations in the future. Related mental mechanisms increased our ancestors’ chances of survival over many generations, and became embedded in our brain’s design.

Findings such as the one I have just mentioned are part of a broader field, called evolutionary psychology, and are beginning to be used in my field of research,
management information systems. This is a field of research concerned primarily with the interaction between people and information technologies, often in business situations.

In conclusion, the truth seems to be that breakthrough scholarship contributions are rarely recognized at the time they are made. (We could call this “the scholar’s curse”). Some scholarly contributions are never recognized, and with good reason, because they are just “hot air”. Yet, other scholarly contributions, even though they may appear at first to be “convoluted versions of what we already know … published as books and stuff”, can over time revolutionize our understanding of the world.

Muchísimas gracias.