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Abstract. We study a two-parameter generalization of the Freese-Nation

Property of boolean algebras and its order-theoretic and topological conse-

quences.
For every regular infinite κ, the (κ, κ)-FN, the (κ+, κ)-FN, and the κ-FN

are known to be equivalent; we show that the family of properties (λ, µ)-FN
for λ > µ form a true two-dimensional hierarchy that is robust with respect

to coproducts, retracts, and the exponential operation.

The (κ,ℵ0)-FN in particular has strong consequences for base properties of
compacta (stronger still for homogeneous compacta), and these consequences

have natural duals in terms of special subsets of boolean algebras. We show

that the (κ,ℵ0)-FN also leads to a generalization of the equality of weight and
π-character in dyadic compacta.

Elementary subalgebras and their duals, elementary quotient spaces, were

originally used to define the (λ, κ)-FN and its topological dual, which naturally

generalized from Stone spaces to all compacta, thereby generalizing Ščepin’s

notion of openly generated compacta. We introduce a simple combinatorial
definition of the (λ, κ)-FN that is equivalent to the original for regular infinite

cardinals λ > κ.

1. Introduction

Fuchino, Koppelberg, and Shelah [4] introduced the κ-Freese-Nation property,
of κ-FN, as a natural generalization of the classical Freese-Nation property (see
Heindorf and Shapiro [5]) of boolean algebras.

Definition 1.1. Given a partial order P and an infinite cardinal κ, P has the κ-FN
iff there is a map f : P → [P ]<κ such that for all p ≤ q in P , p ≤ r ≤ q for some
r ∈ f(p) ∩ f(q). Such an f is called a κ-FN map.

The original Freese-Nation property, or FN, is the ℵ0-FN (restricted to boolean
algebras), although it has many other equivalent definitions. The ℵ1-FN is the weak
Freese-Nation property, or WFN, which also had been studied by Heindorf and
Shapiro (again, see [5]). Fuchino, Koppelberg, and Shelah systematically studied
the κ-FN, proving an elementary submodel characterization and a game-theoretic
characterization. They also produced examples of boolean algebras for which the
WFN is present in some model of set theory and absent in others. In particular,
ZFC + ¬CH does not decide whether P(ω) has the WFN.
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Definition 1.2 ([4]). We say a subalgebra A of a boolean algebra B is a κ-
subalgebra, and write A ≤κ B, if for all p ∈ B, the set A ∩ ↓p (the set of all
lower bounds of p in A) has cofinality less than κ (that is, A ∩ ↓p = A ∩ ↓E for
some E ∈ [A]<κ) and A ∩ ↑p has coinitiality less than κ.

The above definition naturally generalizes to any category of (partially) ordered
structures, including the category of partial orders.

Given a boolean algebra B and an elementary submodel M of a structure
(H(θ),∈,≤B) where θ is a sufficiently large regular cardinal, B ∩ M is an ele-
mentary subalgebra of B. Fuchino, Koppelberg and Shelah showed that for regular
cardinals κ, B has the κ-FN iff, for all M as above with |M | = κ and κ ⊆ M , we
have B ∩M ≤κ B.

In [5], Heindorf proved that a boolean algebra has the FN iff it is openly generated
(a property we need not define here), and in [9] and [10], Ščepin studied the Stone
dual of open generation and generalized it from the Stone spaces to all compacta
(i.e., compact Hausdorff spaces). Ščepin proved that the k-adic compacta, which
are the continuous images of openly generated compacta, are a superclass of the
dyadic compacta (i.e., the continuous images of powers of 2) and that the k-adic
compacta and dyadic compacta satisfy the same major structural theorems and
cardinal function equations. Bandlow [1] translated Ščepin’s definition into the
language of elementary substructures: a compactum X is openly generated iff, for
a club of countable elementary submodels M of (H(θ),∈, TX), the quotient map
πXM : X → X/M is open. Here πXM is defined by declaring πXM (p) 6= πXM (q) iff
there are disjoint closed neighborhoods U of p and V of q such that U, V ∈ M .
It follows that a boolean algebra B has the FN iff the natural quotient map from
Ult (B) to Ult (B ∩M) (the latter being homeomorphic to Ult (B) /M) is open for
all countable elementary submodels M of (H(θ),∈,≤B).

In [7], the author used elementary quotients and a “large submodel” version of
Bandlow’s characterization to prove that the homogeneous dyadic compacta (e.g.,
the compact groups) have some strong base properties. (For example, every such
compactum has a base such that every infinite subfamily’s intersection has empty
interior.) To prove similar base properties for broader classes of compacta, the
author considered continuous images of compacta from proper superclasses of the
openly generated compacta. If we restrict from compacta to totally disconnected
compacta (i.e., to Stone spaces), then these superclasses can be characterized in
terms of their clopen algebras and a two-parameter family of properties called the
(λ, κ)-FN, which the author defined for all infinite cardinals λ, κ.

This definition of the (λ, κ)-FN was in terms of elementary submodels; it was
not clear whether the it could be expressed purely combinatorially in the spirit of
Definition 1.1. However, a combinatorial characterization was achieved for some
important special cases. The author observed that the (κ, κ)-FN, the (κ+, κ)-FN,
and the κ-FN are equivalent when κ is regular. In particular, the FN is the (ℵ0,ℵ0)-
FN is the (ℵ1,ℵ0)-FN; the WFN is the (ℵ1,ℵ1)-FN is the (ℵ2,ℵ1)-FN.

In this paper, we systematically study the (λ, κ)-FN. In Section 2, we introduce a
simple combinatorial definition, prove some preservation theorems, and show that,
for all regular infinite cardinals λ > κ and λ′ > κ′, the (λ, κ)-FN implies the (λ′, κ′)-
FN iff λ ≤ λ′ and κ ≤ κ′. In Section 3, we prove that several elementary submodel
characterizations of the (λ, κ)-FN, including the original definition from [7], are all
equivalent to our combinatorial definition for all regular infinite cardinals λ > κ.
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In Section 4, we extend classical results of Ščepin, Shapiro, and Engelking about
openly generated compacta and their continuous images to (λ,ℵ0)-openly generated
compacta and their continuous images, where the property of being (λ, κ)-openly
generated is the natural generalization to all compacta of the Stone dual of the
elementary submodel characterization of the (λ, κ)-FN.

2. Breaking a hidden symmetry of the κ-FN

Consider the following silly definition.

Definition 2.1. Given a partial order P and an infinite cardinal κ, P has the
(κ, κ)-FN iff there is a map (f, g) : P → [P ]<κ × [P ]<κ such that for all p ≤ q in P ,
p ≤ r ≤ q for some r ∈ f(p)∩ g(q) and p ≤ s ≤ q for some s ∈ g(p)∩ f(q). Such an
(f, g) is called a (κ, κ)-FN map.

The definition is silly because we could declare h(x) = f(x) ∪ g(x) for all x ∈ P
to get a κ-FN map h from a (κ, κ)-FN map (f, g); every κ-FN map h conversely
yields a (κ, κ)-FN map (h, h). The (κ, κ)-FN is just a more complicated, logically
equivalent version of the κ-FN. However, this definition has a serious purpose. It
reveals a previously unseen symmetry of the κ-FN and an obvious way to break
that symmetry.

Definition 2.2. Given a partial order P and infinite cardinals λ ≥ κ, P has the
(λ, κ)-FN iff there is a map (f, g) : P → [P ]<λ× [P ]<κ such that for all p ≤ q in P ,
p ≤ r ≤ q for some r ∈ f(p)∩ g(q) and p ≤ s ≤ q for some s ∈ g(p)∩ f(q). Such an
(f, g) is called a (λ, κ)-FN map.

Clearly, if λ ≤ λ′ and κ ≤ κ′, then the (λ, κ)-FN implies the (λ′, κ′)-FN, assuming
both properties are defined. Let us show that the converse is almost true (see

Theorem 2.5). First, observe that every partial order P has the (|P |+ ,ℵ0)-FN: just
let f(x) = P and g(x) = {x} for all x. In constrast, the following lemma gives an
example of a boolean algebra of arbitrary regular infinite cardinality λ that does
not have the (λ, κ)-FN for any regular κ < λ.

Lemma 2.3. Given a regular infinite cardinal λ, the interval algebra on λ does not
have the (λ, κ)-FN for any regular κ < λ.

