
BRANCH PRODUCT RELATIONS
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Abstract. We define branch products relations, a new product construction.
Branch product relations generalize direct products, lexicographic products,
and ordered sums. We investigate criteria for various properties of relations
to be preserved by branch products, focusing on branch products over trees.
Among our nicer results are the preservation of poset dimension and various
order-completeness properties by branch products over trees.

Introduction

Given a tree, what is a reasonable way to order its branches? Unless no ordering
is desired, the nearly unanimous answer is “By first differences.” More explicitly,
this answer means two things should be done. First, certain subsets of the tree
should be given linear orderings such that, given two distinct branches A and B,
exactly one of these linear orderings will order minA \ B and min B \ A. Second,
A and B should be ordered as minA \B and minB \A are ordered. For example,
a Souslin line is constructed from a Souslin tree by judiciously adding linear orders
and then ordering the branches by first differences. For more about the relationship
between linear orders and trees, see Todorčevic[2].

The goal of this paper is to generalize this way of ordering branches and to
derive correspondingly general results. Instead of just trees with linear orders,
we start with well-founded posets with relations. In this general setting, direct
products, lexicographic products, and ordered sums all become special cases. We
then specialize to trees with partial orders to obtain most of our results.

1. Preliminaries

Definition 1.1. Let 〈X,v〉 be a nonempty poset. A branch of X is a maximal
chain of X. Let B(X) denote the set of all branches of X. A semibranch is an
initial segment of a branch. A semibranch is proper if it is not a branch. Let S (X)
denote the set of all proper semibranches of X. For each S ∈ S (X), define the
fork of S to be the set of minimal strict upper bounds of S, and denote the fork of
S by FX(S). For each E ⊆ X, let BX(E) denote the set of branches of X that
intersect E.

Remark 1.2. From the above definitions it is immediate that the every fork is an
antichain; hence, the intersection of a fork and a chain contains at most one element.

Definition 1.3. By the previous remark, if C is a chain in X and S ∈ S (X) and
C∩FX(S) 6= ∅, then C∩FX(S) is a singleton, and we denote its element by C@S.
For each S ∈ S (X), let πS denote the map from BX(FX(S)) to FX(S) given by
πS(A) = A@S for all A ∈ BX(FX(S)).
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We henceforth assume X is well-founded. Thus, FX(S) 6= ∅ for all S ∈ S (X).
Moreover, all semibranches are well-ordered, allowing us to make the following
definition.

Definition 1.4. For every α ∈ On, we define Sα to be the unique semibranch R
such that R ⊆ S and the order type of R is the minimum of the order type of S and
the order type of α. Define h(S) to be the minimum ordinal α for which Sα = S.

From this definition, we can immediately conclude the following proposition.
The proof is a simple application of transfinite induction.

Proposition 1.5. Let S be a semibranch and let α ∈ On.
(1) If α < h(S), then Sα+1 = S ∪ {S@Sα}.
(2) If α is a limit ordinal, then Sα =

⋃
β<α Sβ.

(3) A branch B can be defined recursively by defining B@Bα in terms of Bα

for each α < h(B). More precisely, given a function f : S (X) → X such
that f(S) ∈ FX(S) for all S ∈ S (X), there is a unique branch B such that
B@Bα = f(Bα) for all α < h(B).

Branch product relations over X are constructed by giving each fork of X a
binary relation and then using these relations to induce a binary relation on B(X).
Note that all relations are henceforth assumed to be binary. As a subset of X, a
fork is simply referred to as a fork, but in the context of its relation, it is referred
to as a fork space. Here one must be careful with terminology. For example, while
a fork is always an antichain, a fork could be endowed with a linear order, so that
the corresponding fork space is a chain. The formal definition of branch product
relations is given below.

Definition 1.6. For each S ∈ S (X), let ≤S be a relation on FX(S), which we call
the fork relation of S. Thus, 〈FX(S) ,≤S〉 is a fork space. We denote the branch
product relation on B(X) by ≤ and define it as follows. Let A,B ∈ B(X). Then
A ≤ B if A@S ≤S B@S for all S ∈ S (X) for which both A@S and B@S exist.
When the fork relations are not clear from the context, we use B

(
X, 〈≤S〉S∈S(X)

)
to denote the set B(X) together with the branch product relation induced by the
fork relations 〈≤S〉S∈S(X).

The motivation for the above definition is to generalize direct products, lexico-
graphic products, and ordered sums. As demonstrated by the following examples,
branch product relations achieve this generalization.

Example 1.7. Let 〈X,v〉 =
〈⋃

n<ω {0, 1}{0,...,n}
, ⊆〉

. Then each fork has cardi-
nality 2. We make each such fork into a fork space with order type 2. Then the
branch product relation has the order type of the Cantor set.

