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Abstract. We construct a path-connected homogenous compactum with cel-

lularity c that is not homeomorphic to any product of dyadic compacta and

first countable compacta. We also prove some closure properties for classes
of spaces defined by various connectifiability conditions. One application is

that every infinite product of infinite topological sums of Ti spaces has a Ti

pathwise connectification, where i ∈ {1, 2, 3, 3.5}.

1. Introduction

M. A. Maurice [15] constructed a family of homogeneous compact ordered spaces
with cellularity c. All these spaces are zero-dimensional. Indeed, it is easy to see
that no compact ordered space with uncountable cellularity can be path-connected.
The cone over any of Maurice’s spaces is path-connected but not homogeneous or
ordered. However, there is a path-connected homogeneous compactum with cellu-
larity c which, though not an ordered space, has small inductive dimension 1; we
construct such a space by gluing copies of powers of one of Maurice’s spaces together
in a uniform way. Moreover, this space is not homeomorphic to a product of dyadic
compacta and first countable compacta. To the best of the author’s knowledge,
there is only one other known construction, due to van Mill [16] (and generalized
by Hart and Ridderbos [12]), of a homogeneous compactum not homeomorphic to
such a product, and the homogeneity all spaces so constructed is independent of
ZFC.

The above amalgamation technique also can be used to construct new connectifi-
cations, where a connected (path-connected) space Y is a connectification (pathwise
connectification) of a space X if X can be densely embedded in Y , and the connec-
tification is proper if the embedding can be chosen not to be surjective. Whether a
space has a connectification is uninteresting unless we restrict to connectifications
that are at least T2. For a broad survey of connectification results, see Wilson [18].
Our focus will be on which T2 (T3, T3.5, metric) spaces have T2 (T3, T3.5, metric)
connectifications or pathwise connectifications. Only partial characterizations are
known. For example, Watson and Wilson [17] showed that a countable T2 space has
a T2 connectification if and only if it has no isolated points. Emeryk and Kulpa [6]
proved that the Sorgenfrey line has a T2 connectification, but no T3 connectifica-
tion. Alas et al [1] showed that every separable metric space without nonempty
open compact subsets has a metric connectification. Gruenhage, Kulesza, and Le
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Donne [11] showed that every nowhere locally compact metric space has a metric
connectification.

There are only a handful of results about pathwise connectifications. For exam-
ple, Fedeli and Le Donne [9] showed that a nonsingleton countable first countable
T2 space has a T2 pathwise connectication if and only if it has no isolated points.
Druzhinina and Wilson [4] showed that a metric space has a metric pathwise con-
nectification if its path components are open and not locally compact; similarly,
a first countable T2 (T3) space has a T2 (T3) connectification if its path compo-
nents are open and not locally feebly compact. See also Costantini, Fedeli, and Le
Donne [2] for some results about pathwise connectifications of spaces adjoined with
a free open filter.

Suppose i ∈ {1, 2, 3, 3.5} and X has a proper Ti connectification. Then X ×
Z has a proper Ti connectification for all Ti spaces Z. Thus, given one proper
connectification, this product closure property gives us a new connectification. We
omit the easy proof of this fact here because we shall prove much stronger amalgam
closure properties, which in many cases are also valid for pathwise connectifications.
The reals are a pathwise connectification of the Baire space ωω because ωω ∼= R\Q.
By applying amalgam closure properties to this particular connectification, we shall
prove the following theorem.

Theorem 1.1. If i ∈ {1, 2, 3, 3.5}, then every infinite product of infinite topolog-
ical sums of Ti spaces has a Ti pathwise connectification. Every countably infinite
product of infinite topological sums of metrizable spaces has a metrizable pathwise
connectification.

The previously known result most similar to Theorem 1.1 is due to Fedeli and Le
Donne [8]: a product of T2 spaces with open components has a T2 connectification
if and only if it does not contain a nonempty proper open subset that is H-closed.

