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1 Example of the eigenvector method

Consider the following initial value problem.

d

dt
~x(t) = A~x(t) =

 2 −1 0
0 4 0
0 5 2

 ~x(t) and ~x(0) =

 3
2
1


To solve this problem, we first find the general solution to the differential equation. Finding the
general solution boils down to finding three linearly independent solutions ~x1(t), ~x2(t), and ~x3(t),
for the general solution is then just the an arbitrary linear combination c1~x1(t) + c2~x2(t) + c3~x3(t)
of these three solutions. Once we have our general solution ~x(t) = c1~x1(t) + c2~x2(t) + c3~x3(t), we
will use the initial condition ~x(0) = (3, 2, 1) to solve for c1, c2, and c3.

To find three linearly independent solutions, we will use the eigenvector method. First, we must
compute the eigenvalues of A. To do that we need to find the roots of the following determinant,
which is a cubic function of λ. ∣∣∣∣∣∣

2− λ −1 0
0 4− λ 0
0 5 2− λ

∣∣∣∣∣∣
Notice that the second row has only one nonzero entry. (Likewise for the first and third columns.)
Therefore, factoring the cubic will be relatively easy if we expand about the second row:

−0
∣∣∣∣ −1 0

5 2

∣∣∣∣+ (4− λ)
∣∣∣∣ 2− λ 0

0 2− λ

∣∣∣∣− 0
∣∣∣∣ 2− λ −1

0 4− λ

∣∣∣∣ = (4− λ)(2− λ)2.

We have a non-repeated real eigenvalue 4 and a repeated real eigenvalue 2 with multiplicity 2.
Therefore, there are three linearly independent solutions, one involving e4t, and two involving e2t.

First consider the eigenvalue 4. To get a solution to our differential equation corresponding to this
eigenvalue, we need to compute the corresponding eigenbasis, which is just a basis of N(A − 4I),
the null space of A − 4I. Because 4 is a non-repeated eigenvalue, this null space has dimensiion
1. Therefore, finding the eigenbasis is the same as finding a single eigenvector, which is just a
nontrivial solution ~u to (A− 4I)~u = ~0: −2 −1 0

0 0 0
0 5 −2

 u1

u2

u3

 =

 0
0
0

 .
After performing a single elementary row operation, we get the following echelon system of equa-
tions.  −2 −1 0

0 5 −2
0 0 0

 u1

u2

u3

 =

 0
0
0





Notice that u3 is a free variable while u1 and u2 correspond to pivot columns. Since we want
~u to be nontrivial, that is, not ~0, let us choose u3 to be nonzero, say, u3 = 5. Then we see
that u2 = 2 and u1 = −1 by back-substitution. Therefore, (−1, 2, 5) is an eigenvector of A with
corresponding eigenvalue 4, and {(−1, 2, 5)} is an eigenbasis corresponding eigenvalue 4. Therefore,
we may choose ~x1(t) = (−1, 2, 5)e4t to be one of our three linearly independent solutions to our
differential equation.

Next consider the eigenvalue 2. We need to compute a corresponding eigenbasis, which is just a
basis of N(A− 2I). This null space has dimension at least 1, but it could be also be as high as 2,
the multiplicity of the eigenvalue 2. (The case where the dimension is equal to the multiplicity is
called the complete case, and is actually siginificantly easier to solve than the so-called defective
case, in which the dimension is less than the multiplicity.) To find our eigenbasis, we must find the
general solution to (A− 2I)~v = ~0: 0 −1 0

0 2 0
0 5 0

 v1
v2
v3

 =

 0
0
0

 .
After performing two elementary row operations, we get the following echelon system of equations. 0 −1 0

0 0 0
0 0 0

 v1
v2
v3

 =

 0
0
0


Notice that v1 and v3 are free variables while v2 corresponds to a pivot column. Let v1 = r and
v3 = s. It is easily seen that v2 = 0. Hence, the general solution for ~v is (r, 0, s), which we
rewrite as r(1, 0, 0) + s(0, 0, 1) to deduce that {(1, 0, 0), (0, 0, 1)} is a basis of N(A−2I). Therefore,
{(1, 0, 0), (0, 0, 1)} is an eigenbasis corresponding to the eigenvalue 2, so we may choose ~x2(t) =
(1, 0, 0)e2t and ~x3(t) = (0, 0, 1)e2t to be the other two of our three linearly independent solutions to
our differential equation.

Thus, the general solution to our differential equation is

~x(t) = c1

 −1
2
5

 e4t + c2

 1
0
0

 e2t + c3

 0
0
1

 e2t.

Finally, we must use ~x(0) = (3, 2, 1) to solve for c1, c2, and c3:

~x(0) = c1

 −1
2
5

 1 + c2

 1
0
0

 1 + c3

 0
0
1

 1 =

 3
2
1

 .
Let us rewrite this equation in terms of matrix multiplication. −1 1 0

2 0 0
5 0 1

 c1
c2
c3

 =

 3
2
1



2



After performing several elementary row operations, we have the following echelon system of equa-
tions.  −1 1 0

0 2 0
0 0 2

 c1
c2
c3

 =

 3
8
−8


Using back-substitution, we find that c3 = −4, c2 = 4, and c1 = 1. Therefore, the solution to our
initial value problem is

~x(t) =

 −1
2
5

 e4t + 4

 1
0
0

 e2t − 4

 0
0
1

 e2t =

 −e4t + 4e2t

2e4t

5e4t − 4e2t

 .

