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Abstract. The Noetherian type of a space is the least κ such that it has a base
that is κ-like with respect to reverse inclusion. Just as all known homogeneous
compacta have cellularity at most c, they satisfy similar upper bounds in terms
of Noetherian type and related cardinal functions. We prove these and many
other results about these cardinal functions. For example, every homogeneous
dyadic compactum has Noetherian type ω. Assuming GCH, every point in
a homogeneous compactum X has a local base that is c(X)-like with respect
to containment. If every point in a compactum has a well-quasiordered local
base, then some point has a countable local π-base.

1. Introduction

Van Douwen’s Problem (see Kunen [16]) asks whether there is a homogeneous
compactum of cellularity exceeding c. (See Engelking [7], Juhász [14], and Kunen [17]
for all undefined terms. In particular, recall that w(·), π(·), χ(·), πχ(·), d(·), c(·),
and t(·) respectively denote weight, π-weight, character, π-character, density, cellu-
larity, and tightness of topological spaces.) A homogeneous compactum of cellular-
ity c exists by Maurice [19], but van Douwen’s Problem remains open in all models
of ZFC.

Definition 1.1. We say that a homogeneous compactum is exceptional if it is not
homeomorphic to a product of dyadic compacta and first countable compacta.

By Arhangel′skĭı’s Theorem, first countable compacta have size at most c; dyadic
compacta are ccc. Since the cellularity of a product space equals the supremum
of the cellularities of its finite subproducts (see p. 107 of [14]), all nonexceptional
homogeneous compacta have cellularity at most c. To the best of the author’s knowl-
edge, there are only two classes of examples of exceptional homogeneous compacta
(see [20]); these two kinds of spaces have cellularities ω and c.

We investigate several cardinal functions defined in terms of order-theoretic base
properties. Just like cellularity, these functions have upper bounds when restricted
to the class of known homogeneous compacta. Moreover, GCH implies that one
of these functions is a lower bound on cellularity when restricted to homogeneous
compacta.

Definition 1.2. Given a cardinal κ, define a poset to be κ-like (κop-like) if no
element is above (below) κ-many elements. Define a poset to be almost κop-like if
it has a κop-like dense subset.

In the context of families of subsets of a topological space, we will always im-
plicitly order by inclusion.
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Definition 1.3. Given a space X, let the Noetherian type of X, or Nt(X), be the
least κ ≥ ω such that X has a base that is κop-like. Analogously define Noetherian
π-type in terms of π-bases and denote it by πNt(X). Given a subset E of X, let the
local Noetherian type of E in X, or χNt(E,X), be the least κ ≥ ω such that there
is a κop-like neighborhood base of E. Given p ∈ X, let the local Noetherian type of
p, or χNt(p, X), be χNt({p}, X). Let the local Noetherian type of X, or χNt(X),
be the supremum of the local Noetherian types of its points. Let the compact
Noetherian type of X, or χKNt(X), be the supremum of the local Noetherian
types of its compact subsets. We call Nt, πNt, χNt, and χKNt Noetherian cardinal
functions.

Noetherian type and Noetherian π-type were introduced by Peregudov [23]. Pre-
ceding this introduction are several papers by Peregudov, Šapirovskĭı and Ma-
lykhin [18, 21, 22, 24] about min{Nt(·), ω2} and min{πNt(·), ω2} (using different
terminologies). Also, Dow and Zhou [5] showed that βω \ ω has a point with local
Noetherian type ω. (An easier construction of such a point will be given in the
proof of Theorem 5.16, which is a generalization a construction of Isbell [12].)

Observation 1.4. Every known homogeneous compactum X satisfies the following.
(1) Nt(X) ≤ c+.
(2) πNt(X) ≤ ω1.
(3) χNt(X) = ω.
(4) χKNt(X) ≤ c.

We justify this observation in Section 2, except that we postpone the case of ho-
mogeneous dyadic compacta to Section 3, where we investigate Noetherian cardinal
functions on dyadic compacta in general. The results relevant to Observation 1.4
are summarized by the following theorem.

Theorem 1.5. Suppose X is a dyadic compactum. Then πNt(X) = χKNt(X) =
ω. Moreover, if X is homogeneous, then Nt(X) = ω.

Also in Section 3, we generalize the above theorem to continuous images of
products of compacta with bounded weight; we also prove the following:

Theorem 1.6. The class of Noetherian types of dyadic compacta includes ω, ex-
cludes ω1, includes all singular cardinals, and includes κ+ for all cardinals κ with
uncountable cofinality.

Section 4 generalizes our results about dyadic compacta to the proper superclass
of k-adic compacta.

Finally, in Section 5, we prove several results about the local Noetherian types of
all homogeneous compacta, known and unknown, including the following theorem.

Theorem 1.7 (GCH). If X is a homogeneous compactum, then χNt(X) ≤ c(X).

2. Observed upper bounds on Noetherian cardinal functions

First, we note some very basic facts about Noetherian cardinal functions.

Definition 2.1. Given a subset E of a product
∏

i∈I Xi and σ ∈ [I]<ω, we say
that E has support σ, or supp(E) = σ, if E = π−1

σ πσ[E] and E 6= π−1
τ πτ [E] for all

τ ( σ.
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Theorem 2.2. Given a point p and a compact subset K of a product space X =∏
i∈I Xi, we have the following relations.

Nt(X) ≤ sup
i∈I

Nt(Xi)

πNt(X) ≤ sup
i∈I

πNt(Xi)

χNt(p, X) ≤ sup
i∈I

χNt(p(i), Xi)

χNt(K, X) ≤ sup
σ∈[I]<ω

χNt(πσ[K], πσ[X])

Proof. See Peregudov [23] for a proof of the first relation. That proof can be easily
modified to demonstrate the next two relations. Let us prove the last relation. For
each σ ∈ [I]<ω, set κσ = χNt(πσ[K], πσ[X]) and let Aσ be a κop

σ -like neighborhood
base of πσ[K]. For each σ ∈ [I]<ω, let Bσ denote the set of sets of the form π−1

σ U
where U ∈ Aσ and supp(U) = σ. Note that if U ∈ Aσ and supp(U) ( σ, then there
exists τ ( σ and V ∈ Aτ such that π−1

τ V ⊆ π−1
σ U . Moreover, for any minimal such

τ , we have π−1
τ V ∈ Bτ .

Set B =
⋃

σ∈[I]<ω Bσ. By compactness, B is a neighborhood base of K. Moreover,
if σ, τ ∈ [I]<ω and Bσ 3 U ⊆ V ∈ Bτ , then σ = supp(U) ⊇ supp(V ) = τ ;
hence, given U , there are at most (supτ⊆σ κτ )-many possibilities for V . Thus, B is
(supσ∈[I]<ω κσ)op-like as desired. �

Question 2.3. Do there exist spaces X and Y such that χKNt(X × Y ) exceeds
χKNt(X)χKNt(Y )?

Lemma 2.4. Every poset P is almost |P |op-like.

Proof. Let κ = |P | and let 〈pα〉α<κ enumerate P . Define a partial map f : κ → P
as follows. Suppose α < κ and we have a partial map fα : α → P . If ran fα is dense
in P , then set fα+1 = fα. Otherwise, set β = min{δ < κ : pδ 6≥ q for all q ∈ ran fα}
and let fα+1 be the smallest map extending fα such that fα+1(α) = pβ . For limit
ordinals γ ≤ κ, set fγ =

⋃
α<γ fα. Then fκ is nonincreasing; hence, ran fκ is

κop-like. Moreover, ran fκ is dense in P . �

Theorem 2.5. For any space X with point p, we have χNt(p, X) ≤ χ(p, X),
πNt(X) ≤ π(X), Nt(X) ≤ w(X)+, and χKNt(X) ≤ w(X).

Proof. The first two relations immediately follow from Lemma 2.4; the third relation
is trivial. For the last relation, note that if K is a compact subset of X, then it has
neighborhood base of size at most w(X); apply Lemma 2.4. �

Given Theorem 2.2, justifying Observation 1.4 for Nt(·), πNt(·), and χNt(·)
amounts to justifying it for first countable homogeneous compacta, dyadic homoge-
neous compacta, and the two known kinds of exceptional homogeneous compacta.
The first countable case is the easiest. By Arhangel′skĭı’s Theorem, first countable
compacta have weight at most c, and therefore have Noetherian type at most c+.
Moreover, every point in a first countable space clearly has an ωop-like local base.
The only nontrivial bound is the one on Noetherian π-type. For that, the following
theorem suffices.

Definition 2.6. Give a space X, let πsw(X) denote the least κ such that X has
a π-base A such that

⋂
B = ∅ for all B ∈ [A]κ

+
.
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Theorem 2.7. If X is a compactum, then πNt(X) ≤ πsw(X)+ ≤ t(X)+ ≤
χ(X)+.

Proof. Only the second relation is nontrivial; it is a theorem of Šapirovskĭı [26]. �

For dyadic homogeneous compacta, Theorem 1.5 obviously implies Observa-
tion 1.4; we will prove this theorem in Section 3. Now consider the two known
classes exceptional homogeneous compacta. They are constructed by two tech-
niques, resolutions and amalgams. First we consider the exceptional resolution.

Definition 2.8. Suppose X is a space, 〈Yp〉p∈X is a sequence of nonempty spaces,
and 〈fp〉p∈X ∈

∏
p∈X C(X \ {p}, Yp). Then the resolution Z of X at each point p

into Yp by fp is defined by setting Z =
⋃

p∈X({p} × Yp) and declaring Z to have
weakest topology such that, for every p ∈ X, open neighborhood U of p in X, and
open V ⊆ Yp, the set U ⊗ V is open in Z where

U ⊗ V = ({p} × V ) ∪
⋃

q∈U∩f−1
p V

({q} × Yq).

