221 Calculus, Fall 2007, Section 306/308

Rules for 0 and ∞

The following equations are true and meaningful.

$$
\begin{align*}
7+\infty & =\infty \tag{1}\\
42-\infty & =-\infty \tag{2}\\
\infty+\infty & =\infty \tag{3}\\
-\infty-\infty & =-\infty \tag{4}\\
4 \cdot \infty & =\infty \tag{5}\\
6 \cdot(-\infty) & =-\infty \tag{6}\\
(-22) \cdot(-\infty) & =\infty \tag{7}\\
\infty \cdot \infty & =\infty \tag{8}\\
(-\infty) \cdot \infty & =-\infty \tag{9}\\
(-\infty) \cdot(-\infty) & =\infty \tag{10}\\
\frac{17}{\infty} & =0 \tag{11}\\
\frac{-8}{\infty} & =0 \tag{12}\\
\frac{0}{\infty} & =0 \tag{13}\\
\frac{2}{-\infty} & =0 \tag{14}\\
\frac{-3}{-\infty} & =0 \tag{15}\\
\frac{0}{-\infty} & =0 \tag{16}
\end{align*}
$$

And what meaning are these equations full of? They are facts about limits. For example, equation (3) means that if $\lim _{x \rightarrow c} f(x)=\infty$ and $\lim _{x \rightarrow c} g(x)=\infty$, then $\lim _{x \rightarrow c}(f(x)+g(x))=\infty$.

The following expressions are not meaningful. If you encounter of these types of expressions in trying to calculate a limit, then treat it as an error message, telling you that you need to try a different approach to find the limit (if it exists).

$\infty-\infty$,	$0 \cdot \infty$,	$\frac{\infty}{\infty}$,
$\frac{\infty}{0}$,	$\frac{-\infty}{0}$,	
$\frac{0}{0}$,	$\frac{6}{0}$,	$\frac{-4}{0}$

Intuitively, dividing one by zero should give you ∞ or $-\infty$. The problem is that for a limit to exist, it has to be one or the other, not both. For rational functions, we deal with division by zero by taking a limit from the left or from the right. However, this approach does not work in general:

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{x \sin (1 / x)} \text { does not exist. (Exercise: why?) }
$$