Proof. Let B be the interval algebra on λ, i.e., the algebra of finite unions of
intervals of the form [α, β) where α ≤ β ≤ λ. We may assume we are not
in the trivial case λ ≤ ℵ0. To see that B does not have the (λ, κ)-FN, sup-
pose that (f, g) : B → [B]<λ × [B]<κ. Let M be an elementary submodel of(
H
((

2λ
)+)

,∈, f
)

of size less than λ. Since λ is regular, by taking the union

of an appropriate elementary chain, we can find M as above such that cf(δ) = κ
where δ = λ ∩M ∈ λ and (consequently) f(a) ⊆M for all a ∈ B ∩M .

Let b = [0, δ). It suffices to show that for some a ∈ B∩M , there is no c ∈ g(b)∩M
satisfying a ⊆ c ⊆ b. Since κ is regular and every c ∈ M that is a subset of [0, δ)
satisfies sup(c) < δ, there exists α < δ such that sup(c) < α for all c ∈ g(b) ∩M
with c ⊆ b. Hence, a = {α} is as desired. �

Remark. In contrast, by Proposition 2.1 of [4], the interval algebra on λ does have
the (λ, λ)-FN, simply because every infinite partial order P has a |P |-FN map
q 7→ {p ∈ P : p v q} where v is a well-ordering of P of type |P |.
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Now, given infinite cardinals λ and κ, let T be the tree (<κλ,⊆) and let D consist
of all subsets of T of the form D(F ) =

⋃
s∈F {t ∈ T : t ( s} where F is a finite

subset of T . For each I ∈ D, let Z(I) = {p ∈ T 2 : p[I] = {0}}. Let B be the
subalgebra of P(T 2) generated by {Z(I) : I ∈ D}.

Lemma 2.4. Assuming that cf(λ) ≥ κ, the algebra B defined above has the κ-FN
but does not have the (λ, κ′)-FN for any regular infinite κ′ < κ.

Proof. First, we prove that B has a κ-FN map h. For each a ∈ B, choose supp(a)
to be some H ∈ D such that a is in the subalgebra A(H) generated by {Z(I) :
H ⊇ I ∈ D}; set h(a) = A(supp(a)). Suppose that a, b ∈ B and a ⊆ b. It
follows that π−1[π[a]] ⊆ b where π is the coordinate projection from T 2 to J2
where J = supp(a) ∩ supp(b) ∈ D. (To see this, suppose that x ∈ T 2, y ∈ a, and
x � J = y � J . Set z = (y � supp(a)) ∪ (x � (T \ supp(a)). Since z agrees with y on
supp(a), we have z ∈ a ⊆ b. Since x agrees with z on supp(b), we also have x ∈ b.)
Hence, π−1[π[a]] ∈ h(a) ∩ h(b) and a ⊆ π−1[π[a]] ⊆ b.

To see that B does not have the (λ, κ′)-FN, suppose that (f, g) : B → [B]<λ ×
[B]<κ

′
. Choose continuous elementary chains (Mi : i ≤ κ′) and (Ni : i ≤ κ′) of

elementary submodels of
(
H
((

2|T |
)+)

,∈, λ, κ
)

such that, for all i < κ′, we have

|Mi| < λ, |Ni| ≤ ω + i, {Mi} ∪
⋃
f [B ∩ Ni] ⊆ Mi+1, and (Mj)j≤i ∈ Ni+1. Set

M = Mκ′ , N = Nκ′ , δ = min(λ \M), ε = min(M ∩ (δ, λ]), and C = {min(λ \Mi) :
i < κ′}. By construction, C is cofinal in δ, C has order type κ′, and C ∩ γ ∈ N for
all γ < δ. Moreover, f(b) ⊆M for all b ∈ B ∩N .

Let ψ be the increasing bijection from κ′ to C; set a = Z(D({ψ})). To see
that (f, g) is not a (λ, κ′)-FN map for B, it suffices to find b ∈ B ∩ N such that
a ⊆ b but there is no c ∈ g(a) ∩M satisfying a ⊆ c ⊆ b. If c ∈ M ∩ ↑a, then,
by elementarity, c ⊇ Z(D({ϕ})) for some ϕ ∈ (<κλ) ∩M such that sup(ran(ϕ)) <
ε. Since M ∩ [δ, ε) = ∅, every such ϕ actually satisfies sup(ran(ϕ)) < δ. Since
cf(δ) > |g(a)|, there exists β < κ′ such that every c ∈ g(a) ∩M ∩ ↑a contains some
Z(D({ϕ})) with sup(ran(ϕ)) < ψ(β). Therefore, b = Z(D({ψ � (β + 1)})) is as
desired. �

Theorem 2.5. Let (λ, κ) and (λ′, κ′) each be a strictly decreasing pair of regular
infinite cardinals. The following are equivalent.

(1) λ ≤ λ′ and κ ≤ κ′.
(2) Every poset with the (λ, κ)-FN has the (λ′, κ′)-FN.
(3) Every boolean algebra with the (λ, κ)-FN has the (λ′, κ′)-FN.

Proof. (1)⇒ (2)⇒ (3) is trivial. We prove the contrapositive of (3)⇒ (1).
Case κ′ < κ: Let µ = max(λ, λ′). By Lemma 2.4, there is a boolean algebra

B that has the κ-FN but lacks the (µ, κ′)-FN. Therefore, B has the (λ, κ)-FN but
lacks the (λ′, κ′)-FN.

Case κ ≤ κ′ < λ′ < λ: Let B be the interval algebra on λ′. Since B trivially
has the (|B|+ ,ℵ0)-FN and |B| = λ′ < λ, the algebra B also has the (λ, κ)-FN.
However, by Lemma 2.3, B lacks the (λ′, κ′)-FN. �

Thus, the family of (λ, κ)-FN properties form a truly two-dimensional hierarchy.
In particular, for regular uncountable cardinals λ ≥ ℵ2, the logical strength of the
(λ,ℵ0)-FN lies strictly between that of the FN and λ-FN, and is incomparable with
that of the (κ+, κ)-FN for regular uncountable κ such that κ+ < λ. In contrast,
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we will show in Section 3 that the (κ+, κ)-FN and (κ, κ)-FN are equivalent if κ is
regular.

Next, we prove some theorems about the robustness of our two-dimensional
heirarchy. In particular, we extend the classical preservation (see [5]) of the FN by
coproducts and by the exponential operation (see Definition 2.8).

Theorem 2.6. Given infinite cardinals λ ≥ κ and boolean algebras (Bi : i ∈ I)
each with the (λ, κ)-FN, the coproduct B =

∐
i∈I Bi must also have the (λ, κ)-FN.

Proof. This proof is a generalization of the proof of Lemma 3.1 of [7]. Both proofs
can be seen as generalizations of a proof of the Interpolation Theorem. For each
i ∈ I, let (fi, gi) be a (λ, κ)-FN map for Bi. For notational simplicity, assume that
Bi∩Bj = {0, 1} = {0Bi , 1Bi} for all distinct i, j ∈ I. Now B is just the distributive
lattice freely generated by

⋃
i∈I Bi. Therefore, every x ∈ B can be expressed both as∨

k<m(x)

∧
i∈s(x,k) a(x, k, i) and as

∧
k<n(x)

∨
i∈t(x,k) b(x, k, i) where m(x), n(x) ∈ ω,

s(x, k), t(x, k) ∈ [I]<ℵ0 , a(x, k, i), b(x, k, i) ∈ Bi \{0, 1},
∨

∅ = 0, and
∧

∅ = 1. For
each x ∈ B, define F (x) ∈ [B]<λ and G(x) ∈ [B]<κ as the subalgebras respectively
generated by the sets F0(x) and G0(x) defined below. (For the case κ = ℵ0, we use
the fact that finite sets generate finite boolean algebras.)

