A COMPACTNESS THEOREM FOR POSETS
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Theorem 1. Let k be an infinite cardinal and let L be a nonempty set of size
less than k such that (L,D) is directed. Suppose that < is a relation on |J L that
partially orders each L € L. Also suppose that, for each L € L, every empty or
<-directed subset of L of size less than k has a least upper bound with respect to
(L,<). Finally, suppose that there exists an Ly € L such that k cannot be order-
embedded in (Lo, <). Then every <-directed subset of (L of size less than k has a
least upper bound with respect to (L, <). In particular, (| L # 0.

Proof. Let E C (£ be such that |E| < k and F is directed. To construct the
supremum of F in ()L, let us first recursively define a particular indexed set of
points (x¢ : @ < k, L € £) and simultaneously prove that, for all n < x and 5 <7
and L € L, we have

(1) ] € L,

(2) z] < x’i if v < /3, and

(3) «f <af, f LD MeL.
First, for each L € £, let 2% be the least upper bound of F in L. Suppose L, M € L
and L O M. Then the least upper bound of E in M is an upper bound of F in L;
hence, 29 < 29,. Also, 2§ € L is clear. Thus, (1)-(3) hold when n = 0.

Now suppose 0 < a < £ and (1)-(3) hold for all n < a. Let us define (z¢ :
L € L) such that (1)-(3) hold when n = a. Let 8,7 < a and L,M,N € L be
arbitrary save M, N C L. Then there exists P € £ such that M, N O P. Hence,
x?wm?\, < x?ax{ﬁ’ﬂ. Therefore, {x‘SQ :0<a, LDQ € L}is a directed set. Let us
denote this set by X, 1. Then | X, 1| < k and X, C L. For each Q € L, define
z¢y as the supremum of X, ¢ in Q. Then (1) holds by definition. Also, xi € Xo,L;
hence, xﬁ < z¢, which proves (2). Moreover, xi, € X4, m; hence, x’?, < z§;. Since
9:?\, < zg, we have xj‘i, < zf,. Since B and N are arbitrary save f < o and N C L,
the point z¢; is an upper bound of X, ;. Moreover, 2§, € M C L. Therefore,
x¢ < x%,, which proves (3). Thus, by induction, (1)-(3) hold for all n < .
Applying (2), we have z¢ < x[ZO for all « < 8 < k. But s cannot be order-

embedded in (Lo, <); hence, there is an o < k such that ¢, = x‘zz‘l Suppose
M € £ and M C Ly. Then z%; € Xa+1,1,; hence, 24, < x‘zjl Moreover, (3)
implies 2 < x§;. Therefore, 27 < x§, < x%jl = a7 ; hence, 27 = 5t e M.
Since (£, 2) is directed and M is arbitrary save M C Lo, we have x¢ € (] L. Since

mOLO is an upper bound of E and ZC%O < xf , the point 27 is an upper bound for E

in L.
Suppose y is also an upper bound of F in [ £. Then we claim xg < y for all
L € £ and 8 < k. To prove this claim, suppose 8 < k and the claim holds for all
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v < (. Suppose 8 = 0. Let L € L be arbitrary. Then y is an upper bound of F
in L; hence, mﬁ =129 <y. Suppose 3 >0and vy < 3 and L,M € £ and M C L.
Then 2}, < y by hypothesis. Hence, y is an upper bound of Xg 1; hence, x[z <uy.
By induction, the claim holds. In particular, 27 =< y; hence, 27 is the least upper
bound of £ in () L. O

Corollary 2. Let L be a nonempty set and let < be a relation on |JL such that
(L, <) is a complete poset for all L € L. Suppose that (L,D) is directed. Then
(N L, <) is a complete poset. In particular, (L # 0.

Proof. Choose an infinite cardinal x that is greater than both |£| and ||J £|. Then,
by Theorem 1, every empty or directed subset of (| £ has a least upper bound in
NL. |

Theorem 1 has an analogue that is proven in exactly the same manner.

Theorem 3. Let k be an infinite cardinal and let £ be a nonempty set of size
less than k such that (L,D) is directed. Suppose that < is a relation on |J L that
partially orders each L € L. Also suppose that, for each L € L, every subset of L of
size less than k has a least upper bound with respect to (L, <). Finally, suppose that
there exists an Lo € L such that k cannot be order-embedded in (Lo, <). Then every
subset of (L of size less than k has a least upper bound with respect to (L, <).
In particular, (L # 0.

Proof. The proof of Theorem 1 works verbatim, except that we do not require E
to be directed. |

Corollary 4. Let L be a nonempty set and let < be a relation on |J L such that
(L, <) is a complete lattice for all L € L. Suppose that (L,D) is directed. Then
(N L, <) is a complete lattice. In particular, (L # 0.

Proof. Choose an infinite cardinal x that is greater than both |£] and ||J £|. Then,
by Theorem 3, every subset of () £ has a least upper bound in [ L. |

Remark 5. Theorems 1 and 3 are stated and proved entirely inside Zermelo-Frankel
set theory without choice. The proofs of Corollaries 2 and 4 both use choice.



