221 Calculus, Fall 2007, Section 306/308

Homework 5 (Due in class November 20)

1 Exercise Solve \#67 on page 354 of Thomas' Calculus.
2 Exercise Let $f(x)=\left(\sin ^{5} \sqrt{x}\right) / \sqrt{x}$ for $x>0$ and $f(0)=0$. Prove that f is continuous on $[0, \infty)$. Then find the average value of f on $\left[0, \pi^{2}\right]$. (Hint: $\sin ^{5} \theta=\left(\sin ^{2} \theta\right)^{2} \sin \theta$ and $\cos ^{2} \theta+\sin ^{2} \theta=1$.)

3 Exercise Solve \#56 on page 408 of Thomas' Calculus.
4 Exercise Solve part (d) of \#24 on page 415 of Thomas' Calculus.
5 Exercise Find the length of the spiral curve given by $x=\left(t^{2}-1\right) \cos t$ and $y=\left(t^{2}-1\right) \sin t$ where t ranges from 0 to 6π.

6 Exercise (Optional) The length $B_{1}(r)$ of the interval $[-r, r]$ is equal to the following integral.

$$
\int_{-r}^{r} d x
$$

Clearly, the integral is equal to $2 r$.
The area $B_{2}(r)$ of a disc with radius r is equal to the following integral.

$$
\int_{-r}^{r} B_{1}\left(\sqrt{r^{2}-y^{2}}\right) d y
$$

(Why? The integral is the area of the region $\left\{(x, y):-\sqrt{r^{2}-y^{2}} \leq x \leq \sqrt{r^{2}-y^{2}}\right\}$, which is the same region as $\left\{(x, y): x^{2}+y^{2} \leq r^{2}\right\}$.) Show that the integral is equal to πr^{2}. (Hint: use the substitution $y=r \sin \theta$.)

The volume $B_{3}(r)$ of a ball with radius r is equal to the following integral.

$$
\int_{-r}^{r} B_{2}\left(\sqrt{r^{2}-z^{2}}\right) d z
$$

(Why? If we take the ball with radius r and center $(0,0,0)$ and take the slice formed by intersecting it with the plane described by $z=z_{0}$, then we get a disc with radius $\sqrt{r^{2}-z_{0}^{2}}$ (assuming $\left|z_{0}\right| \leq r$).) Show that the integral is equal to $\frac{4}{3} \pi r^{3}$.

The "volume" $B_{4}(r)$ of a four-dimensional ball with radius r is calculated by following integral.

$$
\int_{-r}^{r} B_{3}\left(\sqrt{r^{2}-w^{2}}\right) d w
$$

(The four-dimensional ball with radius r and center $(0,0,0,0)$ is defined to be the region $\{(x, y, z, w)$: $\left.x^{2}+y^{2}+z^{2}+w^{2} \leq r^{2}\right\}$.) Show that the integral is equal to $\frac{1}{2} \pi^{2} r^{4}$.

Calculate the "volumes" of a five-dimensional ball with radius r and a six-dimensional ball with radius r.