The resolution of concern to us in constructed by van Mill [30]. It is a compactum
with weight c, π-weight ω, and character ω1. Moreover, assuming MA + ¬CH (or
just p > ω1), this space is homogeneous. (It is not homogeneous if 2ω < 2ω1 .) For
a proof that this space is exceptional (assuming MA+¬CH), see [20]. Clearly, this
space has sufficiently small Noetherian type and π-type. We just need to show that
it has local Noetherian type ω. Van Mill’s space is a resolution of 2ω at each point
into Tω1 where T is the circle group R/Z.

Notice that T is metrizable. The following lemma proves that every metric
compactum has Noetherian type ω, along with some results that will be useful in
Section 3.

Lemma 2.9. Let X be a metric compactum with base A. Then there exists B ⊆ A
satisfying the following.

(1) B is a base of X.
(2) B is ωop-like.
(3) If U, V ∈ B and U ( V , then U ⊆ V .
(4) For all Γ ∈ [B]<ω, there are only finitely many U ∈ B such that Γ contains

{V ∈ B : U ( V }.

Proof. Construct a sequence 〈Bn〉n<ω of finite subsets of A as follows. For each
n < ω, let En be the union of the set of all singletons in

⋃
m<n Bm. Let Cn be the

set of all U ∈ A for which U ∩ En = ∅ and

2−n ≥ diam U < min

{
diam V : V ∈

⋃
m<n

Bm and 0 < diam V

}
and U ⊆ V for all V ∈

⋃
m<n Bm strictly containing U . Then

⋃
Cn = X \ En. Let

Bn be a minimal finite subcover of Cn. Set B =
⋃

n<ω Bn. To prove (3), suppose
U ∈ Bn and V ∈ Bm and U ( V . Then m 6= n by minimality of Bn. Also,
0 < diam V because ∅ 6= U ( V . Hence, if m > n, then diam V < diam U , in
contradiction with U ( V . Hence, m < n; hence, U ⊆ V .

For (1), let p ∈ X and n < ω, and let V be the open ball with radius 2−n and
center p. Then we just need to show that there exists U ∈ B such that p ∈ U ⊆ V .
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Hence, we may assume {p} 6∈ B. Hence, p 6∈ En+1; hence, there exists U ∈ Bn+1

such that p ∈ U . Since diam U ≤ 2−n−1, we have U ⊆ V .
For (2), let n < ω and U ∈ Bn. If U is a singleton, then every superset of U in B

is in
⋃

m≤n Bm. If U is not a singleton, then U has diamater at least 2−m for some
m < ω; whence, every superset of U in B is in

⋃
l≤m Bl.

For (4), suppose Γ ∈ [B]<ω and there exist infinitely many U ∈ B such that
{V ∈ B : U ( V } ⊆ Γ. We may assume Γ contains no singletons. Choose an
increasing sequence 〈kn〉n<ω in ω such that, for all n < ω, there exists Un ∈ Bkn

such that {V ∈ B : Un ( V } ⊆ Γ. For each n < ω, choose pn ∈ Un. Since
{Un : n < ω} is infinite, we may choose 〈pn〉n<ω such that {pn : n < ω} is
infinite. Let p be an accumulation point of {pn : n < ω}. Choose m < ω such
that 2−m < diam V for all V ∈ Γ. Since p is not an isolated point, there exists
W ∈ Bm such that p ∈ W . Then W 6∈ Γ; hence, W does not strictly contain Un for
any n < ω. Choose q ∈ W \ {p} such that W contains {x : d(p, x) ≤ d(p, q)}; set
r = d(p, q). Let B be the open ball of radius r/2 centered about p. Then there exists
n < ω such that 2−kn < r/2 and pn ∈ B. Hence, diam Un < r/2 and Un ∩ B 6= ∅;
hence, Un ⊆ W and q 6∈ Un; hence, Un ( W , which is absurd. Therefore, for each
Γ ∈ [B]<ω, there are only finitely many U ∈ B such that {V ∈ B : U ( V } ⊆ Γ. �

We have Nt(2ω) = Nt(Tω1) = ω by Lemma 2.9 and Theorem 2.2. Therefore,
the following theorem implies that van Mill’s space has local Noetherian type ω.

Lemma 2.10 ([30]). Suppose X, 〈Yp〉p∈X , 〈fp〉p∈X , and Z are as in Definition 2.8.
Suppose U is a local base at a point p in X and V is a local base at a point y in Yp.
Then {U ⊗ V : 〈U, V 〉 ∈ U × (V ∪ {Yp})} is a local base at 〈p, y〉 in Z.

Theorem 2.11. Suppose X, 〈Yp〉p∈X , 〈fp〉p∈X , and Z are as in Definition 2.8.
Then χNt(〈p, y〉, Z) ≤ Nt(X)χNt(y, Yp) for all 〈p, y〉 ∈ Z.

Proof. Set κ = Nt(X)χNt(y, Yp). Let A be a κop-like base of X and let B be a
κop-like local base at y in Yp; we may assume Yp ∈ B. Set C = {U ∈ A : p ∈ U}. Set
D = {U ⊗ V : 〈U, V 〉 ∈ C × B}, which is a local base at 〈p, y〉 in Z by Lemma 2.10.
If there exists U ⊗V ∈ D such that U ∩ f−1

p V = ∅, then U ⊗V is homeomorphic to
V ; whence, χNt(〈p, y〉, Z) = χNt(y, Yp) ≤ κ. Hence, we may assume U ∩f−1

p V 6= ∅
for all U ⊗ V ∈ D.

It suffices to show that D is κop-like. Suppose Ui ⊗ Vi ∈ D for all i < 2 and
U0 ⊗ V0 ⊆ U1 ⊗ V1. Then V0 ⊆ V1 and ∅ 6= U0 ∩ f−1

p V0 ⊆ U1 ∩ f−1
p V1. Since B

is κop-like, there are fewer than κ-many possibilities for V1 given V0. Since A is
a κop-like base, there are fewer than κ-many possibilities for U1 given U0 and V0.
Hence, there are fewer than κ-many possibilities for U1 ⊗ V1 given U0 ⊗ V0. �

Definition 2.12. Let p denote the least κ for which someA ∈ [[ω]ω]κ has the strong
finite intersection property but does not have a nontrivial pseudointersection. By a
theorem of Bell [4], p is also the least κ for which there exist a σ-centered poset P
and a family D of κ-many dense subsets of P such that P does not have a D-generic
filter.

Definition 2.13. Given a space X, let Aut(X) denote the set of its autohomeo-
morphisms.

Van Mill’s construction has been generalized by Hart and Ridderbos [10]. They
show that one can produce an exceptional homogeneous compactum with weight c
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and π-weight ω by carefully resolving each point of 2ω into a fixed space Y satisfying
the following conditions.

(1) Y is a homogeneous compactum.
(2) ω1 ≤ χ(Y ) ≤ w(Y ) < p.
(3) ∃d ∈ Y ∃η ∈ Aut(Y ) {ηn(d) : n < ω} = Y .
(4) If γω is a compactification of ω and γω \ ω ∼= Y , then Y is a retract of γω.

By Theorem 2.11, to show that such resolutions have local Noetherian type ω, it
suffices to show that every such Y has local Noetherian type ω. Theorem 2.16 will
accomplish this.

Theorem 2.14. Suppose X is a compactum and πχ(p, X) = χ(q, X) for all p, q ∈
X. Then χNt(p, X) = ω for some p ∈ X. In particular, if X is a homogeneous
compactum and πχ(X) = χ(X), then χNt(X) = ω.

The proof of Theorem 2.14 will be delayed until Section 5.
The following lemma is essentially a generalization of a similar result of Juhász [15].

Lemma 2.15. Suppose X is a compactum and ω = d(X) ≤ w(X) < p. Then there
exists p ∈ X such that χ(p, X) ≤ π(X).

Proof. Let A be a base of X of size at most w(X). Let B be a π-base of X of
size at most π(X). For each 〈U, V 〉 ∈ B2 satisfying U ⊆ V , choose a closed Gδ-set
Φ(U, V ) such that U ⊆ Φ(U, V ) ⊆ V . Then ran Φ, ordered by ⊆, is σ-centered
because d(X) = ω. Since |A| < p, there is a filter G of ran Φ such that for all
disjoint U, V ∈ A some K ∈ G satisfies U ∩ K = ∅ or V ∩ K = ∅. Hence, there
exists a unique p ∈

⋂
G. Hence, p has pseudocharacter, and therefore character, at

most |G|, which is at most π(X). �

Theorem 2.16. If X is a homogeneous compactum and ω = d(X) ≤ w(X) < p,
then χNt(X) = ω.

Proof. By Lemma 2.15, χ(X) ≤ π(X) = πχ(X)d(X) = πχ(X). Hence, by Theo-
rem 2.14, χNt(X) = ω. �

Amalgams are defined in [20] as follows.

Definition 2.17. Suppose X is a T0 space, S is a subbase of X such that ∅ 6∈ S ,
and 〈YS〉S∈S is a sequence of nonempty spaces. The amalgam Y of 〈YS : S ∈ S 〉
is defined by setting Y =

⋃
p∈X

∏
p∈S∈S YS and declaring Y to have the weakest

topology such that, for each S ∈ S and open U ⊆ YS , the set π−1
S U is open in

Y where π−1
S U = {p ∈ Y : S ∈ dom p and p(S) ∈ U}. Define π : Y → X by

{π(p)} =
⋂

dom p for all p ∈ Y . It is easily verified that π is continuous.

