A COMPACTNESS THEOREM FOR POSETS

DAVID MILOVICH

Theorem 1. Let κ be an infinite cardinal and let \mathcal{L} be a nonempty set of size less than κ such that $\langle \mathcal{L}, \supseteq \rangle$ is directed. Suppose that \leq is a relation on $\bigcup \mathcal{L}$ that partially orders each $L \in \mathcal{L}$. Also suppose that, for each $L \in \mathcal{L}$, every empty or \leq-directed subset of L of size less than κ has a least upper bound with respect to $\langle L, \leq \rangle$. Finally, suppose that there exists an $L_0 \in \mathcal{L}$ such that κ cannot be order-embedded in $\langle L_0, \leq \rangle$. Then every \leq-directed subset of $\bigcap \mathcal{L}$ of size less than κ has a least upper bound with respect to $\langle \bigcap \mathcal{L}, \leq \rangle$. In particular, $\bigcap \mathcal{L} \neq \emptyset$.

Proof. Let $E \subseteq \bigcap \mathcal{L}$ be such that $|E| < \kappa$ and E is directed. To construct the supremum of E in $\bigcap \mathcal{L}$, let us first recursively define a particular indexed set of points $\langle x^\beta_L : \beta < \kappa, L \in \mathcal{L} \rangle$ and simultaneously prove that, for all $\eta < \kappa$ and $L \in \mathcal{L}$, we have

1. $x^\beta_L \in L$,
2. $x^\beta_L \leq x^\gamma_L$ if $\gamma \leq \beta$, and
3. $x^\beta_L \leq y$ if $L \supseteq M \in \mathcal{L}$.

First, for each $L \in \mathcal{L}$, let x^0_L be the least upper bound of E in L. Suppose $L, M \in \mathcal{L}$ and $L \supseteq M$. Then the least upper bound of E in M is an upper bound of E in L; hence, $x^0_L \leq x^0_M$. Also, $x^0_L \in L$ is clear. Thus, (1)-(3) hold when $\eta = 0$.

Now suppose $0 < \alpha < \kappa$ and (1)-(3) hold for all $\eta < \alpha$. Let us define $\langle x^\alpha_L : L \in \mathcal{L} \rangle$ such that (1)-(3) hold when $\eta = \alpha$. Let $\beta, \gamma < \alpha$ and $L, M, N \in \mathcal{L}$ be arbitrary save $M, N \subseteq L$. Then there exists $P \in \mathcal{L}$ such that $M, N \supseteq P$. Hence, $x^\beta_M, x^\gamma_N \leq x^\max\{\beta, \gamma\}$. Therefore, $\langle x^\delta_P : \delta < \alpha, L \supseteq P \in \mathcal{L} \rangle$ is a directed set. Let us denote this set by $X_{\alpha,L}$. Then $|X_{\alpha,L}| < \kappa$ and $X_{\alpha,L} \subseteq L$. For each $Q \in \mathcal{L}$, define x^α_Q as the supremum of $X_{\alpha,Q}$ in Q. Then (1) holds by definition. Also, $x^\beta_L \in X_{\alpha,L}$; hence, $x^\beta_L \leq x^\alpha_L$, which proves (2). Moreover, $x^\beta_p \in X_{\alpha,M}$; hence, $x^\beta_p \leq x^\alpha_M$. Since $x^\beta_N \leq x^\beta_p$, we have $x^\alpha_N \leq x^\alpha_M$. Since β and N are arbitrary save $\beta < \alpha$ and $N \subseteq L$, the point x^α_M is an upper bound of $X_{\alpha,L}$. Moreover, $x^\alpha_M \in M \subseteq L$. Therefore, $x^\alpha_L \leq x^\alpha_M$, which proves (3). Thus, by induction, (1)-(3) hold for all $\eta < \kappa$.