F0(x) =

 ⋃
k<m(x)

⋃
i∈s(x,k)

fi(a(x, k, i))

 ∪
 ⋃
k<n(x)

⋃
i∈t(x,k)

fi(b(x, k, i))


G0(x) =

 ⋃
k<m(x)

⋃
i∈s(x,k)

gi(a(x, k, i))

 ∪
 ⋃
k<n(x)

⋃
i∈t(x,k)

gi(b(x, k, i))


Assume x ≤ y in B. For every k < m(x) and l < n(y),

∧
i∈s(x,k) a(x, k, i) ≤∨

i∈t(y,l) b(y, l, i), which implies a(x, k, ik,l) ≤ b(y, l, ik,l) for some ik,l ∈ s(x, k) ∩
t(y, l). Hence, a(x, k, ik,l) ≤ c(k, l) ≤ b(y, l, ik,l) and a(x, k, ik,l) ≤ d(k, l) ≤
b(y, l, ik,l) for some

c(k, l) ∈ fik,l
(a(x, k, ik,l)) ∩ gik,l

(b(y, k, ik,l))

and

d(k, l) ∈ gik,l
(a(y, k, ik,l)) ∩ fik,l

(b(y, k, ik,l)),

respectively. Therefore, we have the following inequalities.

x ≤
∨

k<m(x)

∧
l<n(y)

a(x, k, ik,l) ≤
∨

k<m(x)

∧
l<n(y)

c(k, l) ≤
∨

k<m(x)

∧
l<n(y)

b(y, l, ik,l) ≤ y

x ≤
∨

k<m(x)

∧
l<n(y)

a(x, k, ik,l) ≤
∨

k<m(x)

∧
l<n(y)

d(k, l) ≤
∨

k<m(x)

∧
l<n(y)

b(y, l, ik,l) ≤ y

The middle terms of the above two inequalities witness that (F,G) is a (λ, κ)-FN
map for B. �

Corollary 2.7. Let λ be an infinite cardinal. If every cofactor of a coproduct of
boolean algebras has size less than λ, then the coproduct has the (λ,ℵ0)-FN.

In particular, the above corollary implies the classical result that free boolean
algebras have the FN.
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Definition 2.8. For a given boolean algebra B, the exponential exp(B) is the
clopen algebra of the Vietoris hyperspace 2Ult(B) of nonempty closed subsets of
Ult (B).

2Ult(B) is homeomorphic to the space F(B) of filters ofB topologized by declaring
open all sets of the form [a] = {F ∈ F(B) : a ∈ F} and −[a] = {F ∈ F(B) : a 6∈ F}
where a ∈ B. It has a clopen base consisting of sets of the form [

∨
i<n ai] ∧∧

i<n−[−ai] where a0, . . . , an−1 are nonzero and pairwise incompatible.
In purely algebraic terms, exp(B) is the boolean algebra freely generated by

{[a] : a ∈ B} modulo the relations in the sets {[0] = 0, [1] = 1}, {[a] ≤ [b] : B 3 a ≤
b ∈ B}, and {[a] ∧ [b] = [a ∧ b] : a, b ∈ B}. (See [2].) Note that [a] ∨ [b] ≤ [a ∨ b]
and [−a] ≤ −[a] always hold, but equality fails in general.

Theorem 2.9. Given infinite cardinals λ ≥ κ and a boolean algebra B with the
(λ, κ)-FN, exp(B) also has the (λ, κ)-FN.

Proof. Like in the proof of Theorem 2.6, given x ∈ exp(B), we can express x as∨
k<m(x)

∧
i∈s(x,k) a(x, k, i) and

∧
k<n(x)

∨
i∈t(x,k) b(x, k, i) where m(x), n(x) ∈ ω,

s(x, k), t(x, k) ∈ [B]<ℵ0 , a(x, k, i), b(x, k, i) ∈ {±[i]}\{0, 1},
∨

∅ = 0, and
∧

∅ = 1.
We will use the abbreviations xk =

∧
i∈s(x,k) a(x, k, i) and xk =

∨
i∈t(x,k) b(x, k, i).

Let (f, g) be a (λ, κ)-FN map for B. For each x ∈ B, first define H(x) ∈ [B]<ℵ0

as the (necessarily finite) subalgebra generated by
⋃
k<m(x) s(x, k)∪

⋃
k<n(x) t(x, k).

Then define F (x) ∈ [exp(B)]<λ as the subalgebra of exp(B) generated by {[h] : h ∈⋃
f [H(x)]}. Analogously define G(x) ∈ [exp(B)]<κ.
Assume x ≤ y in B. For every k < m(x) and l < n(y), we then have xk ≤ yl.

Let s+ = {i ∈ s(x, k) : a(x, k, i) = [i]} and s− = {i ∈ s(x, k) : a(x, k, i) = −[i]};
define t+ and t− analogously. Observe that xk = [

∧
s+] ∧

∧
i∈s−(−[i]) and yl =

(− [
∧
t−]) ∨

∨
i∈t+ [i]. Let U = ↑

∧
(s+ ∪ t−) and let η be the natural isomorphism

from exp(B) to the clopen algebra of F(B). There are three possibilities:

(1) U is not a (proper) filter,
(2) U ∈ η(yl), or
(3) U 6∈ η(yl).

If U is as in case (1), then choose c(k, l) ∈ f (
∧
s+) ∩ g (−

∧
t−) and d(k, l) ∈

g (
∧
s+) ∩ f (−

∧
t−) such that c(k, l), d(k, l) ∈ [

∧
s+,−

∧
t−]. We then have, for

each z ∈ {c(k, l), d(k, l)},

xk ≤
[∧

s+
]
≤ [z] ≤ −[−z] ≤ −

[∧
t−
]
≤ yl.

Set ĉ(k, l) = [c(k, l)] and d̂(k, l) = [d(k, l)].
If U is as case (2), then choose i ∈ t+ such that

∧
(s+ ∪ t−) ≤ i. Next choose

c(k, l) ∈ f (
∧
s+)∩g ((−

∧
t−) ∨ i) and d(k, l) ∈ g (

∧
s+)∩f ((−

∧
t−) ∨ i) such that

c(k, l), d(k, l) ∈ [
∧
s+, (−

∧
t−) ∨ i]. We then have, for each z ∈ {c(k, l), d(k, l)},

xk ≤
[∧

s+
]
≤ [z] ≤

[(
−
∧
t−
)
∨ i
]
≤
(
−
[∧

t−
])
∨ [i] ≤ yl.

Above we used the fact that if p, q ∈ B, then [p ∨ −q] ≤ [p] ∨ −[q], which follows

from [p ∨ −q] ∧ [q] = [p ∧ q] ≤ [p]. Set ĉ(k, l) = [c(k, l)] and d̂(k, l) = [d(k, l)].
If U is as case (3), then U 6∈ η(xk), so choose i ∈ s− such that

∧
(s+ ∪

t−) ≤ i. Next choose d(k, l) ∈ f (
∧
t−) ∩ g (i ∨ (−

∧
s+)) and c(k, l) ∈ g (

∧
t−) ∩
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f (i ∨ (−
∧
s+)) such that d(k, l), c(k, l) ∈ [

∧
t−, i ∨ (−

∧
s+)]. We then have, for

each z ∈ {d(k, l), c(k, l)},

xk ≤
[∧

s+
]
∧ −[i] =

[∧
s+
]
∧ −

[
i ∨ (−

∧
s+)
]
≤ −[z] ≤ −

[∧
t−
]
≤ yl.

Above we used the fact that if p, q, r ∈ B and p∧q = p∧r, then [p]∧−[q] = [p]∧−[r]

because [p] ∧ [q] = [p] ∧ [r]. Set d̂(k, l) = −[d(k, l)] and ĉ(k, l) = −[c(k, l)].

In all three cases, ĉ(k, l) ∈ F (x)∩G(y), d̂(k, l) ∈ G(x)∩F (y), and ĉ(k, l), d̂(k, l) ∈
[xk, y

l]. Therefore, setting

c =
∨

k<m(x)

∧
l<n(y)

ĉ(k, l) and d =
∨

k<m(x)

∧
l<n(y)

d̂(k, l),

we have c ∈ F (x) ∩ G(y), d ∈ G(x) ∩ F (y), and c, d ∈ [x, y]. Thus, (F,G) is a
(λ, κ)-FN map for exp(B). �

For an easy third preservation theorem, we next extend Lemma 2.7 of [4], which
says that the κ-FN is preserved by retracts in the category of partial orders (and
therefore is preserved by retracts in the subcategory of boolean algebras).

Theorem 2.10. Given infinite cardinals λ ≥ κ partial orders P , Q where P has the
(λ, κ)-FN, and order-preserving maps i : P → Q and j : Q→ P such that j◦i = idP ,
the partial order Q must also have the (λ, κ)-FN. In particular, retracts of boolean
algebras preserve the (λ, κ)-FN.

Proof. Exactly as argued in Lemma 2.7 of [4], given a (λ, κ)-FN map (f, g) for P ,
(i ◦ f ◦ j, i ◦ g ◦ j) is a (λ, κ)-FN map for Q. �

The next lemma and theorem are mostly due to the anonymous referee. The
lemma yields a converse to the preservation by coproducts in Theorem 2.6. The
theorem is a stronger version of Theorem 2.5.