Theorem 2.18. Suppose X, S , 〈YS〉S∈S , and Y be as in Definition 2.17. Then
we have the following relations for all p ∈ Y .

Nt(Y ) ≤ Nt(X) sup
S∈S

Nt(YS)

πNt(Y ) ≤ πNt(X) sup
S∈S

πNt(YS)

χNt(p, Y ) ≤ χNt(π(p), X) sup
S∈dom p

χNt(p(S), YS)
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Proof. We will only prove the first relation; the proofs of the others are almost
identical. Set κ = Nt(X) supS∈S Nt(YS). Let A be a κop-like base of X. For each
S ∈ S , let BS be a κop-like base of YS . Set

C =
{

π−1U∩
⋂

S∈dom τ

π−1
S τ(S) : τ ∈

⋃
F∈[S ]<ω

∏
S∈F

BS\{YS} and A 3 U ⊆
⋂

dom τ

}
.

Then C is clearly a base of Y . Let us show that C is κop-like. Suppose π−1Ui ∩⋂
S∈dom τi

π−1
S τi(S) ∈ C for all i < 2 and

π−1U0 ∩
⋂

S∈dom τ0

π−1
S τ0(S) ⊆ π−1U1 ∩

⋂
S∈dom τ1

π−1
S τ1(S).

Then U0 ⊆ U1 and dom τ0 ⊇ dom τ1 and τ0(S) ⊆ τ1(S) for all S ∈ dom τ1. Hence,
there are fewer than κ-many possibilities for U1 and τ1 given U0 and τ0. �

An exceptional homogeneous compactum Y is constructed in [20] with X = T
and w(YS) = π(YS) = c and χ(YS) = ω for all S ∈ S . Hence, Nt(YS) ≤ c+ and
χNt(YS) = ω for each S ∈ S . Moreover, each YS is 2γ ordered lexicographically
where γ is a fixed indecomposable ordinal in ω1 \ (ω + 1). Since cf γ = ω, it is easy
to construct an ωop-like π-base of this space. Hence, by Theorem 2.18, Nt(Y ) ≤ c+

and πNt(Y ) = χNt(Y ) = ω. Thus, Observation 1.4 is justified for Nt(·), πNt(·),
and χNt(·).

It remains to justify Observation 1.4 for χKNt(·). We first note that all known
homogeneous compacta are continuous images of products of compacta each of
weight at most c. (Moreover, it it shown in [20] that any Z as in Definition 2.17 is a
continuous image of X ×

∏
S∈S YS .) Therefore, the following theorem will suffice.

Theorem 2.19. Suppose Y is a continuous image of a product X =
∏

i∈I Xi of
compacta. Then χKNt(Y ) ≤ supi∈I w(Xi)

Before proving the above theorem, we first prove two lemmas.

Definition 2.20. Given subsets P and Q of a common poset, define P and Q to
be mutually dense if for all p0 ∈ P and q0 ∈ Q there exist p1 ∈ P and q1 ∈ Q such
that p0 ≥ q1 and q0 ≥ p1.

Lemma 2.21. Let κ be a cardinal and let P and Q be mutually dense subsets of a
common poset. Then P is almost κop-like if and only if Q is.

Proof. Suppose D is a κop-like dense subset of P . Then it suffices to construct a
κop-like dense subset of Q. Define a partial map f from |D|+ to Q as follows. Set
f0 = ∅. Suppose α < |D|+ and we have constructed a partial map fα from α to
Q. Set E = {d ∈ D : d 6≥ q for all q ∈ ran fα}. If E = ∅, then set fα+1 = fα.
Otherwise, choose q ∈ Q such that q ≤ e for some e ∈ E, and let fα+1 be the
smallest function extending fα such that fα+1(α) = q. For limit ordinals γ ≤ |D|+,
set fγ =

⋃
α<γ fα. Set f = f|D|+ .

Let us show that ran f is κop-like. Suppose otherwise. Then there exists q ∈ ran f
and an increasing sequence 〈ξα〉α<κ in dom f such that q ≤ f(ξα) for all α < κ. By
the way we constructed f , there exists 〈dα〉α<κ ∈ Dκ such that f(ξβ) ≤ dβ 6= dα

for all α < β < κ. Choose p ∈ P such that p ≤ q. Then choose d ∈ D such that
d ≤ p. Then d ≤ dβ 6= dα for all α < β < κ, which contradicts that D is κop-like.
Therefore, ran f is κop-like.
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Finally, let us show that ran f is a dense subset of Q. Suppose q ∈ Q. Choose
p ∈ P such that p ≤ q. Then choose d ∈ D such that d ≤ p. By the way we
constructed f , there exists r ∈ ran f such that r ≤ d; hence, r ≤ q. �

Lemma 2.22. Suppose f : X → Y is a continuous surjection between compacta
and C is closed in Y . Then χNt(f−1C,X) = χNt(C, Y ).

Proof. Let A be a neighborhood base of C. By Lemma 2.21, it suffices to show that
{f−1V : V ∈ A} is a neighborhood base of f−1C. Suppose U is a neighborhood of
f−1C. By normality of Y , we have f−1C =

⋂
V ∈A f−1V . By compactness of X,

we have f−1V ⊆ U for some V ∈ A. Thus, {f−1V : V ∈ A} is a neighborhood
base of f−1C as desired. �

Proof of Theorem 2.19. By Lemma 2.22, we may assume Y = X. By Theorem 2.2,
we may assume I is finite. Apply Theorem 2.5. �

How sharp are the bounds of Observation 1.4? (3) is trivially sharp as every space
has local Noetherian type at least ω. We will show that there is a homogeneous
compactum with Noethian type c+, namely, the double arrow space. Moreover, we
will show that Suslin lines have uncountable Noetherian π-type. It is known to be
consistent that there are homogeneous compact Suslin lines, but it is also known to
be consistent that there are no Suslin lines. It is not clear whether it is consistent
that all homogeneous compacta have Noetherian π-type ω, even if we restrict to
the first countable case. Also, it is not clear in any model of ZFC whether all first
countable homogeneous compacta have compact Noetherian type ω.

Question 2.23. Is there a first countable compactum with uncountable compact
Noetherian type?

The following proposition is essentially due to Peregudov [23].

Proposition 2.24. If X is a space and π(X) < cf κ ≤ κ ≤ w(X), then Nt(X) > κ.

Proof. Suppose A is a base of X and B is π-base of X of size π(X). Then |A| ≥ κ;
hence, there exist U ∈ [A]κ and V ∈ B such that V ⊆

⋂
U . Hence, there exists

W ∈ A such that W ⊆ V ⊆
⋂
U ; hence, A is not κop-like. �

Example 2.25. The double arrow space, defined as ((0, 1] × {0}) ∪ ([0, 1) × {1})
ordered lexicographically, has π-weight ω and weight c, and is known to be compact
and homogeneous. By Proposition 2.24, it has Noetherian type c+.

Theorem 2.26. Suppose X is a Suslin line. Then πNt(X) ≥ ω1.

Proof. Let A be a π-base of X consisting only of open intervals. By Lemma 2.21, it
suffices to show that A is not ωop-like. Construct a sequence 〈Bn〉n<ω of maximal
pairwise disjoint subsets of A as follows. Choose B0 arbitrarily. Given n < ω and
Bn, choose Bn+1 such that it refines Bn and Bn ∩ Bn+1 ⊆ [X]1.

Let E denote the set of all endpoints of intervals in
⋃

n<ω Bn. Since X is Suslin,
there exists U ∈ A \ [X]1 such that U ∩ E = ∅. For each n < ω, the set

⋃
Bn is

dense in X by maximality; whence, there exists Vn ∈ Bn such that U ∩ Vn 6= ∅.
Since U ∩ E = ∅, we have U ⊆

⋂
n<ω Vn. Thus, A is not ωop-like. �

MA + ¬CH implies there are no Souslin lines. It is not clear whether it further
implies every homogeneous compactum has Noetherian π-type ω. However, the



NOETHERIAN TYPES OF HOMOGENEOUS COMPACTA AND DYADIC COMPACTA 9

next theorem gives us a partial result. First, we need a lemma very similar to the
result that MA + ¬CH implies all Aronszajn trees are special.

Definition 2.27. Given a subset E of a poset Q, let ↑Q E denote the set of q ∈ Q
for which q has a lower bound in E.

Lemma 2.28. Assume MA. Suppose Q is an ωop
1 -like poset of size less than c.

Then Q is almost ωop-like or Q has an uncountable centered subset.

Proof. Set P = [Q]<ω and order P such that σ ≤ τ if and only if σ ∩ ↑Q τ = τ . A
sufficiently generic filter G of P will be such that

⋃
G is a dense ωop-like subset of

Q. Hence, if P is ccc, then Q is almost ωop-like. Hence, we may assume P has an
antichain A of size ω1. We may assume A is a ∆-system with root ρ. Since Q is
ωop

1 -like, we may assume σ ∩ ↑Q ρ = ρ for all σ ∈ A. Choose a bijection 〈aα〉α<ω1

from ω1 to A. We may assume there exists an n < ω such that |aα \ ρ| = n for
all α < ω1. For each α < ω1, choose a bijection 〈aα,i〉i<n from n to aα \ ρ. For
each x ∈ Q and i < n, set Ex,i = {α < ω1 : x ≤Q aα,i or aα,i ≤Q x}. For each
α < ω1, since A is an antichain, we have

⋃
i<n

⋃
j<n Eaα,i,j = ω1. Choose a uniform

ultrafilter U on ω1. Then we may choose B ∈ [(
⋃

A) \ ρ]ω1 and i < n such that
Ex,i ∈ U for all x ∈ B.