2. Amalgams

For all undefined notions, see Engelking [7] and Juhász [13]. We follow Juhász’s
notation for cardinal function on topological spaces, except that we use πw(X) to
denote the π-weight of a space X.

Definition 2.1. Given a topological spaceX, let S(X) denote the set of all subbases
of X that do not include ∅.

Let X be a nonempty T0 space and let S ∈ S(X). For each S ∈ S , let YS be a
nonempty topological space. The amalgam of 〈YS : S ∈ S 〉 is the set Y defined by

Y =
⋃
p∈X

∏
p∈S∈S

YS .

We say that X is the base space of Y . For each S ∈ S , we say that YS is a factor of
Y . Every amalgam has a natural projection π to its base space: because X is T0, we
may define π : Y → X by π−1{p} =

∏
p∈S∈S YS for all p ∈ X. Amalgams also have

natural partial projections to their factors: for each S ∈ S , define πS : π−1S → YS
by y 7→ y(S).

Consider sets of the form π−1
S U where S ∈ S and U open in YS . We say

such sets are subbasic and finite intersections of such sets are basic. We topologize
Y by declaring these basic sets to be a base of open sets. Let us list some easy
consequences of this topologization.
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(1) For all S ∈ S , the map πS is continuous and open and has open domain.
(2) The map π is continuous and open.
(3) If |YS | = 1 for all S ∈ S , then Y ∼= X.
(4) For each p ∈ X, the product topology of

∏
p∈S∈S YS is also the subspace

topology inherited from Y .
(5) Suppose, for each S ∈ S , that ZS is a subspace of YS . Then the topology

of the amalgam of 〈ZS : S ∈ S 〉 is also the subspace topology inherited
from Y .

(6) Suppose, for each S ∈ S , that SS is a subbase of YS . Then the set

{π−1
S T : S ∈ S and T ∈ SS}

is a subbase of Y .
Throughout this paper, X, S , and 〈YS〉S∈S will vary, but Y will always denote

the amalgam of 〈YS〉S∈S .
Up to homeomorphism, an amalgam is a quotient of the product of its base space

and its factors. Specifically, the map from X ×
∏
S∈S YS to Y given by

〈x, y〉 7→ y � {S ∈ S : x ∈ S}

is easily verified to be a quotient map.
We say that a class A of nonempty T0 spaces is amalgamative if an amal-

gam is always in A if its base space and all its factors are in A. Therefore,
any class of nonempty T0 spaces closed with respect to products and quotients
is amalgamative. In particular, amalgams preserve compactness, connectedness,
and path-connectedness. The next theorem says that several other well-known
productive classes are also amalgamative.

Theorem 2.2. The classes listed below are amalgamative provided we exclude the
empty space. Conversely, if an amalgam is in one of these classes, then its base
space and all its factors are also in that class.

(1) T0 spaces
(2) T1 spaces
(3) T2 spaces
(4) T3 spaces
(5) T3.5 spaces
(6) hereditarily disconnected T0 spaces
(7) zero-dimensional T0 spaces

Proof. For (1)-(3), suppose y0 and y1 are distinct elements of Y . If π(y0) = π(y1),
then there exists S ∈ dom y0 = dom y1 such that y0(S) 6= y1(S); whence, if U0 and
U1 are neighborhoods of y0(S) and y1(S) witnessing the relevant separation axiom
for y0(S) and y1(S), then π−1

S U0 and π−1
S U1 witness the the same separation axiom

for y0 and y1. If π(y0) 6= π(y1), then let U0 and U1 be neighborhoods of π(y0) and
π(y1) witnessing the relevant separation axiom for π(y0) and π(y1). Then π−1U0

and π−1U1 witness the same separation axiom for y0 and y1.
For (4) and (5), suppose C is a closed subset of Y and y ∈ Y \ C. Then there

exist n < ω and 〈Si〉i<n ∈ (dom y)n and 〈Ui〉i<n such that Ui is a neighborhood of
y(Si) for all i < n and