Lemma 2.11. If P and Q are partial orders, λ and κ are infinite cardinals, κ
is regular, λ ≥ κ, P ≤κ Q, and Q has the (λ, κ)-FN, then P has the (λ, κ)-FN
too. Hence, if a coproduct of boolean algebras has the (λ, κ)-FN, then so do all its
cofactors.

Proof. The proof of the first claim of the lemma is the essentially the same as its
κ-FN analog, the proof of Lemma 2.3(a) of [4]. Let (f, g) be a (λ, κ)-FN map for
Q. For each q ∈ Q, let Lq ∈ [P ]<κ be cofinal in P ∩ ↓q. For each p ∈ P , set
F (p) =

⋃
{Lq : q ∈ f(p)} and G(p) =

⋃
{Lq : q ∈ g(q)}. If x, y ∈ P and x ≤ y, then

we have x ≤ z ≤ y for some z ∈ f(x)∩g(y) and x ≤ w ≤ y for some w ∈ g(x)∩f(y).
Choose u ∈ Lz such that x ≤ u; choose v ∈ Lw such that x ≤ v. We then have
x ≤ u ≤ y, u ∈ F (x) ∩ G(y), x ≤ v ≤ y, and v ∈ F (x) ∩ G(y). Thus, (F,G) is a
(λ, κ)-FN map.

For the second claim of the Lemma, we just need the easy classical fact that if
B =

∐
i∈I Bi is a coproduct of boolean algebras, then Bi ≤ℵ0 B for all i ∈ I. (We

include Bi in B in the canonical way.) Given j ∈ I, we witness Bj ≤ℵ0 B with
the equations min(Bj ∩ ↑x) = x+ and max(Bj ∩ ↓x) = x− where x+ and x− are
defined below using the notation from the proof of Theorem 2.6 to again express an
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arbitrary x ∈ B as
∨
k<m(x)

∧
i∈s(x,k) a(x, k, i) and as

∧
k<n(x)

∨
i∈t(x,k) b(x, k, i).

x+ =
∨

k<m(x)

∧{
a(x, k, i) : i ∈ s(x, k) ∩ {j}

}
x− =

∧
k<n(x)

∨{
b(x, k, i) : i ∈ t(x, k) ∩ {j}

}
(Recall our convention that

∧
∅ = 1 and

∨
∅ = 0.) �

Theorem 2.12. Given regular infinite cardinals µ ≥ λ > κ, there is a boolean
algebra B such that

(1) B has the (λ, κ)-FN;
(2) B lacks the (λ′, κ′)-FN for all regular λ′ < λ and all regular κ′ < λ′;
(3) B lacks the (λ′, κ′)-FN for all regular κ′ < κ and all regular λ′ ≤ µ.

Proof. By Lemma 2.4, there is a boolean algebra A with the κ-FN that lacks the
(µ, κ′)-FN for all regular κ′ < κ. Hence, A has the (λ, κ)-FN and satisfies (3).
As in the proof of Thoerem 2.5, for every regular λ′ ∈ (κ, λ), the interval algebra
Bλ′ on λ′ has the (λ, κ)-FN but lacks the (λ′, κ′)-FN for all regular κ′ < λ′. Set
B =

∐(
{A} ∪ {Bλ′ : κ < cf(λ′) = λ′ < λ}

)
. By Theorem 2.6, B has the (λ, κ)-FN.

By Lemma 2.11, B satisfies (2) and (3). �

3. Elementary submodel characterizations

The proofs of Lemmas 2.3 and 2.4 strongly suggest that the (λ, κ)-FN can be
better understood using elementary substructures M of sufficiently large fragments
(H(θ),∈, . . .) of the universe of sets, just as is the case for the κ-FN and for openly
generated compacta. Moreover, restricting our consideration to M such that M ∩λ
is an initial segment of λ seems reasonable. Choosing such an M was a crucial step
of the proof of Lemma 2.3. This section confirms these conjectures.

Definition 3.1 ([7], 3.16). Assuming that λ is a regular uncountable cardinal, θ is
a sufficiently large regular cardinal, and the structure (H(θ),∈, . . .) has signature
smaller than λ (in this paper the signature is always finite), a long λ-approximation
sequence in (H(θ),∈, . . .) is a sequence (Mα)α<η ∈ H(θ) such that

• Mα ≺ (H(θ),∈, . . .),
• |Mα| ⊆ λ ∩Mα ∈ λ, and
• λ, (Mβ)β<α ∈Mα.

Let Ωλ denote the tree of finite sequences of ordinals 〈ξi〉i<n which are strictly
decreasing in cardinality and are all, except possibly the last element, at least λ
(more compactly, λ ≤ |ξi| > |ξj | for all {i < j} ⊆ n). There is a unique isomorphism
from the ordinals to Ωλ ordered lexicographically, and its preimage of ⊆� Ωλ is a
{λ}-definable tree ordering Eλ of the ordinals which agrees with ≤ and has the
property that {β : β Eλ α} is finite for every ordinal α. The next lemma gives a
very nice application of Eλ.

Lemma 3.2 ([7], 3.17). For every λ-approximation sequence (Mα)α<η ∈ H(θ) in
(H(θ),∈, . . .), and every α ≤ η, if we enumerate {β : β Eλ α} as {β0 < · · · < βm},
then β0 = 0, βm = α, and Ni =

⋃
{Mγ : βi ≤ γ < βi+1} satisfies |Ni| ⊆ Ni ≺

(H(θ),∈, . . .) for each i < m.
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Theorem 3.3. Given regular infinite cardinals λ > κ, a partial order P , and a
sufficiently large regular cardinal θ, the following are equivalent.

(1) P ∩M ≤κ P for all M ≺ (H(θ),∈,≤P ) that satisfy M ∩ λ ∈ λ+ 1.
(2) P ∩M ≤κ P for all M ≺ (H(θ),∈,≤P ) that satisfy |M |∩λ ⊆M∩λ ∈ λ+1.
(3) P ∩M ≤κ P for all M ≺ (H(θ),∈,≤P ) that satisfy M ∩ λ ∈ λ.
(4) P ∩M ≤κ P for all M ≺ (H(θ),∈,≤P ) that satisfy |M | ⊆M ∩ λ ∈ λ.
(5) A ≤κ P for all A in some club E ⊆ [P ]<λ.
(6) P has the (λ, κ)-FN.

Remark.

• In general, for regular λ and M ≺ (H(θ),∈, . . .), M∩λ ∈ λ+1 iff [H(θ)]<λ∩
M ⊆ [M ]<λ.
• Item (2) in the theorem is the original definition of the (λ, κ)-FN from [7]

(4.1).

Proof. We will prove the following two overlapping circles of implications.

(1)⇒ (3)⇒ (4)⇒ (5)⇒ (1)

(5)⇒ (1)⇒ (2)⇒ (6)⇒ (5)

(1)⇒ (3)⇒ (4): Trivial.
(4)⇒ (5): If |P | < λ, then E = {P} works. So, assume |P | ≥ λ. Choose a well-

ordering v of H(θ); now (H(θ),∈,≤P ,v) has a Skolem hull operator Hull. Let E
be the set of all A ∈ [P ]<λ that satisfy |A| ⊆ Hull(A)∩λ ∈ λ and A = P ∩Hull(A).
Since λ is regular, E is closed with respect to ascending unions of length less than
λ. Moreover, starting from any X0 ∈ [P ]<λ, we can expand X0 to X =

⋃
n<ωXn

where Xn+1 = P ∩ Hull(Xn ∪ |Xn| ∪ sup(λ ∩ Hull(Xn))). We have X ∈ E because
there are Skolem terms for ϕ and ϕ−1 where ϕ is the v-least injection from λ to
P . Thus, E is unbounded. Finally, if A ∈ E , then Hull(A) ≺ (H(θ),∈,≤P ,v), so
(4) implies that A = P ∩Hull(A) ≤κ P .

(5)⇒ (1): Assume E ⊆ [P ]<λ is as in (5), M ≺ (H(θ),∈,≤P ), and M∩λ ∈ λ+1.
We want to show that P ∩M ≤κ P . By elementarity, there exist λ′, κ′, E ′ ∈ M
such that λ′ > κ′ are regular infinite cardinals, E ′ is a club subset of [P ]<λ

′
, and

A ≤κ′ P for all A ∈ E ′. First, we show that we can choose λ′ ≤ λ and κ′ ≤ κ. If
κ ∈ M , then we can choose κ′ = κ and next choose λ′ to be least possible, which
guarantees λ′ ≤ λ. If λ ∈ M , then we can choose λ′ = λ and next choose κ′ to be
least possible, which guarantees κ′ ≤ κ. Suppose we are in the remaining case, that
M ∩ λ ≤ κ and λ 6∈M . If θ ∩M = κ, then κ′ < λ′ < κ < λ. If µ = min(θ ∩M \ κ),
then µ > λ, so we can choose κ′ < λ′ < µ, so again κ′ < λ′ < κ < λ.