It suffices to show that B is centered. Let σ ∈ [B]<ω. Set E =
⋂

x∈σ Ex,i. Then
E ∈ U ; hence, |E| = ω1; hence, we may choose α ∈ E \ {β < ω1 : aβ,i ∈ ↑Q σ}.
Then aα,i <Q x for all x ∈ σ. Thus, B is centered. �

Lemma 2.29. Suppose f : X → Y is an irreducible continuous surjection between
spaces and X is regular. Then πNt(X) = πNt(Y ).

Proof. Let A be a πNt(X)op-like π-base of X and let B be a πNt(Y )op-like π-base
of Y . By Lemma 2.21, we may assume A consists only of regular open sets. Set
C = {f−1U : U ∈ B}. Then C is πNt(Y )op-like. Suppose U is a nonempty open
subset of X. Then we may choose V ∈ B such that V ∩ f [X \ U ] = ∅. Then
f−1V ⊆ U . Thus, C is a π-base of X; hence, πNt(X) ≤ πNt(Y ).

Set D = {Y \ f [X \ U ] : U ∈ A}. Suppose V is a nonempty open subset of
Y . Then we may choose U ∈ A such that U ⊆ f−1V . Then Y \ f [X \ U ] ⊆ V .
Thus, D is a π-base of Y . Now suppose U0, U1 ∈ A and U0 6⊆ U1. Then U0 6⊆ U1

by regularity. By irreducibility, we may choose p ∈ Y \ f [X \ (U0 \ U1)]. Then
p ∈ f [X \U1] and p 6∈ f [X \U0]. Hence, Y \ f [X \U0] 6⊆ Y \ f [X \U1]. Thus, D is
πNt(X)op-like; hence, πNt(Y ) ≤ πNt(X). �

Theorem 2.30. Assume MA. Let X be a compactum such that t(X) = ω and
π(X) < c. Then πNt(X) = ω.

Proof. We may assume X is a closed subspace of [0, 1]κ for some cardinal κ. By
a result of Šapirovskĭı [26], since t(X) = ω, there is an irreducible continuous map
f from X onto a subspace of

⋃
I∈[κ]ω [0, 1]I × {0}κ\I . Because of Lemma 2.29, we

may replace our hypothesis of t(X) = ω with X ⊆
⋃

I∈[κ]ω [0, 1]I × {0}κ\I . Set
F = Fn(κ, (Q ∩ (0, 1])2) and

A =

{
X ∩

⋂
α∈dom σ

π−1
α (σ(α)(0), σ(α)(1)) : σ ∈ F

}
\ {∅},

which is a π-base of X. ThenA witnesses that πsw(X) = ω. Hence, by Theorem 2.7
and Lemma 2.21, A contains an ωop

1 -like dense subset B, and it suffices to show that
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B is almost ωop-like. Seeking a contradiction, suppose B is not almost ωop-like. By
Lemma 2.28, B contains an uncountable centered subset C. Let the map〈

X ∩
⋂

α∈dom σβ

π−1
α (σβ(α)(0), σβ(α)(1))

〉
β<ω1

be an injection from ω1 to C. Then |
⋃

β<ω1
dom σβ | = ω1. By compactness, the set

X ∩
⋂

β<ω1

⋂
α∈dom σβ

π−1
α [σβ(α)(0), σβ(α)(1)]

is nonempty, in contradiction with X ⊆
⋃

I∈[κ]ω [0, 1]I × {0}κ\I . �

Concerning compact Noetherian type, we note that if there is a homogeneous
compactum X for which χKNt(X) ≥ ω1, then X is not an ordered space.

Definition 2.31. A point p in a space X is Pκ-point if, for every set A of fewer
than κ-many neighborhoods of p, the set

⋂
A has p in its interior. A P -point is a

Pω1-point.

Theorem 2.32. If X is a homogeneous ordered compactum, then χKNt(X) = ω.

Proof. We may assume X is infinite; hence, X has a point that is not a P -point.
By homogeneity, minX is not a P -point; hence, min X has countable character.
By homogeneity, X is first countable. Let C be closed in X. Then X \ C is a
disjoint union of open intervals

⋃
i∈I(ai, bi) such that (ai, bi) =

⋃
n<ω[ai,n, bi,n] and

〈ai,n〉n<ω is nonincreasing and 〈bi,n〉n<ω is nondecreasing for all i ∈ I. Hence,
{X \

⋃
i∈dom σ[ai,σ(i), bi,σ(i)] : σ ∈ Fn(I, ω)} is an ωop-like neighborhood base of

C. �

It is worth noting that while products do not decrease cellularity, they can
decrease Nt(·), πNt(·), and χNt(·), as shown by the following theorem of Ma-
lykhin [18].

Theorem 2.33. Let p ∈ X =
∏

i∈I Xi where Xi is a nonsingleton T1 space for
all i ∈ I. If supi∈I w(Xi) ≤ |I|, then Nt(X) = ω. If supi∈I π(Xi) ≤ |I|, then
πNt(X) = ω. If supi∈I χ(p(i), Xi) ≤ |I|, then χNt(p, X) = ω.

Proof. See [18] for a proof of the first implication. That proof can be easily modified
to demonstrate the other implications. �

In constrast, χKNt(·) is not decreased by products when the factors are com-
pacta. Just as is true of cellularity, the compact Noetherian type of a product of
compacta is the supremum of the compact Noetherian types of its finite subprod-
ucts.

Theorem 2.34. If X =
∏

i∈I Xi is a product of compacta, then χKNt(X) =
supσ∈[I]<ω χKNt(

∏
i∈σ Xi).

Proof. To prove “≤”, apply Theorem 2.2. To prove “≥”, apply Lemma 2.22. �

Though cellularity and compact Noetherian type behave similarly for compacta,
they do not coincide, even assuming homogeneity. Given any indecomposable or-
dinal γ strictly between ω and ω1, the lexicographic ordering of 2γ is homogeneous
and compact and has cellularity c by a result of Maurice [19]. However, by Theo-
rem 2.32, this space has compact Noetherian type ω.
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3. Dyadic compacta

In this section, we prove a strengthened version of Theorem 1.5 and generalize
it to continuous images of products of compacta with bounded weight. We also
investigate the spectrum of Noetherian types of dyadic compacta. Our approach
is to start with results about subsets of free boolean algebras and then use Stone
duality to apply them to families of open subsets of dyadic compacta.

By Lemma 2.4, every countable subset of a free boolean algebra is almost
ωop-like. We wish to prove this for all subsets of free boolean algebras. We achieve
this by approximating free boolean algebras by smaller free subalgebras using ele-
mentary substructures. More specifically, we use elementary submodels of Hθ where
θ is a regular cardinal and Hθ is the {∈}-structure of the family of sets that hered-
itarily have size less than θ. Whenever we use Hθ in an argument, we implicitly
assume that θ is sufficiently large to make the argument valid. As is typical with
elementary submodels of Hθ, we need reflection properties. For our purposes, the
crucial reflection property of free boolean algebras is given by the following lemma.

Lemma 3.1. Let B be a free boolean algebra and let {B,∧,∨} ⊆ M ≺ Hθ. Then,
for all q ∈ B, there exists r ∈ B ∩M such that, for all p ∈ B ∩M , we have p ≥ q
if and only if p ≥ r. In particular, r ≥ q.

Proof. Let q ∈ B. We may assume q 6= 0. By elementarity, there exists a map
g ∈ M enumerating a set of mutually independent generators of B. Set G =⋃
{{g(i), g(i)′} : i ∈ dom g}. Then there exists η ∈ [[G]<ω]<ω such that q =∨
τ∈η

∧
τ and

∧
τ 6= 0 for all τ ∈ η. Set r =

∨
τ∈η

∧
(τ ∩M). Let p ∈ B ∩M ; we

may assume p 6= 1. Then there exists ζ ∈ [[G ∩M ]<ω]<ω such that p =
∧

σ∈ζ

∨
σ

and
∨

σ 6= 1 for all σ ∈ ζ. Hence, p ≥ q iff, for all σ ∈ ζ and τ ∈ η, we have∨
σ ≥

∧
τ , which is equivalent to σ ∩ τ 6= ∅, which is equivalent to σ ∩ τ ∩M 6= ∅.

Thus, p ≥ q if and only if p ≥ r. �

The above lemma is not new. Fuchino proved that the conclusion of the above
lemma is equivalent to the Freese-Nation property, a property free boolean algebras
are known to have. (See section 2.2 and Theorem A.2.1 of [11] for details.)

Theorem 3.2. Every subset of every free boolean algebra is almost ωop-like.

Proof. Let B be a free boolean algebra; set κ = |B|. Given A ⊆ B, let ↑A denote
the smallest semifilter of B containing A; if A = {a} for some a, then set ↑a = ↑A.
Let Q be a subset of B. If Q is a countable, then Q is almost ωop-like by Lemma 2.4.
Therefore, we may assume that κ > ω and the theorem is true for all free boolean
algebras of size less than κ.

We will construct a continuous elementary chain 〈Mα〉α<κ of elementary sub-
models of Hθ and a continuous increasing sequence of sets 〈Dα〉α<κ satisfying the
following conditions for all α < κ.

