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Theorem 1. Let κ be an infinite cardinal and let L be a nonempty set of size

less than κ such that 〈L,⊇〉 is directed. Suppose that ≤ is a relation on
⋃
L that

partially orders each L ∈ L. Also suppose that, for each L ∈ L, every empty or

≤-directed subset of L of size less than κ has a least upper bound with respect to

〈L,≤〉. Finally, suppose that there exists an L0 ∈ L such that κ cannot be order-

embedded in 〈L0,≤〉. Then every ≤-directed subset of
⋂

L of size less than κ has a

least upper bound with respect to 〈
⋂
L,≤〉. In particular,

⋂
L 6= ∅.

Proof. Let E ⊆
⋂

L be such that |E| < κ and E is directed. To construct the
supremum of E in

⋂
L, let us first recursively define a particular indexed set of

points 〈xα
L : α < κ, L ∈ L〉 and simultaneously prove that, for all η < κ and β ≤ η

and L ∈ L, we have

(1) x
β
L ∈ L,

(2) x
γ
L ≤ x

β
L if γ ≤ β, and

(3) x
β
L ≤ x

β
M if L ⊇ M ∈ L.

First, for each L ∈ L, let x0
L be the least upper bound of E in L. Suppose L,M ∈ L

and L ⊇ M . Then the least upper bound of E in M is an upper bound of E in L;
hence, x0

L ≤ x0
M . Also, x0

L ∈ L is clear. Thus, (1)-(3) hold when η = 0.
Now suppose 0 < α < κ and (1)-(3) hold for all η < α. Let us define 〈xα

L :
L ∈ L〉 such that (1)-(3) hold when η = α. Let β, γ < α and L,M,N ∈ L be
arbitrary save M,N ⊆ L. Then there exists P ∈ L such that M,N ⊇ P . Hence,

x
β
M , x

γ
N ≤ x

max{β,γ}
P . Therefore, {xδ

Q : δ < α, L ⊇ Q ∈ L} is a directed set. Let us

denote this set by Xα,L. Then |Xα,L| < κ and Xα,L ⊆ L. For each Q ∈ L, define

xα
Q as the supremum of Xα,Q in Q. Then (1) holds by definition. Also, x

β
L ∈ Xα,L;

hence, x
β
L ≤ xα

L, which proves (2). Moreover, x
β
P ∈ Xα,M ; hence, x

β
P ≤ xα

M . Since

x
β
N ≤ x

β
P , we have x

β
N ≤ xα

M . Since β and N are arbitrary save β < α and N ⊆ L,
the point xα

M is an upper bound of Xα,L. Moreover, xα
M ∈ M ⊆ L. Therefore,

xα
L ≤ xα

M , which proves (3). Thus, by induction, (1)-(3) hold for all η < κ.

Applying (2), we have xα
L0

≤ x
β
L0

for all α ≤ β < κ. But κ cannot be order-

embedded in 〈L0,≤〉; hence, there is an α < κ such that xα
L0

= xα+1
L0

. Suppose

M ∈ L and M ⊆ L0. Then xα
M ∈ Xα+1,L0

; hence, xα
M ≤ xα+1

L0
. Moreover, (3)

implies xα
L0

≤ xα
M . Therefore, xα

L0
≤ xα

M ≤ xα+1
L0

= xα
L0

; hence, xα
L0

= xα+1
M ∈ M .

Since 〈L,⊇〉 is directed and M is arbitrary save M ⊆ L0, we have xα
L0

∈
⋂
L. Since

x0
L0

is an upper bound of E and x0
L0

≤ xα
L0

, the point xα
L0

is an upper bound for E

in
⋂
L.

Suppose y is also an upper bound of E in
⋂

L. Then we claim x
β
L ≤ y for all

L ∈ L and β < κ. To prove this claim, suppose β < κ and the claim holds for all
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γ < β. Suppose β = 0. Let L ∈ L be arbitrary. Then y is an upper bound of E

in L; hence, x
β
L = x0

L ≤ y. Suppose β > 0 and γ < β and L,M ∈ L and M ⊆ L.

Then x
γ
M ≤ y by hypothesis. Hence, y is an upper bound of Xβ,L; hence, x

β
L ≤ y.

By induction, the claim holds. In particular, xα
L0

≤ y; hence, xα
L0

is the least upper
bound of E in

⋂
L. ¤

Corollary 2. Let L be a nonempty set and let ≤ be a relation on
⋃

L such that

〈L,≤〉 is a complete poset for all L ∈ L. Suppose that 〈L,⊇〉 is directed. Then

〈
⋂
L,≤〉 is a complete poset. In particular,

⋂
L 6= ∅.

Proof. Choose an infinite cardinal κ that is greater than both |L| and |
⋃
L|. Then,

by Theorem 1, every empty or directed subset of
⋂
L has a least upper bound in⋂

L. ¤

Theorem 1 has an analogue that is proven in exactly the same manner.

Theorem 3. Let κ be an infinite cardinal and let L be a nonempty set of size

less than κ such that 〈L,⊇〉 is directed. Suppose that ≤ is a relation on
⋃
L that

partially orders each L ∈ L. Also suppose that, for each L ∈ L, every subset of L of

size less than κ has a least upper bound with respect to 〈L,≤〉. Finally, suppose that

there exists an L0 ∈ L such that κ cannot be order-embedded in 〈L0,≤〉. Then every

subset of
⋂
L of size less than κ has a least upper bound with respect to 〈

⋂
L,≤〉.

In particular,
⋂
L 6= ∅.

Proof. The proof of Theorem 1 works verbatim, except that we do not require E

to be directed. ¤

Corollary 4. Let L be a nonempty set and let ≤ be a relation on
⋃

L such that

〈L,≤〉 is a complete lattice for all L ∈ L. Suppose that 〈L,⊇〉 is directed. Then

〈
⋂
L,≤〉 is a complete lattice. In particular,

⋂
L 6= ∅.

Proof. Choose an infinite cardinal κ that is greater than both |L| and |
⋃
L|. Then,

by Theorem 3, every subset of
⋂
L has a least upper bound in

⋂
L. ¤

Remark 5. Theorems 1 and 3 are stated and proved entirely inside Zermelo-Frankel
set theory without choice. The proofs of Corollaries 2 and 4 both use choice.