Now, safely assuming that λ′ ≤ λ and κ′ ≤ κ, it suffices to show that P ∩M ≤κ′
P . Fix q ∈ P . By symmetry, we need only prove that cf(M ∩ ↓q) < κ′. Set

χ =
(
2<θ
)+

and choose N0 such that N0 ≺ (H(χ),∈,≤P , q,M, κ′, λ′, E ′). Since
λ′ ≤ λ, we have M ∩λ′ ∈ λ′+1, so we may choose N0 such that |N0| ⊆ N0∩λ′ ∈ λ′
by taking N0 to be the union of an appropriate elementary chain. By elementarity,
M∩N0 ≺ (H(θ),∈,≤P , E ′) andM∩N0 ≤ λ′ ≤ N0∩λ′ ∈ λ′. Hence, P∩M∩N0 ∈ E ′;
hence, P ∩M ∩N0 ≤κ′ P . Let D0 be a cofinal subset of M ∩N0 ∩ ↓q of size less
than κ′.

Starting with N0, we now form a continuous elementary chain of length κ′ + 1.
Given α < κ′ and (Nα, Dα) having the above properties of (N0, D0), choose
(Nα+1, Dα+1) to have the above properties of (N0, D0) while also satisfying (Di)i≤α ∈
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Nα+1 and Dα ⊆ Dα+1. At limit stages α ≤ κ′, let Nα =
⋃
i<αNi and Dα =⋃

i<αDi, noting that the above properties of (N0, D0) are preserved by unions
of chains of length at most κ′, except possibly that |Dκ′ | = κ′. In particular,
P ∩M ∩Nκ′ ∈ E ′, so cf(M ∩Nκ′ ∩ ↓q) < κ′. Hence, Dα is cofinal in M ∩Nκ′ ∩ ↓q
for some α < κ′. Since Dα ∈ Nκ′ , Dα is, by elementarity, also cofinal in M ∩ ↓q.
Thus, cf(M ∩ ↓q) < κ′ as desired.

(1)⇒ (2): Trivial.
(2)⇒ (6): Let |P | = µ ≥ λ and let (Mi)i<µ be a long λ-approximation sequence

in (H(θ),∈,≤P ). Observe that P ⊆
⋃
i<µMi. Assuming that i < µ and we have

defined (f, g) �
(
P ∩

⋃
j<iMj

)
to be a (λ, κ)-FN map on P ∩

⋃
j<iMj , it suffices

to extend the definition to get a (λ, κ)-FN map on P ∩
⋃
j≤iMj .

Let N0, . . . , Nm−1 be as in Lemma 3.2; observe that
⋃
j<iMj =

⋃
j<mNj . Given

x ∈ P ∩Mi \
⋃
j<mNj , let Aj ∈ [P ∩ Nj ]<κ include a cofinal subset of Nj ∩ ↓x

and a coinitial subset of Nj ∩ ↑x, for each j < m. Finally, set f(x) = (P ∩Mi) ∪⋃
j<m

⋃
{f(z) : z ∈ Aj} and g(x) = {x} ∪

⋃
j<m

⋃
{g(z) : z ∈ Aj}. It is easy to

check that this definition works. For example, if x ≤ y ∈ P ∩Nj , then x ≤ z ≤ y
for some z ∈ Aj ; since z, y ∈ Nj , we have z ≤ w ≤ y for some w ∈ f(z) ∩ g(y);
since f(z) ⊆ f(x), we have x ≤ w ≤ y and w ∈ f(x) ∩ g(y).

(6)⇒ (5): Let (f, g) be a (λ, κ)-FN map. Let E be the club set of all X ∈ [P ]<λ

satisfying X ⊇
⋃
f [X]. Fix A ∈ E . For each p ∈ P and q ∈ A ∩ ↑p, there exists

r ∈ g(p) ∩ f(q) such that p ≤ r ≤ q. Since f(q) ⊆ A, g(p) ∩ A includes a coinitial
subset of A ∩ ↑p; by symmetry, g(p) ∩ A includes a cofinal subset of A ∩ ↓p. Since
|g(p)| < κ, A ≤κ P . �

Corollary 3.4. For all regular infinite κ, the κ-FN is equivalent to the (κ+, κ)-FN.

Proof. By Proposition 3.1 of [4], for all regular infinite κ, the κ-FN is equivalent to
item (5) of Theorem 3.3 with λ = κ+.

For a self-contained proof, first note that the (κ, κ)-FN trivially implies the
(κ+, κ)-FN, so we just need to modify the proof of (2)⇒ (6) of Theorem 3.3 so as
to use an additional hypothesis λ = κ+ to produce a κ-FN map. To accomplish
this, replace the inductive definitions of f and g with a similar inductive definition
of f alone where now f(x) = {z : z v x} ∪

⋃
j<m

⋃
{f(z) : z ∈ Aj} where v is a

well-ordering of P ∩Mi of length at most κ. �

4. Consequences for compacta

Let us review a few basic facts about elementary quotients. Assume X is a
compactum and M ≺ 〈H(θ),∈, TX〉. We then have the following.

• πXM (p) = πXM (q) iff f(p) = f(q) for all continuous real-valued functions
f ∈M .

• If U ∈ M is functionally open, then πXM [U ] is functionally open and U =(
πXM
)−1 [

πXM [U ]
]
.

• Moreover, X/M has a base consisting of sets of the form πXM [U ] where U is
functionally open and U ∈M .

• πXM [X ∩M ] is dense in X/M .

Lemma 4.11 of [7] shows that Bandlow’s characterization of “openly generated,”
that πXM is open for a club of M ∈ [H(θ)]<ℵ1 , is equivalent to πXM being open
for all M ≺ (H(θ),∈, TX), provided θ is sufficiently large. (We will prove a more
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general result in Theorem 4.4.) Given an arbitrary regular uncountable cardinal
λ, a simple generalization of Bandlow’s property is to declare a compactum to be
(λ,ℵ0)-openly generated if πXM is open for a club of M ∈ [H(θ)]<λ, which is likewise
equivalent to πXM being open for all M ≺ (H(θ),∈, TX) satisfying M ∩ λ ∈ λ + 1,
provided θ is sufficiently large. This generalization also appears to be the correct
generalization, as shown by the theorems of this section.

Without explicitly defining the notion “(λ, κ)-openly generated,” Theorem 4.17
of [7] used a naively generalized hypothesis to deduce some order-theoretic base
properties. The hypothesis was that, for some infinite cardinal µ, λ = µ+, κ =
cf(µ), and πXM [U ] is the intersection of fewer than κ-many open sets, for all open
U ⊆ X and all M ≺ (H(θ),∈, TX) that satisfy |M | ∩ λ ⊆ M ∩ λ ∈ λ + 1. Among
the conclusions was that every continuous image Y of X has a π-base such that
every κ-sized subfamily’s intersection has empty interior; if also πχ(y, Y ) = w(Y )
for all y ∈ Y , then “π-base” can be strengthened to “base.”

Reading through the proof, it is not hard to check that the universal quantifica-
tion over all open U is stronger than necessary; it suffices for X to have a base B
of functionally open sets such that U is as above for every U ∈ B. Moreover, from
the perspective of choosing a good definition of (λ, κ)-openly generated, the latter,
narrower quantification is preferable, as shown by the following example.

Example 4.1. Let D be the double-arrow space, that is, the lexicographically or-
dered space ([0, 1] × {0, 1}) \ {〈0, 0〉, 〈1, 1〉}. This space is a totally disconnected
compactum and its clopen algebra is isomorphic to the real interval algebra, which
has the WFN. Let X = D2. Since Clop(X) is isomorphic to the coproduct
Clop(D)

∐
Clop(D), Clop(X) also has the WFN. Therefore, X should be (ℵ2,ℵ1)-

openly generated for any good definition of (ℵ2,ℵ1)-openly generated.
In the closed subspace C = {〈〈a, i〉, 〈b, j〉〉 ∈ X : a+ b = 1}, the set I of isolated

points is {〈〈a, i〉, 〈b, j〉〉 ∈ C : i = j}. Observe that if L = C \ I, then L is
homemorphic to D. Let U = (X \ C) ∪ I, which is open in X. Let M ≺ (H(θ),∈)
and |M | ⊆ M ∩ ω2 ∈ ω2. We will show that ¬CH implies that πXM [U ] is not a Gδ
set.