Example 1.8. Generalizing the last example, let α ∈ On and let Lβ be a nonempty
chain for each β < α. Let 〈X,v〉 =

〈⋃
β<α

∏
γ≤β Lγ , ⊆〉

. Then each fork is a copy
of Lβ for some β < α, and we give it the corresponding fork relation. The branch
product relation makes B(X) isomorphic to

∏
β<α Lβ ordered by first differences;

hence, the branch product relation generalizes the lexicographic product.

Example 1.9. Let α ∈ On and let Xβ be a nonempty set with a relation Rβ for
each β < α. Assume that these spaces are pairwise disjoint. Let X =

⋃
β<α Xβ . For

all p, q ∈ X, we declare p v q if p = q or there exist β, γ ∈ On such that γ < β < α
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and p ∈ Xγ and q ∈ Xβ . Then every fork is equal to Xβ for some β < α, and
we give this fork the relation Rβ . Then B(X) is isomorphic to

∏
β<α Xβ with the

direct product relation; hence, branch product relations generalize direct products.

Example 1.10. Let A be a nonempty set with a relation R. For each a ∈ A, let Ba

be a nonempty set with a relation Ra. Assume that these sets are pairwise disjoint.
Let X = A ∪⋃

a∈A Ba. For all p, q ∈ X, we declare p v q if p = q or if p ∈ A and
q ∈ Bp. Then S (X) = {∅} ∪ {{a} : a ∈ A}. Let ≤∅= R and let ≤{a}= Ra for each
a ∈ A. Then B(X) = {{a, b} : a ∈ A and b ∈ Ba} and with the branch product
relation B(X) is isomorphic to the ordered sum

∑
a∈A Ba; hence, branch product

relations generalize the ordered sum.

2. Basic Properties

In this section we develop the more basic results about branch product relations.
First, we characterize branch product relations in terms of relation-preserving maps.

Definition 2.1. Given sets A1 and A2 and relations R1 and R2 respectively on A1

and A2, we say that a map f : A1 → A2 is isotone if xR1y implies f(x)R2f(y) for
all x, y ∈ A1.

Theorem 2.2. The branch product relation is the weakest relation on B(X) for
which πS is isotone for all S ∈ S (X).

Proof. By definition of the branch product relation, πS is clearly isotone for all
S ∈ S (X). Suppose R is a relation on B(X) for which πS is isotone for all
S ∈ S (X). Further suppose A,B ∈ B(X) and ARB. Then, by isotonicity,
A@S ≤S B@S for all S for which A@S and B@S exist; hence, A ≤ B. Thus, R is
stronger than ≤. ¤

We also note that branch products preserve very basic properties of relations.

Proposition 2.3. The branch product relation on B(X) is reflexive if all fork re-
lations of X are reflexive. Moreover, the branch product relation on B(X) is sym-
metric if all fork relations of X are symmetric, for the dual of B

(
X, 〈≤S〉S∈S(X)

)
is B

(
X, 〈≥S〉S∈S(X)

)
.

Proof. Let A, B ∈ B(X). Suppose all fork relations of X are reflexive. Then
A@S ≤S A@S for all S ∈ S (X) for which A@S exists; hence, A ≤ A. The rest of
the proposition is obvious. ¤

Definition 2.4. Given n < ω, we say that a relation R is n-acyclic if, for all
elements a0, . . . , an−1 of the domain of R such that a0Ra1R · · ·Ran−1Ra0, we have
a0 = · · · = an−1.

Theorem 2.5. Suppose n < ω and all fork relations of X are n-acyclic. Then the
branch product relation on B(X) is n-acyclic.

Proof. Suppose A(0), . . . , A(n−1) ∈ B(X) and A(0) ≤ A(1) ≤ · · · ≤ A(n−1) ≤ A(0).
Since

⋂
m<n A(m) is chain, the union of all semibranches contained in this chain

is a semibranch. Let S be this union. Further suppose there exist i, j < n such
that A(i) 6= A(j). Then S ( A(i); hence, S ∈ S (X). Therefore, A(m)@S exists
for all m < n. Hence, A(0)@S ≤S A(1)@S ≤S · · · ≤S A(n−1)@S ≤S A(0)@S. By
the n-acyclicity of ≤S , we have A(0)@S = · · · = A(n−1)@S. Hence, S ∪ {A(0)@S}
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is a semibranch contained in
⋂

m<n A(m), in contradiction with the definition of S.
Therefore, A(0) = · · · = A(n−1). ¤

Corollary 2.6. Suppose all fork relations of X are antisymmetric. Then the branch
product relation on B(X) is antisymmetric.

Proof. Antisymmetry is equivalent to 2-acyclicity. ¤

Corollary 2.7. Suppose all fork relations of X are partial orders. Then the tran-
sitive closure of the branch product relation on B(X) is a partial order.

