221 Calculus, Fall 2007, Section 306/308

Homework 4 (Due in class October 30)

1 Exercise What are the absolute minimum and absolute maximum of $f(x)=x-2 \sin x$ on $[-2 \pi, 2 \pi]$? At which x in $(-2 \pi, 2 \pi)$ does $f(x)$ have a local maximum? List two intervals on which $f(x)$ is concave up.

2 Exercise Solve \#22 on page 287 of Thomas' Calculus.
3 Exercise Calculate the following limit.

$$
\lim _{x \rightarrow \pi / 2} \frac{1}{2 x-\pi}\left(\tan x+\frac{2}{2 x-\pi}\right)
$$

4 Exercise Let $f(x)=x^{3}-x+1$. Prove that $f(x)$ has a root. Then prove that $f(x)$ does not have two roots. Apply three iterations of Newton's method to $f(x)$, starting with $x_{0}=-1$. List approximate values (errors not to exceed 10^{-4}) of $x_{0}, f\left(x_{0}\right), x_{1}, f\left(x_{1}\right), x_{2}, f\left(x_{2}\right), x_{3}$, and $f\left(x_{3}\right)$. (A calculator or computer is recommended!)

5 Exercise Given $f^{\prime}(x)=x^{3}(4+\sqrt{x})+5 \sin (x / 3)$ and $f(0)=-2$, find $f(x)$.
6 Exercise (Optional) Use Cauchy's Mean Value Theorem to prove that the error in approximating $\sin x$ by x is not greater than $x^{3} / 6$.