Exercise 1. Solve the following initial value problem.

d

dt
~x(t) =

 −1 0 1
0 −1 5
0 0 1

 ~x(t) and ~x(0) =

 1
0
1



2 Complex eigenvalues

Consider the following differential equation.

d

dt
~x(t) = A~x(t) =

 −6 0 5
7 3 −8
−4 0 2

 ~x(t)

Let us find the general real solution. I include “real” because for this problem the eigenvector
method naively applied only yields the general complex solution, which is too general for many
real-world applications in which we only want real solutions.

As before, we find three real linearly independent solutions; the general real solution will be an
arbitrary real linear combination of these three. To find these three solutions, we first find the
eigenvalues of A by finding the roots of the following determinant.∣∣∣∣∣∣

−6− λ 0 5
7 3− λ −8
−4 0 2− λ

∣∣∣∣∣∣
Expanding about the second column is by far the easiest way to compute this determinant:

−0
∣∣∣∣ 7 −8
−4 2

∣∣∣∣+ (3− λ)
∣∣∣∣ −6− λ 5
−4 2− λ

∣∣∣∣− 0
∣∣∣∣ −6− λ 5

7 −8

∣∣∣∣ = (3− λ)(λ2 + 4λ+ 8).

Clearly, 3 is one of the eigenvalues of A. By the quadratic formula or by completion of the square,
we find that the other two eigenvalues are −2± 2i.
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First consider the eigenvalue 3. Solve (A− 3I)~u = ~0: −9 0 5
7 0 −8
−4 0 −1

 ~u = ~0.

After performing three elementary row operations, we have the following echelon system of equa-
tions.  −9 0 5

0 0 −37
0 0 0

 ~u = ~0

We see that u2 is a free variable and that u1 and u3 correspond to pivot columns. By back
substitution, we deduce that the general (real) solution for ~u is (0, r, 0) where r is an arbitrary real.
Therefore, {(0, 1, 0)} is an eigenbasis corresponding to the eigenvalue 3, so we may choose one of
our three linearly independent solutions to our differential equation to be ~x1 = (0, 1, 0)e3t.

Next consider the eigenvalue −2 + 2i. Solve (A− (−2 + 2i)I)~v = ~0: −4− 2i 0 5
7 5− 2i −8
−4 0 4− 2i

~v = ~0.

We proceed in the usual way, except using complex arithmetic. Perform the elementary row oper-
ations R2 → R2(4 + 2i) + 7R1 and R3 → R3(4 + 2i)− 4R1: −4− 2i 0 5

0 24 + 2i 3− 16i
0 0 0

~v = ~0.

Now our matrix is in echelon form; v3 is a free variable while v1 and v2 correspond to pivot columns.
The complex arithmetic makes performing the back-substitution a little harder, but we can still do
it if we remember how to divide complex numbers:

a+ bi

c+ di
=

(a+ bi)(c− di)
(c+ di)(c− di)

=
(a+ bi)(c− di)

c2 + d2
.

Eventually, we find that the general (complex) solution for ~v is

~v =

 −r − ri
2

− 2r
29 + i39r

58
r

 = r

 −1− i
2

− 2
29 + i39

58
1


where r is an arbitrary complex number. Choose r = 58 to get rid of the fractions and get
{(−58− 29i,−4 + 39i, 58)} as an eigenbasis corresponding to the eigenvalue −2 + 2i. Therefore, if
we admitted complex solutions, then we could choose (−58 − 29i,−4 + 39i, 58)e(−2+2i)t to be the
second of our three linearly independent solutions to our differential equation.

To get two linearly independent real solutions corresponding to our conjugate pair of complex
eigenvalues −2 ± 2i, it actually suffices to just take the real and imaginary parts of our complex
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solution (−58− 29i,−4 + 39i, 58)e(−2+2i)t: −58− 29i
−4 + 39i

58

 e(−2+2i)t =

 −58− 29i
−4 + 39i

58

 e−2t(cos(2t) + i sin(2t))

= e−2t

 −58 cos(2t)− 29i cos(2t)− 58i sin(2t) + 29 sin(2t)
−4 cos(2t)− 4i sin(2t) + 39i cos(2t)− 39 sin(2t)

58 cos(2t) + 58i sin(2t)


= e−2t

 −58 cos(2t) + 29 sin(2t)
−4 cos(2t)− 39 sin(2t)

58 cos(2t)

+ ie−2t

 −29 cos(2t)− 58 sin(2t)
−4 sin(2t) + 39 cos(2t)

58 sin(2t)

 .
Therefore, we may choose the second and third of our three linearly independent solutions of our
differential equation to be

~x2(t) = e−2t

 −58 cos(2t) + 29 sin(2t)
−4 cos(2t)− 39 sin(2t)

58 cos(2t)

 and ~x3(t) = e−2t

 −29 cos(2t)− 58 sin(2t)
−4 sin(2t) + 39 cos(2t)

58 sin(2t)

 .

Thus, the general real solution of our differential equation is ~x(t) = c1~x1(t)+c2~x2(t)+c3~x3(t) where
c1, c2, and c3 are arbitrary reals:

~x(t) = c1e3t

 0
1
0

+ c2e−2t

 −58 cos(2t) + 29 sin(2t)
−4 cos(2t)− 39 sin(2t)

58 cos(2t)

+ c3e−2t

 −29 cos(2t)− 58 sin(2t)
−4 sin(2t) + 39 cos(2t)

58 sin(2t)

 .

Exercise 2. Find the general real solution to the following differential equation.

d

dt
~x =

 0 2 0
0 0 −4
−1 0 0

 ~x
Hint: a3 − b3 = (a− b)(a2 + ab+ b2).
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