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The most common limits are computed using a cancellation of like terms in a fraction. The trick
is use some kind of algebraic manipulation to get the fraction into a form where cancellation is
possible. Here’s an easy example.

lim
x→−1

x2 − 4x− 5
x + 1

= lim
x→−1

(x + 1)(x− 5)
x + 1

= lim
x→−1

x− 5 = −1− 5 = −6

Here’s a slightly harder example. You have to combine the top two fractions into a single fraction
before cancellation is possible.
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Square roots makes things harder, as we’ll see below, but there is a way to deal with them. The
trick is to use the identity (a + b)(a− b) = a2 − b2 to remove a square root.
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√
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√
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√
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√
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√

(−2) + 11(3(−2)− 2
√
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3
√
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√
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=
−40

9 + 6 + 6
= −40

21