We will prove the contrapositive; assume πXM [U ] is Gδ. First, observe that(
πXM
)−1

[πXM [U ]] = X \ (L ∩M) because a continuous real valued function from
M can separate the points 〈〈a, i〉, 〈b, j〉〉 and 〈〈a, i′〉, 〈b, j′〉〉 iff 〈i, j〉 6= 〈i′, j′〉 and
a, b ∈M . Hence, L∩M is Fσ, so D∩M is Fσ. Applying the canonical finite-to-one
map from D onto [0, 1], we see that [0, 1]∩M is Fσ. Since every uncountable Borel
subset of [0, 1] contains a perfect set, M contains a perfect set, so CH holds.

Question 4.2. In the presence of CH, the above X has weight ℵ1, so πXM becomes
a trivial homeomorphism. Is there a GCH analog of Example 4.1?

Definition 4.3.

• An (M,κ)-base of a compactum X is a base B of X consisting only of
functionally open sets U for which πXM [U ] is the intersection of fewer than
κ-many open sets.

• A (λ, κ)-base of a compactum X is a base B that is an (M,κ)-base for all
M ≺ (H(θ),∈,B) satisfying |M | ∩ λ ⊆M ∩ λ ∈ λ+ 1.

• A strong (λ, κ)-base (respectively, strong (M,κ)-base) of a compactum X
is a (λ, κ)-base (respectively, (M,κ)-base) B of X that satisfies U ∪ V ∈ B
for all U, V ∈ B.
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• A compactum X is (λ, κ)-openly generated if it has a (λ, κ)-base.
• A compactum is (λ, κ)-adic if it is the continuous image of a (λ, κ)-openly

generated compactum.

Remark.

• If B is a (λ, κ)-base, then {
⋃
F : F ∈ [B]<ℵ0} is a strong (λ, κ)-base.

• If X has a (λ,ℵ0)-base, then πXM is open for all M ≺ (H(θ),∈, TX) satisfying
M ∩ λ ∈ λ+ 1. The converse is trivially true.

Theorem 4.4. Given regular infinite cardinals λ > κ, a compactum X, a base B
of X, and a sufficiently large regular θ, the following are equivalent.

(1) B is an (M,κ)-base for all M ≺ (H(θ),∈,B) satisfying M ∩ λ ∈ λ+ 1.
(2) B is an (M,κ)-base for all M ≺ (H(θ),∈,B) satisfying |M | ∩ λ ⊆M ∩ λ ∈

λ+ 1.
(3) B is an (M,κ)-base for all M ≺ (H(θ),∈,B) satisfying M ∩ λ ∈ λ.
(4) B is an (M,κ)-base for all M ≺ (H(θ),∈,B) satisfying |M | ⊆M ∩ λ ∈ λ.
(5) B is an (M,κ)-base for club-many M ∈ [H(θ)]<λ.

If X is also totally disconnected, then X is (λ, κ)-openly generated iff Clop(X) has
the (λ, κ)-FN.

Proof. Trivially, (1) ⇒ (2) ⇒ (4) and (1) ⇒ (3) ⇒ (4). Therefore, it suffices to
show that (4)⇒ (5)⇒ (1).

(4) ⇒ (5): Proceed similarly to the proof of (4) ⇒ (5) of Theorem 3.3. Let E
be the set of all M ≺ (H(θ),∈,B) satisfying |M | ⊆ M ∩ λ ∈ λ. Every union of a
chain in E of length less than λ is itself in E , so E is closed in [H(θ)]<λ. Moreover,
for every A ∈ [H(θ)]<λ, the union of an appropriate elementary chain will both
contain A and be in E . Thus, E is a club subset of [H(θ)]<λ.

(5)⇒ (1): Let M ≺ (H(θ),∈,B) and M∩λ ∈ λ+1. Now observe that increasing
θ preserves (5): assuming θ is already large enough that B ∈ H(θ), if E ⊆ [H(θ)]<λ

is a club and ν > θ, then πXN = πXN∩H(θ) for all N ≺ (H(ν),∈,B), and club-many

N ∈ [H(ν)]<λ satisfy N ≺ (H(ν),∈,B) and N ∩ H(θ) ∈ E . Therefore, we may
assume that θ is sufficiently large for us to apply elementarity to produce regular
infinite cardinals κ′ < λ′ ≤ θ′ and a club D ⊆ [H(θ′)]<λ

′
such that D, κ′, λ′ ∈ M ,

B ∈ H(θ′), and B is a (N,κ′)-base for all N ∈ D. Just as in the proof of (5)⇒ (1)
of Theorem 3.3, we can always choose λ′ ≤ λ and κ′ ≤ κ. Like in the proof

of Lemma 4.11 of [7], choose N ≺ H
((

2<θ
)+)

such that N ∩ H(θ′) ∈ D and

{M,B} ∪ κ′ ⊆ N . We then have M ∩N ∩H(θ′) ∈ D, so B is an (M ∩N,κ′)-base.
Therefore, N satisfies the following sentence.

For every U ∈ B, there exists V ∈ [M ]<κ
′

such that
• every V ∈ V is a functionally open subset of X,
• for all x ∈ U , there exists y ∈

⋂
V such that f(x) = f(y) for

all continuous f : X → R in M , and
• for all y ∈

⋂
V, there exists x ∈ U such that f(x) = f(y) for

all continuous f : X → R in M .

Because H
((

2<θ
)+)

must satisfy this sentence also, B is an (M,κ′)-base. Thus,

(5)⇒ (1).
Now assume that X is totally disconnected, M ≺ (H(θ),∈, TX), A ∈ A =

Clop(X), and M ∩λ ∈ λ. First, note that any strong (M,κ)-base B includes all the
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nonempty clopen sets, and that if πXM [A] and πXM [X \ A] are each the intersection
of fewer than κ-many open sets, then, by compactness, they each have clopen
neighborhood bases of size less than κ; hence, M ∩ ↑AA has coinitiality less than
κ and M ∩ ↓AA has cofinality less than κ. Conversely, if M ∩ ↑A C has coinitiality
less than κ for every clopen C, then Clop(X) is a strong (M,κ)-base. Thus, X is
(λ, κ)-openly generated iff Clop(X) has the (λ, κ)-FN. �

Corollary 4.5. A compactum is openly generated iff it is (ℵ1,ℵ0)-openly generated.

For all regular infinite cardinals λ > κ, the next theorem consists of Stone duals
of some results from Section 2, naturally generalized from the totally disconnected
compacta to all compacta.

Theorem 4.6. Assume λ and κ are infinite cardinals and λ ≥ κ.

(1) A compactum with weight less than λ (see Def. 4.9) is (λ,ℵ0)-openly gen-
erated.

(2) Products of (λ, κ)-openly generated compacta are (λ, κ)-openly generated.
(3) The Vietoris hyperspace of a (λ, κ)-openly generated compactum is (λ, κ)-openly

generated.

Proof. (1): If B is a base of a compactum X, |B| < λ, M ≺ (H(θ),∈,B), and
M ∩λ ∈ λ+1, then B ⊆M , so πXM is idX (modulo identifying points with singleton
equivalence classes), so πXM is open.

(2): Given X =
∏
i∈I Xi, assume each Xi has a (λ, κ)-base Bi, and let B be

the base of X consisting of all open boxes U =
⋂
i∈s π

−1
i [Ui] where s ∈ [I]<ℵ0 and

each Ui is in Bi and is not ∅ nor Xi. Fix M ≺ (H(θ),∈,B) such that |M | ∩ λ ⊆
M ∩ λ ∈ λ+ 1; we then have (Bi : i ∈ I) ∈M . Given U as above, U is functionally
open, so it suffices to show that πXM [U ] is the intersection of fewer than κ-many

open sets. If p, q ∈ X, then πXM (p) 6= πXM (q) iff πXi

M (p(i)) 6= πXi

M (q(i)) for some

i ∈ I ∩M . Therefore, πXM [U ] =
⋂
i∈s∩M π−1i [πXi

M [Ui]], which is an intersection of

fewer than κ-many open sets because each πXi

M [Ui] is an intersection of fewer than
κ-many open sets.