(1) α ∪ {B,∧,∨, Q} ⊆ Mα and |Mα| ≤ |α|+ ω.
(2) Dα is a dense subset of Q ∩Mα.
(3) Dα ∩ ↑q is finite for all q ∈ Q ∩Mα.
(4) Dα+1 ∩ ↑q = Dα ∩ ↑q for all q ∈ Q ∩Mα.

Given this construction, set D =
⋃

α<κ Dα. Then D is a dense subset of Q by (2).
Moreover, if α < κ and d ∈ Dα, then d ∈ Q ∩ Mα by (2); whence, d is below at
most finitely many elements of D by (3) and (4). Hence, Q is almost ωop-like.
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For stage 0, choose any M0 ≺ Hθ satisfying (1). Since Q ∩ M0 ⊆ B ∩ M0, we
may choose D0 to be an ωop-like dense subset of Q ∩ M0, exactly what (2) and
(3) require. At limit stages, (1) and (2) are clearly preserved, and (3) is preserved
because of (4).

For a successor stage α + 1, choose Mα+1 such that Mα ≺ Mα+1 ≺ Hθ and (1)
holds for stage α+1. Since Q∩Mα+1 ⊆ B∩Mα+1, there is an ωop-like dense subset
E of Q ∩Mα+1. Set Dα+1 = Dα ∪ (E \ ↑(Q ∩Mα)). Then (4) is easily verified: if
q ∈ Q ∩Mα, then

Dα+1 ∩ ↑q = (Dα ∩ ↑q) ∪ ((E ∩ ↑q) \ ↑(Q ∩Mα)) = Dα ∩ ↑q.
Let us verify (2) for stage α + 1. Let q ∈ Q ∩ Mα+1. If q ∈ ↑(Q ∩ Mα), then

q ∈ ↑Dα ⊆ ↑Dα+1 because of (2) for stage α. Suppose q 6∈ ↑(Q ∩ Mα). Choose
e ∈ E such that e ≤ q. Then e 6∈ ↑(Q∩Mα); hence, q ∈ ↑(E \↑(Q∩Mα)) ⊆ ↑Dα+1.

It remains only to verify (3) for stage α + 1. Let q ∈ Q ∩Mα+1. Then E ∩ ↑q
is finite; hence, by the definition of Dα+1, it suffices to show that Dα ∩ ↑q is finite.
By Lemma 3.1, there exists r ∈ B ∩Mα such that r ≥ q and Mα ∩ ↑q = Mα ∩ ↑r;
hence, Dα ∩ ↑q = Dα ∩ ↑r. Since q ∈ Q, we have r ∈ Mα ∩ ↑Q. By elementarity,
there exists p ∈ Q ∩ Mα such that p ≤ r; hence, Dα ∩ ↑r ⊆ Dα ∩ ↑p. By (2) for
stage α, we have Dα ∩ ↑p is finite; hence, Dα ∩ ↑q is finite. �

Definition 3.3. For any space X, let Clop(X) denote the boolean algebra of clopen
subsets of X.

Theorem 3.4. Let X be a dyadic compactum and let U be a family of subsets of
X such that for all U ∈ U there exists V ∈ U such that V ∩X \ U = ∅. Then U is
almost ωop-like.

Proof. Let f : 2κ → X be a continuous surjection for some cardinal κ. Set B =
Clop(2κ). Then B is a free boolean algebra. Set V = {f−1U : U ∈ U}. Then it
suffices to show that V is almost ωop-like. Let Q denote the set of all B ∈ B such
that V ⊆ B for some V ∈ V. By Theorem 3.2, Q is almost ωop-like. Hence, by
Lemma 2.21, it suffices to show that Q and V are mutually dense. By definition,
every Q ∈ Q contains some V ∈ V; hence, it suffices to show that every V ∈ V
contains some Q ∈ Q. Suppose V ∈ V. Choose U ∈ U such that U ∩X \ f [V ] = ∅.
Then there exists B ∈ B such that f−1U ⊆ B ⊆ V ; hence, V ⊇ B ∈ Q. �

The following corollary is immediate and it implies the first half of Theorem 1.5.

Corollary 3.5. Let X be a dyadic compactum. Then, for all closed subsets C
of X, every neighborhood base of C contains an ωop-like neighborhood base of C.
Moreover, every π-base of X contains an ωop-like π-base of X.

Remark. The first half of the above corollary can also be proved simply by citing
Theorem 2.19 and Lemma 2.21.

Next we state the natural generalizations of Lemma 3.1, Theorem 3.2, Theo-
rem 3.4, and Corollary 3.5 to continuous images of products of compacta with
bounded weight. We will only remark briefly about the proofs of these generaliza-
tions, for they are easy modifications of the corresponding old proofs.

Lemma 3.6. Let κ be a regular uncountable cardinal and let B be a coproduct∐
i∈I Bi of boolean algebras all of size less than κ; let {B,∧,∨, 〈Bi〉i∈I} ⊆ M ≺ Hθ

and M ∩ κ ∈ κ + 1. Then, for all q ∈ B, there exists r ∈ B ∩M such that, for all
p ∈ B ∩M , we have p ≥ q if and only if p ≥ r. In particular, r ≥ q.
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Proof. Note that the subalgebra B ∩M is the subcoproduct
∐

i∈I∩M Bi naturally
embedded in B. Then proceed as in the proof of Lemma 3.1 with

⋃
i∈I Bi, naturally

embedded in B, playing the role of G. �

Theorem 3.7. Let κ ≥ ω and B be a coproduct of boolean algebras all of size at
most κ. Then every subset of B is almost κop-like.

Proof. The proof is essentially the proof of Theorem 3.2. Instead of using Lemma 3.1,
use the instance of Lemma 3.6 for the regular uncountable cardinal κ+. �

Theorem 3.8. Let κ ≥ ω and let X be Hausdorff and a continuous image of a
product of compacta all of weight at most κ; let U be a family of subsets of X such
that, for all U ∈ U , there exists V ∈ U such that V ∩X \ U = ∅. Then U is almost
κop-like.

Proof. Let h :
∏

i∈I Xi → X be a continuous surjection where each Xi is a com-
pactum with weight at most κ. Each Xi embeds into [0, 1]κ and is therefore a
continuous image of a closed subspace of 2κ. Hence, we may assume

∏
i∈I Xi is

totally disconnected. The rest of the proof is just the proof of Theorem 3.4 with
Theorem 3.7 replacing Theorem 3.2. �

The following corollary is immediate.

Corollary 3.9. Let κ ≥ ω and let X be Hausdorff and a continuous image of a
product of compacta all of weight at most κ. Then, for all closed subsets C of X,
every neighborhood base of C contains a κop-like neighborhood base of C. Moreover,
every π-base of X contains a κop-like π-base of X.

Remark. Again, the first half of the above corollary can also proved simply by citing
Theorem 2.19 and Lemma 2.21.

In contrast to Corollary 3.5, not all dyadic compacta have ωop-like bases. The
following proposition is essentially due to Peregudov (see Lemma 1 of [23]). It
makes it easy to produces examples of dyadic compacta X such that Nt(X) > ω.

Proposition 3.10. Suppose a point p in a space X satisfies πχ(p, X) < cf κ = κ ≤
χ(p, X). Then Nt(X) > κ.

Proof. Let A be a base of X. Let U0 and V0 be, respectively, a local π-base at p
of size at most πχ(p, X) and a local base at p of size χ(p, X). For each element of
U0, choose a subset in A, thereby producing a local π-base U at p that is a subset
of A of size at most πχ(p, X). Similarly, for each element of V0, choose a smaller
neighborhood of p in A, thereby producing a local base V at p that is a subset of A
of size χ(p, X). Every element of V contains an element of U . Hence, some element
of U is contained in κ-many elements of V; hence, A is not κop-like. �

Example 3.11. Let X be the discrete sum of 2ω and 2ω1 . Let Y be the quotient
of X resulting from collapsing a point in 2ω and a point in 2ω1 to a single point p.
Then πχ(p, Y ) = ω and χ(p, Y ) = ω1; hence, Nt(Y ) > ω1.

Question 3.12. Is there a dyadic compactum X such that πχ(p, X) = χ(p, X) for
all p ∈ X but X has no ωop-like base? In particular, if Y is as in Example 3.11 and
Z is the discrete sum of Y and 2ω2 , then does Zω1 have an ωop-like base?



14 DAVID MILOVICH

As we shall see in Theorem 3.21, if we make an additional assumption about
a dyadic compactum X, namely, that all its points have π-character equal to its
weight, then X has an ωop-like base. Also, we may choose this ωop-like base to be
a subset of an arbitrary base of X. To prove this, we approximate such an X by
metric compacta. Each such metric compactum is constructed using the following
technique due to Bandlow [2].

Definition 3.13. Given a space X, let C(X) denote the set of continuous maps
from X to R.

Definition 3.14. Suppose X is a space and F is a set. For all p ∈ X, let p/F
denote the set of q ∈ X satisfying f(p) = f(q) for all f ∈ F ∩ C(X). For each
f ∈ F , define f/F : X/F → R by (f/F)(p/F) = f(p) for all p ∈ X.

Lemma 3.15. Suppose X is a compactum and F ⊆ C(X). Then X/F (with the
quotient topology) is a compactum and its topology is the coarsest topology for which
f/F is continuous for all f ∈ F . Further suppose {X \ f−1{0} : f ∈ F} is a base
of X and F ∈ M ≺ Hθ. Then {(X \ f−1{0})/(F ∩M) : f ∈ F ∩M} is a base of
X/(F ∩M).