Proof. Let ≤∗ denote the transitive closure of the branch product relation ≤. By
Proposition 2.3, ≤ is reflexive; hence, ≤∗ is reflexive. Therefore, it suffices to prove
that ≤∗ is antisymmetric. Suppose A, B ∈ B(X) and A ≤∗ B ≤∗ A. Then there
exist m,n < ω such that

A = C(0) ≤ C(1) ≤ · · · ≤ C(m−1) = B = C(m−1) ≤ C(m) ≤ · · · ≤ C(m+n−1) = A

for some branches C(0), . . . , C(m+n−1). Since every fork relation is a partial order,
it is (m + n)-acyclic. Hence, ≤ is (m + n)-acyclic. Hence, C(0) = · · · = C(m+n−1).
Hence, A = B. ¤

In general, branch product relations are not transitive, even if all fork spaces are
chains. To avoid this problem, we specialize from well-founded posets to trees. Re-
call that a tree is a poset in which every element’s set of lower bounds is well-ordered.
Henceforth, let W denote a nonempty tree.

Proposition 2.8. No two forks of W intersect.

Proof. Let S1 and S2 be proper semibranches. Suppose p ∈ FW (S1) ∩ FW (S2).
Let P be the set of predecessors of p. Then P contains S1 ∪ S2. Moreover, P is
well-ordered because W is a tree. Therefore, S1 and S2 are initial segments of P .
But by definition of fork, neither S1 or S2 can be a proper initial segment of P ;
hence, S1 = P = S2. ¤

Definition 2.9. For any semibranch S and a, b ∈ FW (S), we denote a ≤S b by
a ≤ b. Since no two forks intersect, this causes no ambiguity, provided the context
determines whether we are relating elements of W or branches of W .

Proposition 2.10. Suppose every fork relation of W is reflexive, and A and B are
distinct branches of W. Then A ≤ B if and only if A@(A ∩B) ≤ B@(A ∩B).

Proof. If A ≤ B, then clearly A@(A ∩ B) ≤ B@(A ∩ B), as both A@(A ∩ B)
and B@(A ∩ B) exist. Conversely, suppose A@(A ∩ B) ≤ B@(A ∩ B). Suppose
S ∈ S (W ) and A@S and B@S exist. Then S ⊆ A ∩ B, for S is the set of
predecessors of both A@S and B@S. If S ( A ∩ B, then A@S,B@S ∈ A ∩ B;
hence, A@S = B@S; hence, A@S ≤ B@S. If S = A ∩ B, then A@S ≤ B@S by
assumption. Therefore, A ≤ B. ¤

Paraphrasing Proposition 2.10, when all fork relations are reflexive, B(W ) is
ordered by “first differences.”

Definition 2.11. Let M be a class of objects of the form 〈A,R〉 where R is a
relation on A. We say that M is closed under tree branch products if, given any
nonempty tree W with all its fork spaces in M, we have 〈B(W ) ,≤〉 ∈ M.
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Given this definition, we investigate which classes are closed under tree branch
products. For basic terminology and notation of order theory and lattice theory,
see Davey and Priestley[1].

Remark 2.12. Although we focus on order-theoretic applications of branch prod-
ucts, there certainly are other interesting aspects of branch products. For example,
one might investigate which finite graphs are irreducible with respect to branch
products or which are irreducible with respect to tree branch products.

Theorem 2.13. The class of posets is closed under tree branch products.

Proof. Assume that all fork spaces of W are posets. By Proposition 2.3 and Corol-
lary 2.6, it suffices to prove B(W ) is transitive. Let A,B,C ∈ B(W ) and let
A ≤ B ≤ C. If A = B or B = C, then A ≤ C. Suppose A < B and
B < C. Let S = A ∩ B ∩ C. Then, since A 6= B, we have S ∈ S (W ). Also,
A@S ≤ B@S ≤ C@S. If A@S = C@S, then A@S = B@S = C@S ∈ A∩B∩C = S,
which is absurd. Therefore, A@S < C@S. Since A@S 6= C@S, we have S = A∩C;
hence, A@(A ∩ C) < C@(A ∩ C); hence, A < C. ¤
Theorem 2.14. The classes of chains and dense chains are each closed under tree
branch products.

Proof. Assume all forks spaces of W are chains. By Theorem 2.13, B(W ) is a poset.
Let A and B be distinct elements of B(W ). Then A@(A∩B) 6= B@(A∩B); hence,
A@(A ∩ B) < B@(A ∩ B) or A@(A ∩ B) > B@(A ∩ B); hence, A < B or A > B.
Suppose A < B and the fork space FW (A ∩B) is a dense chain. Then there exists
c ∈ FW (A ∩B) such that A@(A ∩ B) < c < B@(A ∩ B); hence, A < C < B for
every branch C that contains (A ∩B) ∪ {c}. ¤
Definition 2.15. Given a poset 〈P,≤〉, we define its dimension to be the smallest
cardinal κ for which there exist κ-many linear extensions {〈P,¹α〉 : α < κ} of
〈P,≤〉 such that ≤=

⋂
α<κ ¹α. The dimension of 〈P,≤〉 is denoted by dim〈P,≤〉,

or dim P when there is no ambiguity.