⋂
i<n π

−1
Si
Ui is disjoint from C. For each i < n, let Vi be a

neighborhood of y(Si) such that Vi ⊆ Ui. Let U be a neighborhood of π(y) such
that U ⊆

⋂
i<n Si. Set V = π−1U ∩

⋂
i<n π

−1
Si
Vi. Then V is a neighborhood of y
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and we have
V ⊆

⋂
i<n

π−1Si ∩
⋂
i<n

π−1
Si
Ui =

⋂
i<n

π−1
Si
Ui;

whence, V is disjoint from C.
Now suppose there is a continuous map f : X → [0, 1] such that f(π(y)) = 1

and f“(X \ U) = {0}. For each i < n, likewise suppose there is a continuous
map fi : YSi → [0, 1] such that fi(y(Si)) = 1 and f“(YSi \ Ui) = {0}. Define
g :
⋂
i<n π

−1Si → [0, 1] by z 7→ f(π(z))f0(z(S0)) · · · fn−1(z(Sn−1)). Define h :
π−1

(
X \ U

)
→ [0, 1] by z 7→ 0. By the pasting lemma, g ∪ h is continuous and

separates y and C.
For (6), suppose C is a nonempty connected subset of Y and X and YS are

hereditarily disconnected for all S ∈ S . Then π“C is connected; whence, π“C =
{p} for some p ∈ X. For each S ∈ S , if p ∈ S, then πS“C is connected; whence,
|πS“C| = 1. Thus, |C| = 1.

For (7), suppose S ∈ S and U open in YS and y ∈ π−1
S U . Let V be a clopen

neighborhood of y(S) contained in U . Then π−1
S V is clopen in π−1S. Let W be

a clopen neighborhood of π(y) contained in S. Then π−1W ∩ π−1
S V is a clopen

neighborhood of y contained in π−1
S U .

For the converse, first note that each of the classes (1)-(7) is closed with respect
to subspaces. Second, YS can be embedded in Y for all S ∈ S because

∏
p∈S∈S YS

is a subspace of Y for all p ∈ X. Finally, X can be embedded in Y because the
amalgam of 〈{f(S)}〉S∈S is homeomorhpic to X for all f ∈

∏
S∈S YS . �

A countable product of metrizable spaces is metrizable; the next theorem is the
analog for amalgams.

Theorem 2.3. Suppose X and YS are metrizable for all S ∈ S and there is a
countable T ⊆ S such that |YS | = 1 for all S ∈ S \T . Then Y is metrizable.

Proof. Since Y is T3 by Theorem 2.2, it suffices to exhibit a σ-locally finite base
for Y . For each T ∈ T , let

⋃
n<ω UT,n be a σ-locally finite base for YT ; let⋃

n<ω Un be a σ-locally finite base for X. For each n < ω and τ ∈ Fn(T , ω), set
Un,τ =

{
U ∈ Un : U ⊆

⋂
dom τ

}
and

Vn,τ =
{
π−1U ∩

⋂
T∈dom τ

π−1
T UT : U ∈ Un,τ and (∀T ∈ dom τ)(UT ∈ UT,τ(T ))

}
.

Then
⋃
n<ω

⋃
τ∈Fn(T , ω) Vn,τ is easily verified to be a σ-locally finite base for Y . �

In general, productiveness is logically incomparable to amalgamativeness: the
class of finite T0 spaces is amalgamative but only finitely productive; the class of
powers of 2 is productive but not amalgamative. However, all amalgamative classes
are finitely productive because if X ∈ S and |YS | = 1 for all S ∈ S \ {X}, then
Y ∼= X × YX .

Given Theorem 2.2, it is tempting to conjecture that amalgams are really sub-
spaces of products in disguise. This conjecture is false. To see this, consider the
class of nonempty Urysohn spaces. This class is closed with respect to arbitrary
products and subspaces, yet, as demonstrated by the following example, this class
is not amalgamative.

