Limits involving ∞

David Milovich, Math 211 TA for sections 306 and 312
Feb. 2, 2009

1 Limits at ∞

Rational functions sometimes have horizontal asymptotes. We find and describe these asymptotes using limits at ∞ (and limits at $-\infty$). The standard technique is to divide the numerator and denominator by the largest power of x in the denominator.

The following function has a horizontal asymptote at $y=2$.

$$
\lim _{x \rightarrow \infty} \frac{x-4 x^{5}+1}{-2 x^{5}-7}=\lim _{x \rightarrow \infty} \frac{\left(x-4 x^{5}+1 / x^{5}\right)}{\left(-2 x^{5}-7\right) / x^{5}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{4}}-4+\frac{1}{x^{5}}}{-2-\frac{7}{x^{5}}}=\frac{0-4+0}{-2-0}=2
$$

Note that $\lim _{x \rightarrow-\infty} \frac{x-4 x^{5}+1}{-2 x^{5}-7}=2$ also. To see this, you use exactly the same technique.

$$
\lim _{x \rightarrow-\infty} \frac{x-4 x^{5}+1}{-2 x^{5}-7}=\lim _{x \rightarrow-\infty} \frac{\left(x-4 x^{5}+1 / x^{5}\right)}{\left(-2 x^{5}-7\right) / x^{5}}=\lim _{x \rightarrow-\infty} \frac{\frac{1}{x^{4}}-4+\frac{1}{x^{5}}}{-2-\frac{7}{x^{5}}}=\frac{0-4+0}{-2-0}=2
$$

The next function has a horizontal asymptote at $y=0$.

$$
\lim _{x \rightarrow \infty} \frac{3 x+1}{x^{2}-1}=\lim _{x \rightarrow \infty} \frac{(3 x+1) / x^{2}}{\left(x^{2}-1\right) / x^{2}}=\lim _{x \rightarrow \infty} \frac{\frac{3}{x}+\frac{1}{x^{2}}}{1-\frac{1}{x^{2}}}=\frac{0+0}{1-0}=0
$$

Again, we get the same limit as $x \rightarrow-\infty$.

$$
\lim _{x \rightarrow-\infty} \frac{3 x+1}{x^{2}-1}=\lim _{x \rightarrow-\infty} \frac{(3 x+1) / x^{2}}{\left(x^{2}-1\right) / x^{2}}=\lim _{x \rightarrow-\infty} \frac{\frac{3}{x}+\frac{1}{x^{2}}}{1-\frac{1}{x^{2}}}=\frac{0+0}{1-0}=0
$$

If you don't want to have to write so much twice, then use following notation most concise.

$$
\lim _{x \rightarrow \pm \infty} \frac{3 x+1}{x^{2}-1}=\lim _{x \rightarrow \pm \infty} \frac{(3 x+1) / x^{2}}{\left(x^{2}-1\right) / x^{2}}=\lim _{x \rightarrow \pm \infty} \frac{\frac{3}{x}+\frac{1}{x^{2}}}{1-\frac{1}{x^{2}}}=\frac{0+0}{1-0}=0
$$

Some non-rational functions have "one-sided" horizontal asymptotes. For example, $\lim _{x \rightarrow \infty} \frac{x|x|}{x^{2}+5}=$ 1 and $\lim _{x \rightarrow-\infty} \frac{x|x|}{x^{2}+5}=-1$. (Exercise: why?)