Theorem 2.16. Suppose every fork space of W is a poset. Then we have

dim B(W ) = sup{dim〈FW (S) ,≤S〉 : S ∈ S (W )}.
Proof. Let κ = sup{dim〈FW (S) ,≤S〉 : S ∈ S (W )}. Then, for each S ∈ S (W ),
there exists 〈¹S,α〉α<κ such that ≤S=

⋂
α<κ ¹S,α and 〈FW (S) ,¹S,α〉 is a linear

extension of 〈FW (S) ,≤S〉 for all α < κ. Let A,B be distinct branches of W , and
let R = A ∩B. By Proposition 2.10, we have A ≤ B in B

(
W, 〈≤S〉S∈S(W )

)
if and

only if A@R ≤R B@R, which is true if and only if A@R ¹R,α B@R for all α < κ.
Again by Proposition 2.10, if α < κ, then A@R ¹R,α B@R if and only if A ≤ B in
B

(
W, 〈¹S,α〉S∈S(W )

)
. Thus, A ≤ B in B

(
W, 〈≤S〉S∈S(W )

)
if and only if A ≤ B in

B
(
W, 〈¹S,α〉S∈S(W )

)
for all α < κ. Clearly, B

(
W, 〈¹S,α〉S∈S(W )

)
is an extension

of B
(
W, 〈≤S〉S∈S(W )

)
. Moreover, by Theorem 2.14, B

(
W, 〈¹S,α〉S∈S(W )

)
is a

linear extension. Therefore, dim B
(
W, 〈≤S〉S∈S(W )

) ≤ κ.
Let T ∈ S (W ). Then we can order-embed 〈FW (T ) ,≤T 〉 in B

(
W, 〈≤S〉S∈S(W )

)
by mapping each p ∈ FW (T ) to a branch containing T ∪ {p}. Therefore, we have

dim〈FW (T ) ,≤T 〉 ≤ dim B
(
W, 〈≤S〉S∈S(W )

)
.

Thus, κ ≤ dim B
(
W, 〈≤S〉S∈S(W )

) ≤ κ. ¤
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Corollary 2.17. For every cardinal κ, the class of posets of dimension κ is closed
under tree branch products.

3. Boundedness and Completeness

Tree branch products behave very well with respect to boundedness and com-
pleteness properties of posets. We first prove this statement in very general terms
and then derive more specific results as corollaries.

Definition 3.1. Given a class of posets M, we say that a poset P is M-bounded
(M-complete) if every set in M∩ P(P ) has an upper bound (least upper bound)
in P . We say that a class of posets M is full if the following conditions hold:

(1) if P ∈ M and f is an isotone map from P to some other poset, then
f(P ) ∈M;

(2) if P ∈M and Q ⊆ P and x < y for all x ∈ P \Q and y ∈ Q, then Q ∈M.

Theorem 3.2. Let M be a full class of posets. Then the classes of M-bounded
posets and M-complete posets are each closed under tree branch products. Further-
more, if all fork spaces of W are M-complete posets and A ∈ P(B(W ))∩M, then,
for all α < h (

∨A), we have

(3.1)
(∨

A
)

@
(∨

A
)
α

=
∨ {

A@Aα : A ∈ A and Aα =
(∨

A
)
α

}
.

Indeed, (3.1) holds for all A ⊆ B(W ) for which
∨A exists.

Proof. Let all fork spaces of W be M-bounded posets and let A ∈ P(B(W ))∩M.
By Proposition 1.5, we can define a branch B in W by defining B@Bα in terms
of Bα for every α < h(B). Suppose Bα has been defined, Bα ∈ S (W ), and,
for all β < α, we have Eβ ∈ M and B@Bβ is an upper bound of Eβ , where
Eβ = {A@Aβ : A ∈ A and Aβ = Bβ}. Further suppose that B@Bβ =

∨
Eβ for

all β < α such that FW (Bβ) is M-complete. Provided Eα ∈ M, we may choose
B@Bα such that it is an upper bound of Eα and is the least upper bound of Eα if
FW (Bα) is M-complete.

Let us show this provision is satisfied. Set

A′ = BW (FW (Bα)) ∩ A = {A ∈ A : Aα = Bα}.
Suppose A ∈ A \A′ and A′ ∈ A′. Then there exists β < α such that Aβ = A′β and
A@Aβ 6= A′@A′β . Since A′ ∈ A′, we have Aβ = A′β = Bβ and A′@A′β = B@Bβ .
Hence, A@Aβ ∈ Eβ ; hence, A@Aβ ≤ B@Bβ = A′@A′β ; hence, A@Aβ < A′@A′β ;
hence, A < A′. Thus, by fullness of M, we have A′ ∈ M. Moreover, since πBα is
isotone, Eα = πBα(A′) ∈M.