Proof. If f ∈ F , then f/F is clearly continuous with respect to the quotient topol-
ogy of X/F . Therefore, the compact quotient topology on X/F is finer than the
Hausdorff topology induced by {f/F : f ∈ F}. If a compact topology T0 is finer
than a Hausdorff topology T1, then T0 = T1. Hence, the quotient topology on X/F
is the topology induced by {f/F : f ∈ F}.

Set A = {X \f−1{0} : f ∈ F}. Suppose A is a base of X and F ∈ M ≺ Hθ. Let
us show that {(X \ f−1{0})/(F ∩M) : f ∈ F ∩M} is a base of X/(F ∩M). Let
U denote the set of preimages of open rational intervals with respect to elements
of F ∩M . Let V denote the set of nonempty finite intersections of elements of U .
Then V ⊆ M and {V/(F∩M) : V ∈ V} is base of X/(F∩M). Suppose p ∈ V0 ∈ V.
Then it suffices to find W ∈ A ∩M such that p ∈ W ⊆ V0. Choose V1 ∈ V such
that p ∈ V1 ⊆ V 1 ⊆ V0. Then there exist n < ω and W0, . . . ,Wn−1 ∈ A such that
V 1 ⊆

⋃
i<n Wi ⊆ V0. By elementarity, we may assume W0, . . . ,Wn−1 ∈ M . Hence,

there exists i < n such that p ∈ Wi ⊆ V0 and Wi ∈ A ∩M . �

To construct an ωop-like base of a suitable dyadic compactum X, we apply
Lemma 2.9 to a family of spaces X/(F ∩M) where F ⊆ C(X) and M ranges over
a transfinite sequence of countable elementary submodels of Hθ. This sequence
is constructed such that, loosely speaking, each submodel in the sequence knows
about the preceding submodels.

Definition 3.16. Let κ be a regular uncountable cardinal and let 〈Hθ, . . .〉 be an
expansion of the {∈}-structure Hθ to an L-structure for some language L of size
less than κ. Then a κ-approximation sequence in 〈Hθ, . . .〉 is an ordinally indexed
sequence 〈Mα〉α<η such that for all α < η we have {κ, 〈Mβ〉β<α} ⊆ Mα ≺ 〈Hθ, . . .〉
and |Mα| ⊆ Mα ∩ κ ∈ κ.

The following lemma is a generalization of a technique of Jackson and Mauldin [13]
of approximating a structure by a tree of elementary substructures.

Lemma 3.17. Let κ and 〈Hθ, . . .〉 be as in Definition 3.16. Then there is a
{κ}-definable map Ψ that sends every κ-approximation sequence 〈Mα〉α<η in 〈Hθ, . . .〉
to a sequence 〈Σα〉α≤η such that we have the following for all α ≤ η.
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(1) Σα is a finite set.
(2) |N | ⊆ N ≺ 〈Hθ, . . .〉 for all N ∈ Σα.
(3)

⋃
Σα =

⋃
β<α Mβ.

(4) If α < η, then Σα ∈ Mα.
(5) Σα is an ∈-chain.
(6) If N0, N1 ∈ Σα and N0 ∈ N1, then |N0| > |N1|.
(7) 〈Σβ〉β≤α = Ψ(〈Mβ〉β<α).

Moreover, |Σλ| = 1 and {α < λ : |Σα| = 1} is closed unbounded in λ for all infinite
cardinals λ ≤ η.

Proof. Let Ω denote the class of 〈γi〉i<n ∈ On<ω \ {∅} for which κ ≤ |γi| > |γj |
for all i < j < n and |γn−1| < κ. Order Ω lexicographically and let Υ be the
order isomorphism from On to Ω. Given any σ = 〈γi〉i<n ∈ On<ω and i < n,
set φi(σ) = 〈γ0, . . . , γi−1, 0〉 and φn(σ) = σ. Let 〈Mα〉α<η be a κ-approximation
sequence in 〈Hθ, . . .〉. For all α ≤ η and i ∈ dom Υ(α), set

Nα,i =
⋃
{Mβ : φi(Υ(α)) ≤ Υ(β) < φi+1(Υ(α))};

set Σα = {Nα,i : i ∈ dom Υ(α)} \ {∅}. Then Ψ is {κ}-definable and it is easily
verified that |Σλ| = 1 and {α < λ : |Σα| = 1} is closed unbounded in λ for all infinite
cardinals λ ≤ η. Let us prove (1)-(7). (1), (3), (4), and (7) immediately follow from
the relevant definitions. Let α ≤ η and 〈βi〉i<n = Υ(α). We may assume n > 0.
For all σ ∈ Ω and i < n − 1, we have φi(Υ(α)) ≤ σ < φi+1(Υ(α)) if and only if σ
is the concatenation of 〈βj〉j<i and some τ ∈ Ω satisfying τ < 〈βi, 0〉. Therefore,
|Nα,i| = |βi| for all i < n− 1. For all σ ∈ Ω, we have φn−1(Υ(α)) ≤ σ < φn(Υ(α))
if and only if σ = 〈β0, . . . , βn−2, γ〉 for some γ < βn−1. Hence, |Nα,n−1| < κ; hence,
|Nα,i| > |Nα,j | for all i < j < n. Let Υ(αi) = φi(Υ(α)) for all i < n. If i < j < n,
then {Nα,k : k < j} = Σαj−1 ; whence, either Nα,j = ∅ or Nα,i ∈ Mαj−1 ⊆ Nα,j ,
depending on whether βj = 0. Thus, (5) and (6) hold.

Finally, let us prove (2). Proceed by induction on α. Suppose βn−1 > 0. Since
{Nα,i : i < n−1} = Σαn−1 and αn−1+βn−1 = α, it suffices to show that |Nα,n−1| ⊆
Nα,n−1 ≺ 〈Hθ, . . .〉. If βn−1 ∈ Lim, then Nα,n−1 is the union of the ∈-chain
〈Nαn−1+γ,n−1〉γ<βn−1 ; hence, |Nα,n−1| ⊆ Nα,n−1 ≺ 〈Hθ, . . .〉. If βn−1 6∈ Lim, then
Nα,n−1 = Nα−1,n−1 ∪Mα−1 = Mα−1 because Nα−1,n−1 ∈ Mα−1 and |Nα−1,n−1| <
κ; hence, |Nα,n−1| ⊆ Nα,n−1 ≺ 〈Hθ, . . .〉.

Therefore, we may assume βn−1 = 0. Hence, Σα = {Nα,i : i < n− 1}; hence, we
may assume n > 1. Since {Nα,i : i < n − 2} = Σαn−2 and αn−2 < α, it suffices to
show that |Nα,n−2| ⊆ Nα,n−2 ≺ 〈Hθ, . . .〉. If βn−2 = κ, then Nα,n−2 is the union
of the ∈-chain 〈Nαn−2+γ,n−2〉γ<κ; hence, |Nα,n−2| ⊆ Nα,n−2 ≺ 〈Hθ, . . .〉. Hence,
we may assume βn−2 > κ. Let Υ(δγ) = 〈β0, . . . , βn−3, γ, 0〉 for all γ ∈ [κ, βn−2).
If βn−2 ∈ Lim, then Nα,n−2 is the union of the ∈-chain 〈Nδγ ,n−2〉κ≤γ<βn−2 ; hence,
|Nα,n−2| ⊆ Nα,n−2 ≺ 〈Hθ, . . .〉. Hence, we may let βn−2 = ε + 1. Suppose |ε| = κ.
Then Nα,n−2 = Nδε,n−2 ∪

⋃
γ<κ Mδε+γ . If γ < κ, then φn−1(Υ(δε + γ)) = Υ(δε);

whence, δε and γ are definable from δε+γ and κ; whence, γ∪
⋃

ρ<γ Mδε+ρ ⊆ Mδε+γ .
Hence, |Nδε,n−2| = κ ⊆

⋃
γ<κ Mδε+γ ≺ 〈Hθ, . . .〉. Moreover, since Nδε,n−2 ∈ Mδε ,

we have Nδε,n−2 ⊆
⋃

γ<κ Mδε+γ ; hence, |Nα,n−2| = κ ⊆ Nα,n−2 ≺ 〈Hθ, . . .〉.
Therefore, we may assume |ε| > κ. Let Υ(ζγ) = 〈β0, . . . , βn−3, ε, κ + γ, 0〉

for all γ < |ε|. Then Nα,n−2 = Nδε,n−2 ∪
⋃

γ<|ε| Nζγ ,n−1. If γ < |ε|, then
Υ(ζγ)(n−1) = κ+γ; whence, γ ∈ Mζγ ⊆ Nζγ+1,n−1. Hence, |ε| ⊆

⋃
γ<|ε| Nζγ ,n−1 ≺
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〈Hθ, . . .〉. Since |Nδε,n−2| = |ε| and Nδε,n−2 ∈ Mδε ⊆ Nζ0,n−1, we have Nδε,n−2 ⊆⋃
γ<|ε| Nζγ ,n−1. Hence, |Nα,n−2| = |ε| ⊆ Nα,n−2 ≺ 〈Hθ, . . .〉. �

Proposition 3.18. If X is a topological space, then every base of X contains a
base of size at most w(X).