Example 2.4. Let X = Q with the topology generated by {Q \K} and the order
topology of Q where K = {2−n : n < ω}. Then X is Urysohn. Let Q \ K ∈ S
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and, for all S ∈ S , let |YS | = 1 if S 6= Q \ K. Set YQ\K = 2 (with the discrete
topology). Then all the factors of Y are Urysohn. For each i < 2, define yi ∈ Y by
{yi} = π−1{0} ∩ π−1

Q\K{i}. Suppose U0 and U1 are disjoint closed neighborhoods of
y0 and y1, respectively. Then π“U0 and π“U1 are neighborhoods of 0. Therefore,
2−n ∈ π“U0 ∩ π“U1 for some n < ω. If 2−n ∈ S ∈ S , then |YS | = 1; hence,
{π−1S : 2−n ∈ S ∈ S } is a local subbase for y2 where {y2} = π−1{2−n}. Since
2−n ∈ π“U0 ∩ π“U1, every finite intersection of elements of this local subbase will
intersect U0 and U1. Hence, y2 ∈ U0 ∩ U1 = U0 ∩ U1, which is absurd. Therefore,
Y is not Urysohn.

In the above example, the base space and all the factors of Y are totally discon-
nected. Therefore, no amalgamative class both contains all the nonempty totally
disconnected spaces and is contained in the class of nonempty Urysohn spaces.

Question 2.5. Is the class of nonempty realcompact spaces amalgamative?

Despite Example 2.4, there is a sense in which Y is almost homeomorphic to a
subspace of the product of its factors. For each S ∈ S , let ZS be YS with an added
point qS whose only neighborhood is ZS . Then Y is easily seen to be homeomorphic
to the set ⋃

p∈X

{
z ∈

∏
S∈S

ZS : (∀S ∈ S )(z(S) = qS ⇔ p 6∈ S)
}

with the subspace topology inherited from
∏
S∈S ZS . Moreover, this result still

holds if we make qS isolated for all clopen S ∈ S .
Let us make some auxillary definitions relating amalgams to continuous maps

and subspaces.

Definition 2.6. Suppose, for each S ∈ S , that ZS is a nonempty space and
fS : YS → ZS . Let Z be the amalgam of 〈ZS〉S∈S . Then the amalgam of 〈fS〉S∈S

is the map f defined by
f =

⋃
p∈X

∏
p∈S∈S

fS .

In the above definition, it is immediate that f is a map from Y to Z. Moreover,
if fS is continuous for each S ∈ S , then f is a continuous map from Y to Z.
Similarly, an amalgam of homeomorphisms is a homeomorphism.

Definition 2.7. Suppose W is a subspace of X. The reduced amalgam of 〈YS〉S∈S

over W is the space Z defined as follows. Set T = {S ∩ W : S ∈ S } \ {∅}.
Then T ∈ S(W ). Given S0, S1 ∈ S , declare S0 ∼ S1 if S0 ∩W = S1 ∩W . For
each T ∈ T , let ε(T ) be the unique E that is an equivalence class of ∼ for which
W ∩

⋂
E = T . For all T ∈ T , set ZT =

∏
S∈ε(T ) YS . Let Z be the amalgam of

〈ZT 〉T∈T .

In the above definition, Z is homeomorphic to
⋃
p∈W

∏
p∈S∈S YS with the sub-

space topology inherited from Y .

3. Connectifiable amalgams

Theorems 2.2 and 2.3 demonstrate similarities between products and amalgams.
Of course, amalgams would not be very interesting if there were no major differences
between them and products. Such differences arise for connectedness: unlike a
product, an amalgam can be connected even if all its factors are not; connectedness
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of the base space is sufficient in most cases. Path-connectedness of an amalgam
with a path-connected base space is harder to guarantee, but not by much. Some
new positive cennectification results fall out as corollaries.