By induction, for each α < h(B), we have B@Bα is an upper bound for Eα and
is the least upper bound of Eα if FW (Bα) is M-complete. Suppose there is an A
in A such that A � B. Then A@(A ∩ B) � B@(A ∩ B). Let Aα = Bα = A ∩ B.
Then A@Aα ∈ Eα; hence, A@Aα ≤ B@Bα, which is absurd. Therefore, B is an
upper bound of A. Thus, B(W ) is M-bounded.

Suppose every fork space of W is M-complete. Let us show B =
∨A. Suppose

not. Then A has an upper bound C satisfying B � C; hence,

B@(B ∩ C) � C@(B ∩ C).
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Let Bβ = B ∩ C. If Eβ 6= ∅, then, since C is an upper bound of A, we have

C@(B ∩ C) ≥
∨

Eβ = B@(B ∩ C),

which is absurd. If Eβ = ∅, then B@(B ∩C) = min FW (Bβ) ≤ C@(B ∩C), which
is also absurd. Therefore, B =

∨A. Thus, B(W ) is M-complete. Moreover, the
definition of B clearly implies (3.1).

Now allow A to be an arbitrary subset of B(W ). Suppose
∨A exists but (3.1)

fails. Let α be the least ordinal such that (3.1) fails. Define E by

E =
{

A@Aα : A ∈ A and Aα =
(∨

A
)
α

}
.

Then (
∨A)@(

∨A)α is an upper bound of E. Since (3.1) fails, we may choose
p ∈ FW ((

∨A)α) such that p is an upper bound of E but (
∨A)@(

∨A)α � p. Let
C be an arbitrary branch containing p. Then C ∩∨A = (

∨A)α; hence, C �
∨A;

hence, C is not an upper bound of A.
Choose D ∈ A such that D � C. Let Dβ = Cβ = D∩C. Then D@Dβ � C@Cβ .

If β < α, then Dβ = (
∨A)β and

C@Cβ =
(∨

A
)

@
(∨

A
)
β

=
∨ {

A@Aβ : A ∈ A and Aβ =
(∨

A
)
β

}
≥ D@Dβ ,

which is absurd. If β = α, then D@Dβ ∈ E and C@Cβ is p, an upper bound of
E, which is absurd. Therefore, β > α. Hence, D ∩ (

∨A) = C ∩ (
∨A) = (

∨A)α;
hence, Dα = (

∨A)α; hence, p = C@Cα = D@Dα ∈ E. Thus, (3.1) holds for all
α < h(

∨A). ¤

Definition 3.3. Let κ be a cardinal and let P be a poset. We say P is a κ-complete
lattice if, for all E ⊆ P satisfying |E| < κ, the set E has a supremum and an infimum
in P . We say P is κ-complete poset if, for all empty or directed subsets E of P
satisfying |E| < κ, the set E has a supremum in L. We say P is κ-directed if, for
all E ⊆ P satisfying |E| < κ, the set E has an upper bound in P .

Corollary 3.4. Let κ be a cardinal. Then the classes of bounded lattices, complete
lattices, κ-complete lattices, complete posets, κ-complete posets, directed posets,
bounded posets, and κ-directed posets are each closed under tree branch products.

Proof. First we reduce the number the cases we need to consider.
(1) The bounded lattices are exactly the ℵ0-complete lattices.
(2) The directed posets are exactly the ℵ0-directed posets.
(3) All complete lattices are |B(W )|+-complete lattices and B(W ) is a com-

plete lattice if it is a |B(W )|+-complete lattice.
(4) All complete posets are |B(W )|+-complete posets and B(W ) is a complete

poset if it is a |B(W )|+-complete poset.
(5) All bounded posets and their duals are |B(W )|+-directed, and B(W ) is

bounded if it and its dual are |B(W )|+-directed.
Thus, it suffices to show that the classes of κ-complete lattices, κ-complete posets,
and κ-directed posets are each closed under tree branch products. Let M be the
class of posets of size less than κ and let N be the class of empty or directed
posets of size less than κ. Then M and N are full. Thus, if every fork space
of W is a κ-complete lattice, then every fork space and its dual are M-complete;
whence, B(W ) and its dual areM-complete; whence, B(W ) is a κ-complete lattice.
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Similarly, if every fork space of W is a κ-complete poset, then every fork space is
N -complete; whence, B(W ) is N -complete; whence, B(W ) is a κ-complete poset.
Finally, suppose every fork space of W is a κ-directed poset. Then every fork
space is M-bounded; hence, B(W ) is M-bounded; hence, B(W ) is a κ-directed
poset. ¤
Corollary 3.5. For each cardinal κ, the classes of bounded chains, complete chains,
and κ-complete chains are each closed under tree branch products.

The boundedness requirement for lattices in Corollary 3.4 cannot be eliminated,
as shown below.