Applying (2), we have $x^\alpha_{L_0} \leq x^\beta_L$, for all $\alpha \leq \beta < \kappa$. But κ cannot be order-embedded in $\langle L_0, \leq \rangle$; hence, there is an $\alpha < \kappa$ such that $x^\alpha_{L_0} = x^\alpha_{L_0} + 1$. Suppose $M \in \mathcal{L}$ and $M \subseteq L_0$. Then $x^\alpha_M \in X_{\alpha+1,L_0}$; hence, $x^\alpha_M \leq x^\alpha_{L_0}$. Moreover, (3) implies $x^\alpha_{L_0} \leq x^\alpha_M$. Therefore, $x^\alpha_{L_0} \leq x^\alpha_M \leq x^\alpha_{L_0} + 1 = x^\alpha_{L_0}$; hence, $x^\alpha_{L_0} = x^\alpha_{L_0} + 1 \in M$. Since $\langle \mathcal{L}, \supseteq \rangle$ is directed and M is arbitrary save $M \subseteq L_0$, we have $x^\alpha_{L_0} \in \bigcap \mathcal{L}$. Since $x^\alpha_{L_0}$ is an upper bound of E and $x^\alpha_{L_0} \leq x^\alpha_{L_0}$, the point $x^\alpha_{L_0}$ is an upper bound for E in $\bigcap \mathcal{L}$.

Suppose y is also an upper bound of E in $\bigcap \mathcal{L}$. Then we claim $x^\beta_L \leq y$ for all $L \in \mathcal{L}$ and $\beta < \kappa$. To prove this claim, suppose $\beta < \kappa$ and the claim holds for all
γ < β. Suppose β = 0. Let L ∈ L be arbitrary. Then y is an upper bound of E in L; hence, \(x_L^\beta = x_L^0 \leq y \). Suppose β > 0 and γ < β and L, M ∈ L and M ⊆ L. Then \(x_M^\gamma \leq y \) by hypothesis. Hence, y is an upper bound of \(X_{\beta, L} \); hence, \(x_L^\gamma \leq y \).

By induction, the claim holds. In particular, \(x_L^\alpha \leq y \); hence, \(x_L^\alpha \) is the least upper bound of E in \(\cap L \).

Corollary 2. Let L be a nonempty set and let \(\leq \) be a relation on \(\bigcup L \) such that \(\langle L, \leq \rangle \) is a complete poset for all \(L \in L \). Suppose that \(\langle L, \supseteq \rangle \) is directed. Then \(\langle \bigcap L, \leq \rangle \) is a complete poset. In particular, \(\bigcap L \neq \emptyset \).

Proof. Choose an infinite cardinal \(\kappa \) that is greater than both \(|L| \) and \(|\bigcup L| \). Then, by Theorem 1, every empty or directed subset of \(\bigcap L \) has a least upper bound in \(\bigcap L \).

Theorem 1 has an analogue that is proven in exactly the same manner.

Theorem 3. Let \(\kappa \) be an infinite cardinal and let L be a nonempty set of size less than \(\kappa \) such that \(\langle L, \supseteq \rangle \) is directed. Suppose that \(\leq \) is a relation on \(\bigcup L \) that partially orders each \(L \in L \). Also suppose that, for each \(L \in L \), every subset of L of size less than \(\kappa \) has a least upper bound with respect to \(\langle L, \leq \rangle \). Finally, suppose that there exists an \(L_0 \in L \) such that \(\kappa \) cannot be order-embedded in \(\langle L_0, \leq \rangle \). Then every subset of \(\bigcap L \) of size less than \(\kappa \) has a least upper bound with respect to \(\langle \bigcap L, \leq \rangle \). In particular, \(\bigcap L \neq \emptyset \).

Proof. The proof of Theorem 1 works verbatim, except that we do not require E to be directed.

Corollary 4. Let L be a nonempty set and let \(\leq \) be a relation on \(\bigcup L \) such that \(\langle L, \leq \rangle \) is a complete lattice for all \(L \in L \). Suppose that \(\langle L, \supseteq \rangle \) is directed. Then \(\langle \bigcap L, \leq \rangle \) is a complete lattice. In particular, \(\bigcap L \neq \emptyset \).

Proof. Choose an infinite cardinal \(\kappa \) that is greater than both \(|L| \) and \(|\bigcup L| \). Then, by Theorem 3, every subset of \(\bigcap L \) has a least upper bound in \(\bigcap L \).

Remark 5. Theorems 1 and 3 are stated and proved entirely inside Zermelo-Frankel set theory without choice. The proofs of Corollaries 2 and 4 both use choice.