Proof. Let A be an arbitrary base of X; let B be a base of X of size at most w(X).
Since X is hereditarily w(X)+-compact, we may choose, for each U ∈ B, some
AU ∈ [A]≤w(X) such that U =

⋃
AU . Then

⋃
{AU : U ∈ B} is a base of X and in

[A]≤w(X). �

Lemma 3.19. Let X be a dyadic compactum such that πχ(p, X) = w(X) for all
p ∈ X. Let A be a base of X consisting only of cozero sets. Then A contains an
ωop-like base of X.

Proof. Set κ = w(X); by Proposition 3.18, we may assume |A| = κ. Choose
F ⊆ C(X) such that A = {X \ g−1{0} : g ∈ F}. Let h : 2λ → X be a continuous
surjection for some cardinal λ. Let B be the free boolean algebra Clop(2λ). By
Lemma 2.9, we may assume κ > ω. Let 〈Mα〉α<κ be an ω1-approximation sequence
in 〈Hθ,∈,F , h〉; set 〈Σα〉α≤κ = Ψ(〈Mα〉α<κ) as defined in Lemma 3.17.

For each α < κ, set Aα = A ∩Mα and Fα = F ∩Mα. For every H ⊆ Aα, let
H/Fα denote {U/Fα : U ∈ H}. By Lemma 3.15, Aα/Fα is a base of X/Fα. Since
X/Fα is a metric compactum, there exists Wα ⊆ Aα such that Wα/Fα is a base
of X/Fα satisfying (2), (3), and (4) of Lemma 2.9. By (2) of Lemma 2.9, we may
choose, for each U ∈ Wα, some Eα,U ∈ B ∩Mα such that h−1U ⊆ Eα,U ⊆ h−1V

for all V ∈ Wα satisfying U ⊆ V . Set Gα = {Eα,U : U ∈ Wα}.
Suppose Gα is not ωop-like. Then there exist U ∈ Wα and 〈Vn〉n<ω ∈ Wω

α such
that Eα,U ( Eα,Vn

6= Eα,Vm
for all m < n < ω. Set Γ = {W ∈ Wα : U ( W}.

By (2) of Lemma 2.9, Γ is finite; hence, by (4) of Lemma 2.9, there exists n < ω
such that {W ∈ Wα : Vn ( W} 6⊆ Γ. Hence, there exists W ∈ Wα such that W
strictly contains Vn but not U . Hence, by (3) of Lemma 2.9, Eα,Vn ⊆ h−1W ; hence,
h−1U ⊆ Eα,U ( Eα,Vn ⊆ h−1W ; hence, U ( W , which is absurd. Therefore, Gα is
ωop-like.

Let Vα denote the set of V ∈ Wα satisfying U 6⊆ V for all nonempty open U ∈⋃
Σα. Let us show that Vα/Fα is a base of X/Fα. If V ∈ Vα, then P(V )∩Wα ⊆ Vα;

hence, it suffices to show that Vα covers X. Since |
⋃

Σα| < κ, every point of X
has a neighborhood in A that does not contain any nonempty open subset of X in⋃

Σα. By compactness, there is cover of X by finitely many such neighborhoods,
say, W0, . . . ,Wn−1. By elementarity, we may assume W0, . . . ,Wn−1 ∈ Aα. Then
{Wi : i < n} has a refining cover S ⊆ Wα. Hence, S ⊆ Vα; hence, Vα covers X as
desired.

Let Uα denote the set of U ∈ Vα such that U ⊆ V for some V ∈ Vα. Then
Uα/Fα is clearly a base of X/Fα. Set Eα = {Eα,U : U ∈ Uα}. Then Eα is ωop-like
because it is a subset of Gα.

For all I ⊆ P(2κ), set ↑I = {H ⊆ 2κ : H ⊇ I for some I ∈ I}. For all H ⊆ 2κ,
set ↑H = ↑{H}. Set U =

⋃
α<κ Uα and C = B ∩ ↑{h−1U : U ∈ U}. For all α ≤ κ,

set Dα =
⋃

β<α Eβ . Then we claim the following for all α ≤ κ.

(1) Dα is a dense subset of C ∩
⋃

Σα.
(2) Dα ∩ ↑H is finite for all H ∈ C ∩

⋃
Σα.

(3) If α < κ, then Dα+1 ∩ ↑H = Dα ∩ ↑H for all H ∈ C ∩
⋃

Σα.
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We prove this claim by induction. For stage 0, the claim is vacuous. For limit
stages, (1) is clearly preserved, and (2) is preserved because of (3). Suppose α < κ
and (1) and (2) hold for stage α. Then it suffices to prove (3) for stage α and to
prove (1) and (2) for stage α + 1.

Let us verify (3). Seeking a contradiction, suppose H ∈ C ∩
⋃

Σα and Dα+1 ∩
↑H 6= Dα∩↑H. Then Eα∩↑H 6= ∅; hence, there exists U ∈ Uα such that H ⊆ Eα,U .
By (1), there exist β < α and W ∈ Uβ such that Eβ,W ⊆ H. By definition, there
exists V ∈ Vα such that U ⊆ V . Hence, h−1W ⊆ Eβ,W ⊆ H ⊆ Eα,U ⊆ h−1V ;
hence, W ⊆ V . Since W ∈ Mβ ⊆

⋃
Σα and V ∈ Vα, we have W 6⊆ V , which yields

our desired contradiction.
Let us verify (1) for stage α + 1. By (1) for stage α, we have

Dα+1 = Dα ∪ Eα ⊆
(
C ∩

⋃
Σα

)
∪ (C ∩Mα) = C ∩

⋃
Σα+1,

so we just need to show denseness. Let H ∈ C ∩
⋃

Σα+1. If H ∈
⋃

Σα, then
H ∈ ↑Dα, so we may assume H ∈ Mα. By elementarity, there exists U0 ∈ Uα such
that h−1U0 ⊆ H. Choose U1 ∈ Uα such that U1 ⊆ U0. Then Eα,U1 ⊆ h−1U0;
hence, Eα,U1 ⊆ H. Hence, H ∈ ↑Dα+1.

To complete the proof of the claim, let us verify (2) for stage α + 1. By (1)
for stage α + 1, it suffices to prove Dα+1 ∩ ↑H is finite for all H ∈ Dα+1. By (3),
if H ∈ Dα, then Dα+1 ∩ ↑H = Dα ∩ ↑H, which is finite by (1) and (2) for stage
α. Hence, we may assume H ∈ Eα. Since Eα is ωop-like, it suffices to show that
Dα ∩ ↑H is finite. Since Dα ⊆

⋃
Σα, it suffices to show that Dα ∩N ∩ ↑H is finite

for all N ∈ Σα. Let N ∈ Σα. By Lemma 3.1, there exists G ∈ B ∩ N such that
G ⊇ H and B ∩N ∩ ↑H = B ∩N ∩ ↑G; hence, Dα ∩N ∩ ↑H = Dα ∩N ∩ ↑G. Since
G ⊇ H ∈ C, we have G ∈ C. By (2) for stage α, the set Dα ∩ N ∩ ↑G is finite;
hence, Dα ∩N ∩ ↑H is finite.

Since U ⊆ A, it suffices to prove that U is an ωop-like base of X. Suppose
p ∈ V ∈ A. Then there exists α < κ such that V ∈ Aα. Hence, there exists U ∈ Uα

such that p/Fα ∈ U/Fα ⊆ V/Fα; hence, p ∈ U ⊆ V . Thus, U is a base of X.
Let us show that U is ωop-like. Suppose not. Then there exists α < κ and

U0 ∈ Uα such that there exist infinitely many V ∈ U such that U0 ⊆ V . Choose
U1 ∈ Uα such that U1 ⊆ U0. Suppose β < κ and U0 ⊆ V ∈ Uβ . Then Eα,U1 ⊆
h−1U0 ⊆ h−1V ⊆ Eβ,V . By (1) and (2), Dκ is ωop-like; hence, there are only
finitely many possible values for Eβ,V . Therefore, there exist 〈γn〉n<ω ∈ κω and
〈Vn〉n<ω ∈

∏
n<ω Uγn such that Vm 6= Vn and Eγm,Vm = Eγn,Vn for all m < n < ω.

Suppose that for some δ < κ we have γn = δ for all n < ω. Let i < ω and set
Γ = {W ∈ Wδ : Vi ( W}. By (2) and (4) of Lemma 2.9, there exists j < ω such
that {W ∈ Wδ : Vj ( W} 6⊆ Γ. Hence, there exists W ∈ Wδ such that W strictly
contains Vj but not Vi. By (3) of Lemma 2.9, V j ⊆ W . Hence, h−1V i ⊆ Eδ,Vi

=
Eδ,Vj ⊆ h−1W . Hence, V i ⊆ W . Since W does not strictly contain Vi, we must
have Vi = V i = W . Hence, h−1Vi = Eδ,Vi = Eδ,V0 . Since i was arbitrary chosen,
we have Vm = Vn = h[Eδ,V0 ] for all m,n < ω, which is absurd. Therefore, our
supposed δ does not exist; hence, we may assume γ0 < γ1. By definition, there
exists W ∈ Vγ1 such that V 1 ⊆ W . Therefore, h−1V0 ⊆ Eγ0,V0 = Eγ1,V1 ⊆ h−1W ;
hence, V0 ⊆ W . Since V0 ∈ Mγ0 ⊆

⋃
Σγ1 and W ∈ Vγ1 , we have V0 6⊆ W , which is

absurd. Therefore, U is ωop-like. �
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Let us show that we may remove the requirement that the base A in Lemma 3.19
consist only of cozero sets.