Example 3.6. The class of lattices is not closed under tree branch products. Let
FW (∅) = {a, b, c, d} with a < b < d > c > a and b � c � b. Let FW ({a}) be ω
with its canonical ordering. Let W have no other forks. Then {b}, {c} ∈ B(W )
but {{b}, {c}} has no infimum in B(W ), despite all forks in W being lattices.

4. Lattice Properties

The previous section shows that tree branch products behave very well with
respect to order properties, and very well with respect to completeness. Unfortu-
nately they do not behave nearly as well with respect to lattice properties of a more
algebraic nature, as the next example shows.

Example 4.1. The classes of boolean lattices, bounded distributive lattices, and
bounded modular lattices are each not closed under tree branch products. It suffices
to exhibit a tree W such that all its fork spaces are boolean lattices but B(W ) is
not modular. Let FW (∅) = {a, b, c, d} with a < b < d > c > a and b � c � b. Let
FW ({b}) = {e, f} with e < f . Let W have no other forks. Then we have

B(W ) = {{a}, {b, e}, {b, f}, {c}, {d}}.
Moreover, we have {b, e} < {b, f} and

{b, e} ∨ ({c} ∧ {b, f}) = {b, e} < {b, f} = ({b, e} ∨ {c}) ∧ {b, f},
in violation of modularity.

The above example is a strong negative algebraic result, but we can show a small
positive algebraic result.

Theorem 4.2. The classes of bounded join-semidistributive lattices and bounded
meet-semidistributive lattices are each closed under tree branch products.

Proof. We prove the join-semidistributive case by contradiction. Duality handles
the other case.

Suppose all the fork spaces of W are bounded join-semidistributive lattices. Then
B(W ) is a bounded lattice. Suppose B(W ) is not join-semidistributive. Then there
exist A,B,C, D ∈ B(W ) such that D = A∨B = A∨C but D 6= A∨ (B ∧C). Let
E = A ∨ (B ∧ C). Then D > E. Let Dα = Eα = D ∩ E. Then D@Dα > E@Eα.

Suppose Aα = Bα = Cα = Dα. Then, by (3.1) and its dual,

D@Dα = A@Aα ∨B@Bα = A@Aα ∨ C@Cα and

E@Eα = A@Aα ∨ (B@Bα ∧ C@Cα).

Since 〈FW (Eα) ,≤〉 is a join-semidistributive lattice, D@Dα = E@Eα, which is
absurd. Therefore, Aα 6= Dα or Bα 6= Dα or Cα 6= Dα. Suppose Aα = Dα 6= Bα.
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Then, by (3.1), A@Aα = D@Dα > E@Eα. Consequently, since E ≥ A and
Eα = Dα = Aα, we have A@Aα > E@Eα ≥ A@Aα, which is absurd. Likewise,
Aα = Dα 6= Cα implies a contradiction. Therefore, Aα 6= Dα. Then (3.1) implies
that D@Aβ > A@Aβ for some β < α.

Suppose Bα = Dα. Then B@Aβ = D@Aβ > A@Aβ for some β < α; hence,
B > A; hence, D = A∨B = B. Since B = D and D = A∨C ≥ C, we have B ≥ C.
Therefore,

D = A ∨ C = A ∨ (B ∧ C) = E,

which is absurd. Therefore, Aα 6= Dα 6= Bα; hence, D@Dα = min FW (Dα) by
(3.1). But then D@Dα ≤ E@Eα, which is absurd. Therefore, B(W ) is join-
semidistributive. ¤

Tree branch products also almost preserve complementarity.

Proposition 4.3. Suppose all the fork spaces of W are complemented (and hence
bounded) lattices. Then B(W ) is a bounded lattice and is complemented if the min-
imum and maximum of FW (∅) (with respect to the fork relation) are each contained
in only one branch.

Proof. Let A ∈ B(W ). Let B be a branch containing the complement of A@∅ in
FW (∅). Then

(A ∨B)@∅ = maxFW (∅) and (A ∧B)@∅ = min FW (∅)
by (3.1) and its dual. Therefore, A∨B = maxB(W ) and A∧B = min B(W ). ¤

Next we consider the classes of algebraic lattices and continuous lattices. Nei-
ther class is closed under tree branch products. Interestingly, the class of complete
weakly atomic lattices, which contains the algebraic lattices, and the smaller class
of strongly algebraic lattices (see Definition 4.7) are each closed under tree branch
products. Moreover, when we restrict from lattices to chains, weak atomicity, alge-
braicity, and strong algebraicity coincide. There is also a subclass of the continuous
lattices which is closed under tree branch products, and this subclass is not a proper
subclass when restricted to chains. We call this subclass the class of everywhere
weakly compact lattices (see Definition 4.7). Let us prove these assertions.

Theorem 4.4. The class of bounded weakly atomic lattices is closed under tree
branch products.