Theorem 3.1. Suppose X is connected (path-connected) and there is a finite E ⊆
X such that for all S ∈ S we have E 6⊆ S or YS is connected (path-connected).
Then Y is connected (path-connected).

Proof. Proceed by induction on |E|. If E = ∅, then Y is connected (path-connected)
because it is a quotient of the product of its base space and its factors, all of which
are connected (path-connected).

Now suppose E 6= ∅ and the theorem holds for all smaller E. Choose e ∈ E and
set E′ = E \ {e}. For each S ∈ S , set ZS = YS if e ∈ S and choose ZS ∈ [YS ]1 if
e 6∈ S. Hence, if E′ ⊆ S ∈ S , then ZS is connected (path-connected) because either
E ⊆ S, which implies ZS connected (path-connected) by assumption, or e 6∈ S,
which implies |ZS | = 1. Let Z be the amalgam of 〈ZS〉S∈S . By the induction
hypothesis, Z is a connected (path-connected) subspace of Y . Suppose y ∈ Y and
choose f ∈

∏
S∈S YS extending y. Let F be the amalgam of 〈{f(S)}〉S∈S . Then

y ∈ F ∼= X and 〈f(S)〉e∈S∈S ∈ F ∩Z; hence, the component (path component) of
y contains Z. Since y was chosen arbitarily, Y is connected (path-connected). �

Example 3.2. Suppose X = [0, 1] and S = {U ⊆ [0, 1] : U open} and |YS | = 1 for
all S ∈ S \{[0, 1)}. Then Y is homeomorphic to the cone over Y[0,1). If 1 ∈ S ∈ S ,
then |YS | = 1; hence, Theorem 3.1 implies Y is path-connected. Thus, Theorem 3.1
may be interpreted as constructing a class of generalized cones.

Corollary 3.3. Suppose i ∈ {1, 2, 3, 3.5} and X has a proper Ti connectification X̃
and YS is Ti for all S ∈ S . Then Y has a proper Ti connectification Ỹ . Moreover,
if X̃ is path-connected, then we may choose Ỹ to be path-connected.

Proof. Fix p ∈ X̃ \ X. For each S ∈ S , let Φ(S) be an open subset of X̃ \ {p}
such that Φ(S) ∩ X = S. Extend Φ“S to some S̃ ∈ S(X̃). For all S ∈ S ,
set ỸΦ(S) = YS . For all S ∈ S̃ \ Φ“S , set ỸS = 1. Let Ỹ be the amalgam of
〈ỸS〉S∈S̃ . By Theorem 2.2, Ỹ is Ti; by Theorem 3.1, Ỹ is connected, for |ỸS | = 1
if p ∈ S ∈ S̃ . Define f : Y → Ỹ as follows. Given y ∈ Y , let π(f(y)) = π(y); set
f(y)(Φ(S)) = y(S) for all S ∈ dom y; set f(y)(S) = 0 for all S ∈ S̃ \Φ“ dom y such
that π(y) ∈ S. Then f is an embedding of Y into Ỹ with dense range π−1X; hence,
Ỹ is a proper Ti connectification of Y . Finally, by Theorem 3.1, Ỹ is path-connected
if X̃ is. �

The previously known result most similar to Corollary 3.3 is due to Druzhinina
and Wilson [4]: if all the path components of a T2 (T3, metric) space are open and
have proper pathwise connectifications, then the space has a T2 (T3, metric) proper
pathwise connectification.

