Yet another optimization problem

David Milovich, Math 211 TA for sections 306 and 312
Mar. 23, 2009

We're bidding for a contract to manufacture natural gas tanks. The volumne of each tank will be 1000 cubic feet. As is typical, the shape of the gas tank will be a circular cylinder capped by hemispheres on both ends. In addition to a fixed cost of $\$ 800$ per tank, our cost per square foot of tank surface area is $\$ 4$ for the cylindrical part of the tank and $\$ 6$ for the spherical part. What is our minimal cost for making a such a tank?

First, let's get the geometry out of the way. Let r denote the radius (in feet) of the circular cylinder, which is also the radius of the hemispheres. Let x denote the length (in feet) of the cylinder. The circumference of the cylinder is $2 \pi r$, so the surface area of the cylinder is $2 \pi r x$. The volume of the cylinder is $\pi r^{2} x$ The surface area of the hemispheres add up to the surface area of a sphere of radius r, which is $4 \pi r^{2}$. The volume of the hemispheres is the volume of a sphere with radius r, which is $\frac{4}{3} \pi r^{3}$.

Thus, the total volume of the tank is $\pi r^{2} x+\frac{4}{3} \pi r^{3}$, which is constrained to equal 1000 . The cost C (in dollars) of the tank is $800+4(2 \pi r x)+6\left(4 \pi r^{2}\right)$. Solving our constraint for x (because solving for r is much harder), we find that

$$
x=\frac{1000}{\pi r^{2}}-\frac{4 r}{3}
$$

After plugging this formula for x into our cost formula, we find that the cost in terms of r alone is given by

$$
C=800+\frac{8000}{r}-\frac{32 \pi r^{2}}{3}+24 \pi r^{2}
$$

After simplifying, we have $C=800+8000 / r+40 \pi r^{2} / 3$. To optimize C, we differentiate with respect to $r: d C / d r=-8000 / r^{2}+80 \pi r / 3$. We next solve $d C / d r=0$ for r to find the critical points:

$$
\begin{aligned}
0 & =-\frac{8000}{r^{2}}+\frac{80 \pi r}{3} \\
\frac{8000}{r^{2}} & =\frac{80 \pi r}{3} \\
24000 & =80 \pi r^{3} \\
\left(\frac{300}{\pi}\right)^{1 / 3} & =r
\end{aligned}
$$

Thus, the unique critical point is $r \approx 4.57078$ feet. Plugging this value into our formula for x, we get $x \approx 9.14156$ feet. Plugging these values into our original cost formula, we get approximately $\$ 3,425.37$.

Is this truly the minimal cost? If we differentiate C again, we get

$$
\frac{d^{2} C}{d r^{2}}=\frac{16000}{r^{3}}+\frac{80 \pi}{3}
$$

which is always positive if r is positive. Thus, for all physically meaningful r, our cost function is concave up, so $\$ 3,425.37$ is indeed a local minimum and the global minimum.