Proof. Suppose all fork spaces of W are bounded weakly atomic lattices. Also
suppose A,B ∈ B(W ) and A < B. Then A@(A ∩ B) < B@(A ∩ B). Since
FW (A ∩B) is weakly atomic, there exist c, d ∈ FW (A ∩B) such that

A@(A ∩B) ≤ c < d ≤ B@(A ∩B)

and d is an immediate successor of c in FW (A ∩B). Let α ∈ On satisfy Aα = A∩B.
Then recursively define C ∈ B(W ) by Cα+1 = Aα∪{c} and C@Cβ = max FW (Cβ)
for all β ≥ α + 1 such that Cβ ∈ S (W ). Define D ∈ B(W ) by Dα+1 = Aα ∪ {d}
and D@Dβ = min FW (Dβ) for all β ≥ α + 1 such that Dβ ∈ S (W ). Then
A ≤ C < D ≤ B and D is an immediate successor of C. ¤

Corollary 4.5. The class of complete weakly atomic lattices is closed under tree
branch products.
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Example 4.6. The classes of algebraic lattices and continuous lattices are each not
closed under tree branch products. Let FW (∅) =

⋃
n≤ω{an, bn}. Let

an+1 > an < bn < bn+1 � aω � bn

for all n < ω. Also, let aω =
∨{an : n < ω} and bω =

∨{bn : n < ω} and aω < bω.
Also, let FW ({aω}) = {c, d} and c < d. Finally, let W have no other forks. Then all
fork spaces of W are algebraic, and hence continuous. But B(W ) is not continuous,
and hence not algebraic: {aω, d} is join-irreducible; hence, continuity of B(W )
implies {aω, d} is compact. But {aω, d} <

∨{{bn} : n < ω} and {aω, d} � {bn} for
all n < ω; hence, {aω, d} is not compact; hence, B(W ) is not continuous.

Definition 4.7. Let L be a complete lattice, let p be an element of L, and let κ
and λ be cardinals.

(1) We say that p is κ-compact if, for every A ⊆ L such that p ≤ ∨
A, there is a

subset B of A such that |B| < κ and p ≤ ∨
B. We abbreviate ℵ0-compact

by compact, in agreement with the usual definition of compact.
(2) We say that p is weakly κ-compact if, for every A ⊆ L such that p <

∨
A,

there is a subset B of A such that |B| < κ and p ≤ ∨
B. We abbreviate

weakly ℵ0-compact by weakly compact.
(3) We say that p is strictly κ-compact if, for every A ⊆ L such that p <

∨
A,

there is a subset B of A such that |B| < κ and p <
∨

B. We abbreviate
strictly ℵ0-compact by strictly compact.

(4) We say that L is everywhere κ-compact (everywhere weakly κ-compact,
everywhere strictly κ-compact) if all its elements are κ-compact (weakly
κ-compact, strictly κ-compact).

(5) We say that L is κ-algebraic if all its elements are joins of κ-compact el-
ements. We abbreviate ℵ0-algebraic by algebraic, in agreement with the
usual definition of algebraic.

(6) We say that L is κ-strongly λ-algebraic if L is λ-algebraic and all its elements
are strictly κ-compact. We abbreviate ℵ0-strongly ℵ0-algebraic by strongly
algebraic.

Proposition 4.8. Every complete chain is everywhere strictly 2-compact. More-
over, every weakly atomic complete chain is 2-strongly 2-algebraic, and hence alge-
braic.

Proof. Let C be a complete chain. Let a ∈ C, let B ⊆ C, and let a <
∨

B. Then
there exists b ∈ B such that a < b; hence, a is strictly 2-compact. Suppose C is
also weakly atomic. Let D be the set of elements of C that have an immediate
predecessor. Then every element of D is 2-compact. Let E = {d ∈ D : d ≤ a}.
Then

∨
E ≤ a. Suppose

∨
E < a. Then, by weak atomicity of C, there exist

p, q ∈ C such that
∨

E ≤ p < q ≤ a and p is the immediate predecessor of q.
Therefore,

∨
E < q ∈ E, which is absurd. Therefore,

∨
E = a; hence, a is a join of

2-compact elements. ¤

Proposition 4.9. Let κ be a cardinal greater than 1. Then
(1) strict κ-compactness implies weak κ-compactness,
(2) weak κ-compactness implies strict (κ + 1)-compactness,
(3) κ-compactness implies weak κ-compactness, and
(4) strict κ-compactness does not imply κ-compactness.
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Proof. (1) and (3) are trivial. To prove (4), simply note that every non-compact
element of a complete chain is strictly 2-compact by Proposition 4.8. To prove
(2), let L be a complete lattice, let p be a weakly κ-compact element of L, and let
A ⊆ L satisfy p <

∨
A. Then there exists B ⊆ A such that |B| < κ and p ≤ ∨

B.
If p <

∨
B, then we are done. If p =

∨
B, then

∨
B <

∨
A; hence, there exists

a ∈ A such that a �
∨

B; hence, p =
∨

B <
∨

(B ∪ {a}); hence, p is strictly
(κ + 1)-compact. ¤
Proposition 4.10. Every complete chain, which is automatically a continuous
lattice, is also everywhere weakly compact.