Proof of Theorem 1.1. Every infinite product is an infinite product of countably
infinite subproducts; every infinite topological sum is a countably infinite topolog-
ical sum of topological sums. Moreover, products preserve the property of having
a Ti pathwise connectification; topological sums preserve the Ti axiom and metriz-
ability. Therefore, we only need to prove the theorem for all countably infinite
products of countably infinite topological sums. Set X = ωω with the product
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topology. For each m,n < ω, let Zm,n be a nonempty Ti space and let Sm,n = {p ∈
X : p(m) = n}; set YSm,n

= Zm,n. Set S = {Sm,n : m,n < ω} ∈ S(X). Then
Y ∼=

∏
m<ω

⊕
n<ω Zm,n is witnessed by the map 〈〈y(Sm,π(y)(m))〉m<ω〉y∈Y . Since

X ∼= R \ Q, there is a proper metrizable pathwise connectification of X, namely a
copy of R. By Corollary 3.3, Y has a proper Ti pathwise connectification. For the
metrizable case, construct a connectification Ỹ of Y as in the proof of Corollary 3.3,
with X̃ chosen to be homeomorphic to R. Since S is countable, the space Ỹ is
metrizable by Theorem 2.3. �

If we care about connectedness but not path-connectedness, then Theorem 3.1
and Corollary 3.3 can be considerably strengthened.

Theorem 3.4. Suppose X is connected and either X 6∈ S or YX is connected.
Then Y is connected.

Proof. Let y0, y1 ∈ Y . It suffices to show y1 is in the closure of the component
of y0. Let U be a basic open neighborhood of y1. Then there exist n < ω and
〈Si〉i<n ∈ (dom y1)n and 〈Ui〉i<n such that Ui is an open neighborhood of y1(Si)
for all i < n and U =

⋂
i<n π

−1
Si
Ui. Then there exists E ⊆ X such that E is finite

and E 6⊆ S for all S ∈ {Si : i < n} \ {X}. Choose f ∈
∏
S∈S YS extending y0.

For each S ∈ S , set ZS = YS if YS is connected or S ∈ {Si : i < n}; otherwise,
set ZS = {f(S)}. Let Z be the amalgam of 〈ZS〉S∈S . Then Z is connected by
Theorem 3.1. Moreover, y0 ∈ Z and Z ∩ U 6= ∅. Thus, y1 is in the closure of the
component of y0. �

Corollary 3.5. Suppose i ∈ {1, 2, 3, 3.5} and X has a Ti connectification and YS
is Ti for all S ∈ S . Further suppose X has a proper Ti connectification or X 6∈ S
or YX is connected. Then Y has a Ti connectification.

Proof. If X has a proper Ti connectification, then so does Y by Corollary 3.3. If
X is Ti and connected but has no proper Ti connectification, then Y is connected
by Theorem 3.4. �

4. A large path-connected homogeneous compactum

Definition 4.1. We say that a homogeneous compactum is exceptional if it is not
homeomorphic to a product of dyadic compacta and first countable compacta.

In the previous section, we constructed a machine for strengthening connectifi-
cation results. Next, we construct a machine that takes a homogeneous compactum
and produces a path-connected homogeneous compactum. Applying this machine
to a particular homogeneous compactum with cellularity c, we get a path-connected
homogeneous compactum with cellularity c. Moreover, more careful analysis of the
latter space’s connectedness properties shows that it is exceptional.

All compact groups are dyadic, and most other known examples of homoge-
neous compacta are products of first countable compacta (see Kunen [14] and van
Mill [16]). Besides the exceptional homogeneous compactum we shall construct,
there is, to the best of the author’s knowledge, only one known construction of an
exceptional homogeneous compactum, and it soundness is independent of ZFC. In
[16], van Mill constructed a compactum K satisfying πw(K) = ω and χ(K) = ω1.
Clearly, χ(Z) = ω ≤ πw(Z) for all first countable spaces Z. Moreover, Efimov [5]
and Gerlits [10] independently proved that πχ(Z) = w(Z) for all dyadic compacta
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Z. Hence, χ(Z) ≤ πw(Z) for all Z homeomorphic to products of dyadic compacta
and first countable compacta; hence, K is not homeomorphic to such a product.
Under the assumption p > ω1 (which follows from MA+¬CH), van Mill proved that
K is homogeneous. However, van Mill also noted that all homogeneous compacta
Z satisfy 2χ(Z) ≤ 2πw(Z) as a corollary of a result of van Douwen [3]. In particular,
if 2ω < 2ω1 , then K is not homogeneous.