(3): Let B be a (λ, κ)-base of X; let Y = 2X . Given E ⊆ X, let [E] = {F ∈
Y : F ⊆ E}. By definition, {[O] : O open} ∪ {Y \ [C] : C closed} is a subbase

of Y . Observe that [E] =
[
E
]
. Also, if E ⊆ P(X), then [

⋂
E ] =

⋂
E∈E [E]. By

compactness, if U is a family of open subsets of X, then [
⋃
U ] =

⋃
{[
⋃
F ] : F ∈

[U ]<ℵ0}. Therefore, if U ⊆ X is functionally open, then, since being functionally
open is equivalent to being a union

⋃
n<ω En where the closure of En is contained

in the interior of En+1, [U ] is also functionally open.
Given F ∈ [B]<ℵ0 , let 〈F〉 = [

⋃
F ] \

⋃
U∈F [X \ U ], which is the set of all

nonempty closed subsets of
⋃
F that intersect every element of F . By compactness,

A = {〈F〉 : F ∈ [B]<ℵ0} is a base of Y . Morover, since every U ∈ B is functionally
open, every 〈F〉 ∈ A is functionally open. Let M ≺ (H(θ),∈,A) and |M | ∩ λ ⊆
M ∩ λ ∈ λ+ 1. It suffices to show that A is a (M,κ)-base of Y .

For each E ⊆ X, set EM =
(
πXM
)−1

[πXM [E]]; likewise define EM for each E ⊆
Y . Observe that B ∈ M , so B is an (M,κ)-base of X, so if 〈F〉 ∈ A, then
〈FM 〉 = 〈{UM : U ∈ F}〉 is the intersection of fewer than κ-many open sets:
if FM = {

⋂
α<β(i)O

i
α : i < n} where β(i) < κ, then 〈FM 〉 =

⋂
{〈{Oit(i) : i <

n}〉 : t ∈
∏
i<n β(i)}. Moreover, since πYM is a quotient map, πYM [〈F〉] is the
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intersection of fewer than κ-many open sets iff 〈F〉M is. Therefore, it suffices to
show that 〈F〉M = 〈FM 〉 for all 〈F〉 ∈ A. Every 〈F〉 ∈ A is functionally open,

so it is a union
⋃
i<ω 〈Fi〉 where 〈Fi〉 ∈ A. Therefore, it suffices to prove that

〈F〉M ⊆ 〈FM 〉 ⊆
(
〈F〉

)
M

for every 〈F〉 ∈ A.

Fix 〈F〉 ∈ A. First suppose that H ∈ 〈FM 〉. To prove that H ∈
(
〈F〉

)
M

, it

suffices to show that for every 〈G〉 ∈ A ∩ M , if H ∈ 〈G〉, then 〈F〉 ∩ 〈G〉 6= ∅.
(Indeed, if K〈G〉 ∈ 〈F〉 ∩ 〈G〉 whenever H ∈ 〈G〉 ∈ A ∩ M , then we have a net
~K which has one or more cluster points L, all of which are in 〈F〉 and satisfy
πYM (L) = πYM (H).) So, suppose H ∈ 〈G〉 ∈ A ∩ M . For each U ∈ F , choose
aU ∈ H ∩ UM and then choose a′U ∈ U such that πXM (a′U ) = πXM (aU ). For each
V ∈ G, choose bV ∈ H ∩ V ⊆

⋃
(FM ) = (

⋃
F)M and then choose b′V ∈

⋃
F such

that πXM (b′V ) = πXM (bV ). Set K = {a′U : U ∈ F} ∪ {b′V : V ∈ G}. Fix U ∈ F
and V ∈ G. We have a′U ∈ U ⊆

⋃
F and b′V ∈

⋃
F , so K ⊆

⋃
F ; we have

a′U ∈ HM ⊆
⋃
GM =

⋃
G and b′V ∈ VM = V ⊆

⋃
G, so K ⊆

⋃
G; we have a′U ∈ U ,

so K ∩ U 6= ∅; we have b′V ∈ VM = V , so K ∩ V 6= ∅. Thus, K ∈ 〈F〉 ∩ 〈G〉 as
desired.

Now suppose that H 6∈ 〈FM 〉. All that remains is to show that H 6∈ 〈F〉M . Fix
K ∈ 〈F〉; it suffices to show that H and K have disjoint closed neighborhoods in M .
By definition, at least one of two cases occurs: H 6⊆

⋃
FM or H∩UM = ∅ for some

U ∈ F . In the first case, we may choose p ∈ H \KM and then, by compactness,
neighborhoods V,W ∈ M of p and K, respectively, such that V ∩W = ∅. For
such V and W , we have H ∈ Y \ [X \ V ], K ∈ [W ], and Y \ [X \ V ] ∩ [W ] = ∅,
so H and K have disjoint closed neighborhoods in M . In the second case, we
may choose p ∈ K \ HM and then, by compactness, neighborhoods V,W ∈ M
of p and H, respectively, such that V ∩ W = ∅. For such V and W , we have
K ∈ Y \ [X \ V ], H ∈ [W ], and Y \ [X \ V ] ∩ [W ] = ∅, so H and K have disjoint
closed neighborhoods in M . �

Remark. Ščepin [9] proved that openly generated compacta have openly generated
hyperspaces using a completely different argument based on his characterization of
open generation as the existence of a k-metric, a notion of distance between points
and regular closed sets.

Shapiro used hyperspaces to demonstrate that not all openly generated compacta
are continuous images of products of spaces with small weight. In particular, not
all openly generated compacta are dyadic:

Theorem 4.7 (Shapiro [8]). For all infinite successor cardinals λ, if X is a com-

pactum with weight greater than λ (e.g., the openly generated λ+

2), then the Vietoris
hyperspace 2X is not a continuous image of any product of compacta whose factors
all have weight less than λ.

Moreover, not all dyadic compacta are open generated; Engelking proved this
in [3], and Fuchino, Koppelberg, and Shelah noted the Stone dual of this in terms
of the κ-FN in Proposition 7.6 of [4]. The proof from [4] easily generalized to yield
the following.

Theorem 4.8 ([3]; [4]). For any two infinite cardinals λ > κ, the quotient of λ2
formed by identifying (0 : i < λ) and (1 : i < λ) is not (λ, κ)-openly generated.
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Next we consider some consequences for cardinal functions in topology.

Definition 4.9.

• A base of a compactum is a family of nonempty open sets B such that for
every closed subset K and neighborhood U of K, K ⊆

⋃
σ ⊆ U for some

finite σ ⊆ B. (This agrees with the usual definition of a topological base.)
• A base of a boolean algebra B is a subset J such that every element of B

is a finite join of elements from J .
• The weight w(X) of a space or boolean algebra X is the least κ ≥ ω for

which X has a base of size ≤ κ. (Note that w(B) = |B| for all infinite
boolean algebras B.)
• A local π-base at p ∈ X is a family B of nonempty open sets such that

every neighborhood of p includes some element of B as a subset.
• A local π-base at an ultrafilter U of a boolean algebra B is a subset S of
B \ {0} such that every element of U is above some element of S.
• The π-character πχ(p,X) of a point of a space or an ultrafilter of a boolean

algebra is the least κ ≥ ω for which it has a local π-base of size ≤ κ.
• The π-character of a space (boolean algebra) is the supremum of the π-

characters of its points (ultrafilters).
• A caliber of space X is a regular cardinal ν for which every sequence of

length ν of nonempty open subsets of X has a subsequence of length ν such
that the open sets from the subsequence have a common point.
• A precaliber of a boolean algebra is a regular cardinal ν for which every

sequence of length ν of nonzero elements of X has a subsequence of length
ν such that the range of the subsequence can be extended to a filter.

Ščepin [9] proved that if a compactum Y is a continuous image of an openly
generated compacta X, then the weight of Y equals its π-character and every
regular uncountable cardinal is a caliber of Y . The Stone dual of these results is
that every subalgebra of an openly generated boolean algebra has weight equal to
its π-character and has all regular uncountable cardinals as precalibers.

Let us generalize Ščepin’s results to (λ,ℵ0)-openly generated compacta.

Theorem 4.10. Let λ be a regular infinite cardinal and let Y be a (λ,ℵ0)-adic
compactum. The weight of Y then equals its π-character or is less than λ, and Y
has every uncountable regular cardinal ≥ λ as a caliber.

Remark. The Stone dual of the theorem is that w(A) = πχ(A) or w(A) < λ, and
all regular uncountable cardinals ≥ λ are precalibers of A, provided λ is regular
and A is a subalgebra of some B with the (λ,ℵ0)-FN.