Proof. By Proposition 4.8, every complete chain is everywhere 2-strictly compact.
But 2-strict compactness implies weak 2-compactness, which implies weak com-
pactness. ¤
Proposition 4.11. Let L be a complete lattice and let p ∈ L. Then p is weakly
compact if and only if p ¿ q for all q > p. Moreover, if L is everywhere weakly
compact, then L is continuous.

Proof. Let p be weakly compact and q ∈ L and A ⊆ L and p < q ≤ ∨
A. Then A

has a finite subset B such that p ≤ ∨
B; hence, p ¿ q whenever p < q. Conversely,

suppose p ¿ q for all q > p. Let A ⊆ L satisfy p <
∨

A. Then p ¿ ∨
A; hence, A

has a finite subset B such that p ≤ ∨
B; hence, p is weakly compact. This proves

the first part of the proposition.
Suppose L is everywhere weakly compact. Then

p ≥
∨
{q : q < p} =

∨
{q : q ¿ p}.

We must show p =
∨{q : q ¿ p}. Suppose p >

∨{q : q ¿ p} =
∨{q : q < p}. Then

let A ⊆ L satisfy p ≤ ∨
A. Then p <

∨
A implies A has a finite subset B such that

p ≤ ∨
B. On the other hand, p =

∨
A implies p ∈ A. Therefore, p ¿ p. Hence,

p =
∨{q : q ¿ p}. Therefore, L is continuous. ¤

Theorem 4.12. For each cardinal κ, the class of everywhere strictly κ-compact
lattices is closed under tree branch products.

Proof. Let all the fork spaces of W be everywhere strictly κ-compact lattices. Then
B(W ) is a complete lattice by Corollary 3.4. Let A, B ∈ B(W ), let C ⊆ B(W ),
and let A <

∨ C = B. Let Bα = A ∩B. Then A@Aα < B@Bα; hence,

B@Bα 6= min FW (Bα) .

Therefore, by (3.1), there exists C ∈ C such that Cα = Bα. Let

D = {C ∈ C : Cα = Bα}.
Then, by (3.1),

A@Aα < B@Bα =
∨
{D@Dα : D ∈ D}.

Since A@Aα is strictly κ-compact in FW (Aα), there exist E ⊆ D such that |E| < κ
and

A@Aα <
∨
{E@Eα : E ∈ E}.

Since Eα = Aα for all E ∈ E , we have A <
∨ E by (3.1). ¤

Corollary 4.13. The class of everywhere weakly compact lattices is closed under
tree branch products.
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Proof. Since ℵ0 + 1 = ℵ0, Proposition 4.9 implies that weak compactness is equiv-
alent to strict compactness; apply Theorem 4.12. ¤
Theorem 4.14. Let κ and λ be cardinals satisfying κ ≤ λ. Then the class of
κ-strongly λ-algebraic lattices is closed under tree branch products.

Proof. Let all the fork spaces in W be κ-strongly λ-algebraic lattices. Then, by
Theorem 4.12, B(W ) is an everywhere strictly κ-compact lattice. Let B ∈ B(W )
and let A =

∨A where

A = {E ∈ B(W ) : E ≤ B and E is λ-compact}.
Then A ≤ B. If A = B, then we’re done. Suppose A < B. Let Aα = A ∩B. Then
A@Aα < B@Bα. Because FW (Aα) is λ-algebraic, there exists c ∈ FW (Aα) such
that c is λ-compact, c � A@Aα, and c ≤ B@Bα. Recursively define C ∈ B(W ) by
Cα+1 = Bα∪{c} and C@Cβ = min FW (Cβ) for all β ≥ α+1 such that Cβ ∈ S (W ).
Then C ≤ B. Also, C � A; hence, C 6∈ A; hence, C is not λ-compact.

To complete the proof, we will derive a contradiction by showing C is λ-compact.
Let D ⊆ B(W ) satisfy C ≤ ∨D. Suppose C <

∨D. Then, because C is strictly
κ-compact, there exists E ⊆ D such that |E| < κ ≤ λ and C <

∨ E , as desired.
Suppose C =

∨D. Since c � A@Aα, we have c 6= min FW (Cα); hence, by (3.1),
there exists D ∈ D such that Dα = Cα. Let G = {D ∈ D : Dα = Cα}. Then (3.1)
implies c =

∨{G@Gα : G ∈ G}. Since c is λ-compact, there exists H ⊆ G such
that |H| < λ and c ≤ ∨{H@Hα : H ∈ H}. Therefore, C ≤ ∨H as desired because
C@Cβ = min FW (Cβ) for all β ≥ α + 1 for which Cβ ∈ S (W ). ¤
Corollary 4.15. The class of strongly algebraic lattices is closed under tree branch
products.
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