Remark 4.2. Hart and Ridderbos’ [12] generalization of van Mill’s construction pro-
duces only compacta that have the properties of K listed above. However, van Mill’s
K is infinite dimensional, while Hart and Ridderbos produce a zero-dimensional
example. It is not clear whether there is a consistently homogeneous compactum
Z satisfying 0 < indZ < ω and πw(Z) < χ(Z). Our machine for producing
path-connected homogeneous compacta will get us 0 < indZ < ω, but it will also
be easy to see that it entails πχ(Z) ≥ c.

Definition 4.3. Given a group G acting on a set A with element a, let the stabilizer
of a in G denote {g ∈ G : ga = a}.

Definition 4.4. Given a topological space Z, let Aut(Z) denote the group of
autohomeomorphisms of Z. Let Aut(Z) act on Z in the natural way: gz = g(z)
for all z ∈ Z and g ∈ Aut(Z). Let Aut(Z) act on P(P(Z)) such that gE = {g“E :
E ∈ E} for all E ⊆ P(Z) and g ∈ Aut(Z).

Lemma 4.5. Let G be the stabilizer of S in Aut(X). Suppose Z is a homogeneous
space and YS = Z for all S ∈ S . Further suppose G acts transitively on X. Then
Y is homogeneous.

Proof. Let y0, y1 ∈ Y . Choose g ∈ G such that g(π(y0)) = π(y1). Define f : Y → Y
as follows. Given y ∈ Y , let π(f(y)) = g(π(y)) and f(y)(gS) = y(S) for all
S ∈ dom y. Then f ∈ Aut(Y ) because f“(π−1

S U) = π−1
gSU and f−1(π−1

S U) =
π−1
g−1SU for all S ∈ S and U open in Z. Since y1, f(y0) ∈ Zdom y1 , there exists
〈hS〉S∈S ∈ Aut(Z)S such that

(∏
S∈dom y1

hS
)
(f(y0)) = y1. Let h be the amalgam

of 〈hS〉S∈S . Then h ∈ Aut(Y ) and h(f(y0)) = y1. Thus, Y is homogeneous. �

Lemma 4.6. Suppose X and YS are T3 and indYS = 0 for all S ∈ S . Then
indY = indX.

Proof. Set n = indX. By (7) of Theorem 2.2, we may assume n > 0. We may
also assume the lemma holds if X is replaced by a T3 space with small inductive
dimension less than n. First, Y is T3 by Theorem 2.2. Next, given any f ∈∏
S∈S YS , the amalgam of 〈{f(S)}〉S∈S is homeomorphic to X; hence, indY ≥ n.

Let y ∈ Y and let U be a neighborhood of y. Then y ∈ V0 ⊆ U where V0 =⋂
i<m π

−1
Si
Ui for some m < ω and 〈Si〉i<m ∈ (dom y)m and 〈Ui〉i<m such that Ui

is a clopen neighborhood of y(Si) for all i < m. Let W be a neighborhood of π(y)
such that W ⊆

⋂
i<m Si and ind ∂W < n. Set V1 = V0 ∩ π−1W .

It suffices to show that ind ∂V1 < n. Set V2 = π−1∂W . Then ∂V1 = V0 ∩ V2;
hence, it suffices to show that indV2 < n. Let Z be the reduced amalgam of
〈YS〉S∈S over ∂W . Then Z ∼= V2 and indZ = ind ∂W because ind ∂W < n and
every factor of Z, being a product of factors of Y , is zero-dimensional. �

Theorem 4.7. There is a path-connected homogeneous compact Hausdorff space
Y with cellularity c, weight c, and small inductive dimension 1. Moreover, Y is not
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homeomorphic to a product of compacta that all have character less than c or have
cf(c) a caliber. In particular, Y is exceptional.

