221 Calculus, Fall 2007, Section 306/308

Homework 4 (Due in class October 30)

- **1 Exercise** What are the absolute minimum and absolute maximum of $f(x) = x 2 \sin x$ on $[-2\pi, 2\pi]$? At which x in $(-2\pi, 2\pi)$ does f(x) have a local maximum? List two intervals on which f(x) is concave up.
- 2 Exercise Solve #22 on page 287 of Thomas' Calculus.
- **3 Exercise** Calculate the following limit.

$$\lim_{x \to \pi/2} \frac{1}{2x - \pi} \left(\tan x + \frac{2}{2x - \pi} \right)$$

- **4 Exercise** Let $f(x) = x^3 x + 1$. Prove that f(x) has a root. Then prove that f(x) does not have two roots. Apply three iterations of Newton's method to f(x), starting with $x_0 = -1$. List approximate values (errors not to exceed 10^{-4}) of x_0 , $f(x_0)$, x_1 , $f(x_1)$, x_2 , $f(x_2)$, x_3 , and $f(x_3)$. (A calculator or computer is recommended!)
- **5 Exercise** Given $f'(x) = x^3(4 + \sqrt{x}) + 5\sin(x/3)$ and f(0) = -2, find f(x).
- 6 Exercise (Optional) Use Cauchy's Mean Value Theorem to prove that the error in approximating $\sin x$ by x is not greater than $x^3/6$.