Chains and the chain rule

David Milovich, Math 211 TA for sections 306 and 312
Mar. 4, 2009

1 Chains

Say we want to find $\frac{d}{d x} \ln \left(x^{2}+5\right)$. We need to use the chain rule. To better see how to do this, let's write down a chain:

$$
x \mapsto x^{2}+5 \mapsto \ln \left(x^{2}+5\right) .
$$

This chain of arrows represents the order of operations in computing $\ln \left(x^{2}+5\right)$. Given input x, we first square it and add 5 , and second we take the natural logarithm of that. Define helper variables $w=x^{2}+5$ and $u=\ln w=\ln \left(x^{2}+5\right)$. Now our chain can be written $x \mapsto w \mapsto u$.

Why break things up into these two steps? Because these two steps correspond to functions that are easy to differentiate. $\frac{d w}{d x}$ and $\frac{d u}{d w}$ are both easy: $\frac{d w}{d x}=2 x$ and $\frac{d u}{d w}=1 / w$. Now put it all together: $u=\ln w=\ln \left(x^{2}+5\right)$ and

$$
\frac{d}{d x} \ln \left(x^{2}+5\right)=\frac{d u}{d x}=\frac{d u}{d w} \frac{d w}{d x}=\frac{1}{w}(2 x)=\frac{1}{x^{2}+5}(2 x)=\frac{2 x}{x^{2}+5} .
$$

The chain rule is just $\frac{d u}{d x}=\frac{d u}{d w} \frac{d w}{d x}$. The short chain $x \mapsto u$ is too hard to differentiate directly, so we broke it up into $x \mapsto w \mapsto u$ and differentiated each link in the chain.

Here's another example. Let $y=\left((x \ln x)^{5}+4\right)^{10}$. Let's try to find $\frac{d y}{d x}$. This time the chain is $x \mapsto x \ln x \mapsto(x \ln x)^{5}+4 \mapsto\left((x \ln x)^{5}+4\right)^{10}$ because each stage is easy to differentiate. Let's use helper variables again: $v=x \ln x$ and $z=v^{5}+4=(x \ln x)^{5}+4$. Then $y=z^{10}$ and our chain is $x \mapsto v \mapsto z \mapsto y$. For a chain of three arrows, the chain rule is:

$$
\frac{d y}{d x}=\frac{d y}{d z} \frac{d z}{d v} \frac{d v}{d x}
$$

(Imagine the $d z$'s and $d v$'s cancelling each other to help you remember the pattern.) So, to find $\frac{d y}{d x}$, we just need to find $\frac{d y}{d z}, \frac{d z}{d v}$, and $\frac{d v}{d x}$. The first two are easy applications of the power rule: $\frac{d y}{d z}=10 z^{9}=10\left((x \ln x)^{5}+4\right)^{9}$ and $\frac{d z}{d v}=5 v^{4}=5(x \ln x)^{4}$. To find $\frac{d v}{d x}$, we use the product rule:

$$
\frac{d v}{d x}=\frac{d}{d x}(x \ln x)=(\ln x) \frac{d}{d x} x+x \frac{d}{d x} \ln x=(\ln x)(1)+x(1 / x)=(\ln x)+1 .
$$

Putting it all together, we have

$$
\frac{d y}{d x}=\frac{d y}{d z} \frac{d z}{d v} \frac{d v}{d x}=\left[10\left((x \ln x)^{5}+4\right)^{9}\right]\left[5(x \ln x)^{4}\right][(\ln x)+1] .
$$

2 Implicit Differentiation

Suppose we have the equation $\mathrm{e}^{y^{3}}=\ln (x+y)$ and we're asked to find $\frac{d x}{d y}$ as a function of x and y. The solution method is to differentiate both sides of the equation with to respect x and then solve
for $\frac{d y}{d x}$:

$$
\frac{d}{d x} \mathrm{e}^{y^{3}}=\frac{d}{d x} \ln (x+y)
$$

Let's start with $\frac{d}{d x} \mathrm{e}^{y^{3}}$. The chain is $x \mapsto y \mapsto y^{3} \mapsto \mathrm{e}^{y^{3}}$. (The idea behind the $x \mapsto y$ part is that if we zoom in on a small piece of the curve defined by the equation $\mathrm{e}^{y^{3}}=\ln (x+y)$, then that small piece passes the vertical line test, so y is locally a function of x.) Let $u=y^{3}$ and $v=\mathrm{e}^{u}=\mathrm{e}^{y^{3}}$, making our chain $x \mapsto y \mapsto u \mapsto v$. Then the chain rule yields

$$
\frac{d}{d x} \mathrm{e}^{y^{3}}=\frac{d v}{d x}=\frac{d v}{d u} \frac{d u}{d y} \frac{d y}{d x}=\mathrm{e}^{u}\left(3 y^{2}\right) \frac{d y}{d x}=\mathrm{e}^{y^{3}}\left(3 y^{2}\right) \frac{d y}{d x} .
$$

For the other side of the equation, the chain is $x \mapsto x+y \mapsto \ln (x+y)$. Let $w=x+y$ and $z=\ln w=\ln (x+y)$, making our chain $x \mapsto w \mapsto z$. Therefore, we have

$$
\frac{d}{d x} \ln (x+y)=\frac{d z}{d x}=\frac{d z}{d w} \frac{d w}{d x}=\frac{1}{w}\left(1+\frac{d y}{d x}\right)=\frac{1+\frac{d y}{d x}}{x+y} .
$$

Since $\frac{d}{d x} \mathrm{e}^{y^{3}}=\frac{d}{d x} \ln (x+y)$, we have

$$
\mathrm{e}^{y^{3}}\left(3 y^{2}\right) \frac{d y}{d x}=\frac{1+\frac{d y}{d x}}{x+y} .
$$

We just need to solve for $\frac{d y}{d x}$.

$$
\begin{aligned}
(x+y) \mathrm{e}^{y^{3}}\left(3 y^{2}\right) \frac{d y}{d x} & =1+\frac{d y}{d x} \\
(x+y) \mathrm{e}^{y^{3}}\left(3 y^{2}\right) \frac{d y}{d x} & =1+\frac{d y}{d x} \\
(x+y) \mathrm{e}^{y^{3}}\left(3 y^{2}\right) \frac{d y}{d x}-\frac{d y}{d x} & =1 \\
\left((x+y) \mathrm{e}^{y^{3}}\left(3 y^{2}\right)-1\right) \frac{d y}{d x} & =1 \\
\frac{d y}{d x} & =\frac{1}{(x+y) \mathrm{e}^{y^{3}}\left(3 y^{2}\right)-1}
\end{aligned}
$$