Proof. Let X be the unit circle {〈x, y〉 ∈ R2 : x2 + y2 = 1}. Let S be the set of
open semicircles contained in X. Let γ be an indecomposable ordinal (i.e., not a
sum of two lesser ordinals) strictly between ω and ω1. For each S ∈ S , let YS be
2γ with the topology induced by its lexicographic ordering. It is easily seen that
YS is zero-dimensional compact Hausdorff and w(YS) = c(YS) = c. Moreover, YS
is homogeneous [15]. Since |S | = c, we have w(Y ) = c(Y ) = c. Moreover, Y is
compact Hausdorff by Theorem 2.2. Since no S ∈ S contains a pair of antipodes,
Y is path-connected by Theorem 3.1. The stabilizer of S in Aut(X) contains all
the rotations of X and therefore acts transitively on X; hence, Y is homogeneous
by Lemma 4.5. Also, by Lemma 4.6, indY = indX = 1.

Seeking a contradiction, suppose Y is homeomorphic to a product of compacta
that all have character less than c or have cf(c) a caliber. Then there exist a
compactum Z with cf(c) a caliber, a sequence of nonsingleton compacta 〈Wi〉i∈I
all with character less than c, and a homeomorphism ϕ from Z ×

∏
i∈IWi to Y .

Clearly, Wi is path-connected for all i ∈ I. Choose p ∈ X. Then ϕ−1π−1{p} is a
Gδ-set; hence, there exist a nonempty Z0 ⊆ Z and J ∈ [I]≤ω and q ∈

∏
j∈JWj such

that Z0 × {q} ×
∏
i∈I\JWi ⊆ ϕ−1π−1{p}. Since π−1{p} =

∏
p∈S∈S YS , which is

zero-dimensional, Z0×{q}×
∏
i∈I\JWi is also zero-dimensional; hence,

∏
i∈I\JWi

is also zero-dimensional. Hence, Wi is not connected for all i ∈ I \ J ; hence, I = J ;
hence, I is countable. Set W =

∏
i∈IWi. Then χ(W ) < c because cf(c) > ω.

Let H ⊆ X be an open arc subtending π/2 radians. Set T = {S ∈ S : H ⊆
S}. Then |T | = c. Choose a nonempty open box U × V ⊆ Z × W such that
U × V ⊆ ϕ−1π−1H and U =

⋃
n<ω Un where Un is open and Un ⊆ Un+1 for all

n < ω. Choose r ∈ V and set κ = χ(r,W ) < c. Let 〈Vα〉α<κ enumerate a local
base at r. By compactness, we may choose, for each α < κ and n < ω, a finite set
σn,α of basic open subsets of Y such that Un × {r} ⊆ ϕ−1

⋃
σn,α ⊆ Un+1 × Vα.

Set G =
⋃
n<ω

⋂
α<κ

⋃
σn,α. Since κ < c, there exist nonempty R ⊆ T and

E ⊆
⋃
x∈H

∏
x∈S∈S \R YS such that G = E ×

∏
S∈R YS . Hence, c(G) = c. Since

ϕ−1G = U × {r}, we have c(U) = c. Since U is an open subset of Z, we have
c(Z) ≥ c, which yields our desired contradiction, for cf(c) ∈ cal(Z). �

Remark 4.8. If there is a homogeneous compactum with cellularity κ > c (that
is, if van Douwen’s Problem (see Kunen [14]) has a positive solution), then the
proof of Theorem 4.7 is easily modified to produce a path-connected homogeneous
compactum with cellularity κ.

It is also easy to modify the above proof so that the unit circle is replaced with
an n-dimensional sphere or torus, thereby producing a Y as in Theorem 4.7 except
it is n-dimensional. The unit circle can also be replaced by its ωth power so as to
produce a Y as in Theorem 4.7 except it is infinite dimensional.
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