Proof. We modestly generalize Ščepin’s proofs of the theorem’s claims for the case
λ = ℵ1. (For calibers, see Theorem 6 of [9]; for π-character, see Sections 7 and 8
of the same.) Ščepin’s proofs used inverse limits and so-called lattices of quotient
maps, not elementary quotients. Our proof is primarily a work of loose translation
that made generalization to λ > ℵ1 easy. The two key ideas behind this translation
are that elementary chains induce very nice inverse limits, and that the set of all
elementary quotient maps πXM of a compactum X is a very nice lattice.

Let f : X → Y be a continuous surjection from a (λ,ℵ0)-openly generated com-
pactum. First, we prove that every regular ν ≥ λ is a caliber. Since continuous
images preserve calibers, it suffices to prove that ν is a caliber of X. Proceed
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by induction of the weight of X, with the base cases w(X) < ν being trivial.
Let (Mi : i < w(X)) be a continuous elementary chain such that |Mi| < w(X),
Mi ∈Mi+1, Mi ≺ (H(θ),∈, TX), and |Mi| ∩ λ ⊆Mi ∩ λ ∈ λ+ 1. This makes X an
inverse limit of (X/Mi : i < w(X)), with it not being hard to check using elemen-
tarity that the bonding maps πij(π

X
Mi

(x)) = (πXMj
(x)) are well-defined, continuous,

and open for j < i, as Mj ∈ Mi. Ščepin proved in [9] that a continuous linear
inverse limit of compacta with open bonding maps preserves calibers (Section 5,
Proposition 1), so ν is a caliber of X.

Next, we prove that πχ(Y ) = w(Y ). Assume that w(Y ) ≥ λ and τ is a regular
uncountable cardinal ≥ λ. We will show that the set P of points y ∈ Y with π-
character less than τ has weight less than τ . This will more than suffice to complete
the proof.

Let (Ni : i < τ) be a continuous elementary chain such that |Ni| < τ , Ni ∈ Ni+1,
Ni ≺ (H(θ),∈, TX , TY , f, τ,v) where v well-orders H(θ), and |Ni| ∩ λ ⊆ Ni ∩ λ ∈
λ+ 1. Let N =

⋃
i<τ Ni. Choose M ≺ (H(θ),∈, TX , TY , f, ~N,v) such that |M | ⊆

τ ∩M ∈ τ and |M | ∩ λ ⊆ M ∩ λ ∈ λ + 1. For each y ∈ P , let (Ui : i < πχ(y, Y ))
be the v-least enumeration of length πχ(y, Y ) of a local π-base at y consisting

of functionally open sets. Let Fy =
⋂
V

⋃
Ui⊆V f

−1Ui where V ranges over all

neighborhoods of y. It follows that Fy is a nonempty closed subset of f−1{y}.
Moreover, for each y ∈ P ∩M , we have ~U ⊆M , so π−1M [πM [f−1[Ui]]] = f−1[Ui]

for all i, where πM = πXM . Hence, π−1M [πM [
⋃
Ui⊆V f

−1[Ui]]] =
⋃
Ui⊆V f

−1[Ui] for

all V . Since πM is open, π−1M [πM [
⋃
Ui⊆V f

−1Ui]] =
⋃
Ui⊆V f

−1Ui for all V . Hence,

π−1M [πM [Fy]] = Fy. Since Fy is compact, Fy has a neighborhood base consisting

of sets of the form π−1M [W ] where W is open. Since πM is open, we can choose
each W to be of the form πM [Z] where Z is open and Z ∈ M . Hence, Fy has a
neighborhood base that is a subset of M . Hence, Fy has a neighborhood base of
size less than τ . By elementarity, Fy has a neighborhood base of size less than τ
for all y ∈ P .

The space X/N is an inverse limit of (X/Ni : i < τ) with open bonding maps
πij(π

X
Ni

(x)) = πXNj
(x). Ščepin proved in [9] that a continuous inverse limit L of

length τ of compacta with open bonding maps is such that if A is any collection
of subsets of L each with neighborhood bases of size less than τ , then there exists
B ∈ [A]<τ such that

⋃
B =

⋃
A (Section 5, Lemma 7). Therefore, there exists

Q ∈ [P ∩N ]<τ such that
⋃
y∈Q πN [Fy] =

⋃
y∈P∩N πN [Fy] where πN = πXN . Since τ

is regular, we can choose Q to be P ∩Ni for some i < τ . Choose Q = P ∩Ni for
the least possible i. Now Q ∈ N , so, setting F =

⋃
y∈P Fy, we have F ∈ N also.

If W ∈ N is functionally open and intersects F , then W intersects Fy for some
y ∈ P ; by elementarity, we may choose y ∈ N , so W intersects

⋃
y∈P∩N Fy, which

implies that W intersects
⋃
y∈Q Fy ∈ N because π−1N [πN [W ]] = W and, reusing an

argument from the previous paragraph, π−1N [πN [Fy]] = Fy for all y ∈ Q. Invoking
elementarity once more, every functionally open W that intersects F intersects⋃
y∈Q Fy, so F =

⋃
y∈Q Fy.

Since Q is definable from ~N , we have Q ∈ M . Since |Q| < τ , we also have
Q ⊆ P ∩ M ; hence, π−1M [πM [Fy]] = Fy for all y ∈ Q, which in turn implies

that π−1M [πM [
⋃
y∈Q Fy]] =

⋃
y∈Q Fy, thanks to the openness of πM . Therefore,
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π−1M [πM [F ]] = F . Let us show that g(πM (x)) = f(x) defines a continuous surjec-

tion from πM [F ] to P . This will complete the proof because it implies that

w(P ) ≤ w(P ) ≤ w(πM [F ]) ≤ w(X/M) ≤ |M | < τ,

for P would be a subspace of the continuous image P of the compact subspace
πM [F ] of X/M .

First, observe that f maps
⋃
y∈P Fy onto P , so f maps F onto P , so g maps

πM [F ] onto P , assuming g is well-defined.
Second, we show that g is well-defined. Assume that a, b ∈ F and f(a) 6=

f(b). We need to show that πM (a) 6= πM (b). Choose disjoint regular closed
Y -neighborhoods A and B of f(a) and f(b), respectively. Because

⋃
y∈Q Fy is

dense in F , f−1[A] =
⋃
y∈A∩Q Fy and f−1[B] =

⋃
y∈B∩Q Fy. Since πM is open

and π−1M [πM [Fy]] = Fy for all y ∈ Q, we have π−1M [πM [f−1[A]]] = f−1[A] and

π−1M [πM [f−1[B]]] = f−1[B]. Therefore, πM [f−1[A]] and πM [f−1[B]] are disjoint.
Hence, πM (a) 6= πM (b) as desired.

Finally, we show that g is continuous. Given any open subset V of X,

g−1[V ∩ P ] = πM [f−1[V ∩ P ]] = πM [f−1[V ∩ f [F ]]] = πM [f−1[V ] ∩ F ].

Since π−1M [πM [F ]] = F , we have πM [f−1[V ] ∩ F ] = πM [f−1[V ]] ∩ πM [F ]. Since f

is continuous and πM is open, πM [f−1[V ]] is open in X/M . Therefore, g−1[V ∩ P ]
equals πM [F ] intersected with an open subset of X/M . Thus, g is continuous as
desired. �

In contrast, the double-arrow space has weight 2ℵ0 , yet all its points have count-
able π-character. This is despite the fact that it is (ℵ2,ℵ1)-openly generated because
its clopen algebra, being isomorphic to the real interval algebra, has the WFN.
Therefore, at least in models of ¬CH, Theorem 4.10 does not generalize from
(λ,ℵ0)-adic compacta to (λ,ℵ1)-adic compacta. (We naturally wonder whether
there is a ZFC example of this phenomenon.)

Question 4.11. We conclude by drawing attention to the very difficult problem of
“large” homogeneous compacta. (See [6] for a survey.) All known homogeneous

compacta have
(
2ℵ0
)+

as a caliber, but over forty years has not answered the
question of whether this barrier is a theorem (or even a consistency result). Indeed,
all known homogeneous compacta are continuous images of products where each

factor is a compactum with weight at most 2ℵ0 , so they are all
((

2ℵ0
)+
,ℵ0
)

-

adic, and, as far the author knows, might all be
((

2ℵ0
)+
,ℵ0
)

-openly generated.

Can a homogeneous compactum fail to be
((

2ℵ0
)+
,ℵ0
)

-openly generated? Can a

homogeneous compactum fail to be
((

2ℵ0
)+
,ℵ0
)

-adic?
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