Here's a rational function without any horizontal asymptote.
$\lim _{x \rightarrow \infty} \frac{3 x^{5}+5 x-8}{-6 x^{2}-1}=\lim _{x \rightarrow \infty} \frac{\left(3 x^{5}+5 x-8\right) / x^{2}}{\left(-6 x^{2}-1\right) / x^{2}}=\lim _{x \rightarrow \infty} \frac{3 x^{3}+\frac{5}{x}-\frac{8}{x^{2}}}{-6-\frac{1}{x^{2}}}=\frac{3(+\mathrm{big})^{3}+0-0}{-6-0}=\frac{+\mathrm{big}}{-6}=-\infty$
Note that the limit as $x \rightarrow-\infty$ is slightly different.
$\lim _{x \rightarrow \infty} \frac{3 x^{5}+5 x-8}{-6 x^{2}-1}=\lim _{x \rightarrow \infty} \frac{\left(3 x^{5}+5 x-8\right) / x^{2}}{\left(-6 x^{2}-1\right) / x^{2}}=\lim _{x \rightarrow \infty} \frac{3 x^{3}+\frac{5}{x}-\frac{8}{x^{2}}}{-6-\frac{1}{x^{2}}}=\frac{3(-\mathrm{big})^{3}+0-0}{-6-0}=\frac{-\mathrm{big}}{-6}=\infty$

2 Vertical asymptotes

Division by zero produce finite limits when the zero divisors are cancelled by factors of the numerator.

$$
\lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x^{2}-4 x+3}=\lim _{x \rightarrow 3} \frac{(x+1)(x-3)}{(x-1)(x-3)}=\lim _{x \rightarrow 3} \frac{x+1}{x-1}=\frac{3+1}{3-1}=2
$$

When cancellation fails, there is a vertical asymptote and the limit fails to exist. The interesting question is how the limit fails to exist. The general pattern is that if $f(x) \rightarrow L \neq 0$ and $g(x) \rightarrow 0$ as $x \rightarrow a$, then $f(x) / g(x)$ gets very large as x approaches a. But does $f(x) / g(x)$ get large and positive or large and negative as $x \rightarrow a$? Both? Does the answer change if x only approaches a from the left or the right?

The following function gets large and positive as x approaches 3 from the right, but gets large and negative as x approaches 3 from the left.

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} \frac{x^{2}-2 x-3}{x^{2}-6 x+9}=\lim _{x \rightarrow 3^{+}} \frac{(x+1)(x-3)}{(x-3)^{2}}=\lim _{x \rightarrow 3^{+}} \frac{x+1}{x-3}=\frac{(3+\text { small })+1}{(3+\text { small })-3}=\frac{4}{+ \text { small }}=\infty \\
& \lim _{x \rightarrow 3^{-}} \frac{x^{2}-2 x-3}{x^{2}-6 x+9}=\lim _{x \rightarrow 3^{-}} \frac{(x+1)(x-3)}{(x-3)^{2}}=\lim _{x \rightarrow 3^{-}} \frac{x+1}{x-3}=\frac{(3-\text { small })+1}{(3-\text { small })-3}=\frac{4}{- \text { small }}=-\infty
\end{aligned}
$$

The following function gets large and negative as x approaches 3 from both directions.

$$
\lim _{x \rightarrow 3} \frac{x^{2}+1}{-x^{2}+6 x-9}=\lim _{x \rightarrow 3} \frac{x^{2}+1}{-(x-3)^{2}}=\frac{(3 \pm \text { small })^{2}+1}{-(\pm \text { small })^{2}}=\frac{10}{- \text { small }}=-\infty
$$

An alternative way to compute the above limits is to make sign tables.

$$
\begin{array}{cccccc}
& & -1 & & 3 \\
\\
x+1 & - & 0 & + & + & + \\
x-3 & - & - & - & 0 & + \\
\frac{x+1}{x-3} & + & 0 & - & * & +
\end{array}
$$

Thus, $\lim _{x \rightarrow 3^{+}} \frac{x+1}{x-3}=\infty$ because for x close to 3 from the right, $\frac{x+3}{x-1}$ is postive. By similar reasoning, $\lim _{x \rightarrow 3^{-}} \frac{x+1}{x-3}=-\infty$.

$$
\begin{array}{cccc}
& & 3 & \\
x^{2}+1 & + & + & + \\
-(x-3)^{2} & - & 0 & - \\
\frac{x^{2}+1}{-(x-3)^{2}} & - & * & -
\end{array}
$$

From the above table we see that $\lim _{x \rightarrow 3} \frac{x^{2}+1}{-(x-3)^{2}}=-\infty$.