Lemma 3.20. Suppose X is a space with no isolated points and χ(p, X) = w(X)
for all p ∈ X. Further suppose κ = cf κ ≤ min{Nt(X), w(X)} and X has a network
consisting of at most w(X)-many κ-compact sets. Then every base of X contains
an Nt(X)op-like base of X.

Proof. Set λ = Nt(X) and µ = w(X). Let A be an arbitrary base of X; let B
be a λop-like base of X; let N be a network of X consisting of at most µ-many
κ-compact sets. By Proposition 3.18, we may assume |B| = µ. Let 〈〈Nα, Bα〉〉α<µ

enumerate {〈N,B〉 ∈ N × B : N ⊆ B}. Construct a sequence 〈Gα〉α<µ as follows.
Suppose α < µ and 〈Gβ〉β<α is a sequence of elements of [B]<κ. For each p ∈ Nα,
we have χ(p, X) = µ ≥ κ = cf κ; hence, we may choose Uα,p ∈ B such that
p ∈ Uα,p 6∈

⋃
β<α Gβ . Choose σα ∈

[
Nα

]<κ such that Nα ⊆
⋃

p∈σα
Uα,p. Set

Gα = {Uα,p : p ∈ σα}.
For each α < µ, choose Fα ∈ [A]<κ such that Nα ⊆

⋃
Fα ⊆ Bα and Fα refines

Gα. Set F =
⋃

α<µ Fα, which is easily seen to be a base of X. Let us show that F
is λop-like. Suppose not. Then, since κ = cf κ ≤ λ, there exist V ∈ F , I ∈ [µ]λ, and
〈Wα〉α∈I ∈

∏
α∈I Fα such that V ⊆

⋂
α∈I Wα. For each α ∈ I, there is a superset

of Wα in Gα. By induction, Gα ∩ Gβ = ∅ for all α < β < µ; hence, V has λ-many
supersets in the λop-like base B, which is absurd, for V has a subset in B. �

Remark. If X is regular and locally κ-compact and κ ≤ w(X), then it is easily seen
that X has a network consisting of at most w(X)-many κ-compact sets.

Theorem 3.21. Let X be a dyadic compactum such that πχ(p, X) = w(X) for all
p ∈ X. Then every base A of X contains an ωop-like base of X.

Proof. By Lemma 3.19, Nt(X) = ω. Since w(X) = πχ(p, X) ≤ χ(p, X) ≤ w(X)
for all p ∈ X, we may apply Lemma 3.20 to get a subset of A that is an ωop-like
base of X. �

Finally, let us prove the second half of Theorem 1.5.

Corollary 3.22. Let X be a homogeneous dyadic compactum with base A. Then
A contains an ωop-like base of X.

Proof. Efimov [6] and Gerlits [9] independently proved that the π-character of every
dyadic compactum is equal to its weight. Since X is homogeneous, πχ(p, X) =
w(X) for all p ∈ X. Hence, A contains an ωop-like base of X by Theorem 3.21. �

Note that a compactum is dyadic if and only if it a continous image of a product
of second countable compacta. Let us prove generalizations of Theorem 3.21 and
Corollary 3.22 about continuous images of products of compacta with bounded
weight.

Lemma 3.23. Suppose κ = cf κ > ω and X is a space such that πχ(p, X) =
w(X) ≥ κ for all p ∈ X. Further suppose X has a network consisting of at most
w(X)-many κ-compact closed sets. Then every base of X contains a w(X)op-like
base of X.
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Proof. Set λ = w(X) and let A be an arbitrary base of X. By Proposition 3.18,
we may assume |A| = λ. Let N be a network of X consisting of at most λ-many
κ-compact sets. Let 〈Mα〉α<λ be a continuous elementary chain such that for all
α < λ we have A,N ,Mα ∈ Mα+1 ≺ Hθ. We may also require that Mα ∩ κ ∈ κ >
|Mα| for all α < κ and |Mα| = |κ + α| for all α ∈ λ \ κ. For each α < λ, set
Aα = A ∩Mα. Set B =

⋃
α<λAα+1 \ ↑Aα, which is clearly λop-like. Let us show

that B is a base of X. Suppose p ∈ U ∈ A. Choose N ∈ N such that p ∈ N ⊆ U .
Choose α < λ such that N,U ∈ Aα+1. For each q ∈ N , choose Vq ∈ A \ ↑Aα

such that q ∈ Vq ⊆ U . Then there exists σ ∈ [N ]<κ such that N ⊆
⋃

q∈σ Vq. By
elementarity, we may assume 〈Vq〉q∈σ ∈ Mα+1. Choose q ∈ σ such that p ∈ Vq.
Then Vq ∈ B and p ∈ Vq ⊆ U . Thus, B is a base of X. �

Theorem 3.24. Let κ ≥ ω and let X be Hausdorff and a continuous image of a
product of compacta each with weight at most κ. Suppose πχ(p, X) = w(X) for all
p ∈ X. Then every base of X contains a κop-like base.

Proof. Let h :
∏

i∈I Xi → X be a continuous surjection where each Xi is a com-
pactum with weight at most κ. Each Xi embeds into [0, 1]κ and is therefore a
continuous image of a closed subspace of 2κ. Hence, we may assume

∏
i∈I Xi is to-

tally disconnected. Set λ = w(X); by Lemmas 2.9 and 3.23, we may assume λ > κ.
By Theorem 3.21, we may assume κ > ω. Inductively construct a κ+-approximation
sequence 〈Mα〉α<λ in 〈Hθ,∈, C(X), h, 〈Clop(Xi)〉i∈I〉 as follows. For each α < λ,
let 〈Nα,β〉β<κ be an ω1-approximation sequence in

〈Hθ,∈, C(X), h, κ, 〈Clop(Xi)〉i∈I , 〈Mβ〉β<α〉.

Set 〈Γα,β〉β≤κ = Ψ(〈Nα,β〉β<κ) as defined in Lemma 3.17; let {Mα} = Γα,κ. Set
〈Σα〉α≤λ = Ψ(〈Mα〉α<λ). Set F = C(X) ∩

⋃
Σλ and A = {X \ f−1{0} : f ∈ F}.

Then A is a base of X. By Lemma 3.20, it suffices to construct a subset of A that
is a κop-like base of X.

For each α < λ, set Fα = F ∩ Mα. Let Vα denote the set of V ∈ A ∩ Mα

satisfying U 6⊆ V for all nonempty open U ∈
⋃

Σα. Arguing as in the proof
Lemma 3.19, Vα/Fα is a base of X/Fα. For each β < κ, let Vα,β denote the set
of all V ∈ Vα ∩ Nα,β satisfying U 6⊆ V for all nonempty open U ∈

⋃
Γα,β . Let

Rα,β denote the set of 〈U, V 〉 ∈ V2
α,β for which U ⊆ V ; set Uα,β = domRα,β ; set

Uα =
⋃

β<κ Uα,β .
Let us show that Uα/Fα is also a base of X/Fα. Suppose p ∈ V ∈ Vα. Extend

{V } to a finite subcover σ of Vα such that p 6∈
⋃

(σ \{V }). Choose β < κ such that
σ ∈ Nα,β . For each q ∈ X, choose Vq,0, Vq,1 ∈ A such that q ∈ Vq,0 and there exists
W ∈ σ such that U 6⊆ V q,0 ⊆ Vq,1 ⊆ W for all nonempty open U ∈

⋃
Σα ∪

⋃
Γα,β .

Choose τ ∈ [X]<ω such that X =
⋃

q∈τ Vq,0. By elementarity, we may assume
〈Vq,i〉〈q,i〉∈τ×2 ∈ Nα,β . Choose q ∈ τ such that p ∈ Vq,0. Then Vq,0 ∈ Uα,β and
p ∈ Vq,0 ⊆ V . Thus, Uα/Fα is a base of X/Fα.

Set B = Clop
(∏

i∈I Xi

)
. For each 〈U0, U1〉 ∈

⋃
β<κRα,β , choose Eα(U0, U1) ∈

B ∩ Mα such that h−1U0 ⊆ Eα(U0, U1) ⊆ h−1U1. Set Eα,β = Eα[Rα,β ]. Set
Eα =

⋃
β<κ Eα,β . Let us show that Eα is κop-like. Suppose β, γ < κ and Eα,β 3 H ⊆

K ∈ Eα,γ . Then it suffices to show that γ ≤ β. Seeking a contradiction, suppose
β < γ. There exist 〈U0, U1〉 ∈ Rα,β and 〈V0, V1〉 ∈ Rα,γ such that H = Eα(U0, U1)
and K = Eα(V0, V1). Hence,

⋃
Γα,γ 3 U0 ⊆ V1 ∈ Vα,γ , in contradiction with the

definition of Vα,γ .
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Set U =
⋃

α<λ Uα and C = B ∩ ↑{h−1U : U ∈ U}. For all α ≤ λ, set Dα =⋃
β<α Eβ . Then we claim the following for all α ≤ λ.

(1) Dα is a dense subset of C ∩
⋃

Σα.
(2) |Dα ∩ ↑H| < κ for all H ∈ C ∩

⋃
Σα.

(3) If α < λ, then Dα+1 ∩ ↑H = Dα ∩ ↑H for all H ∈ C ∩
⋃

Σα.

We prove this claim by induction. For stage 0, the claim is vacuous. For limit
stages, (1) is clearly preserved, and (2) is preserved because of (3). Suppose α < κ
and (1) and (2) hold for stage α. Then it suffices to prove (3) for stage α and to
prove (1) and (2) for stage α + 1.

Let us verify (3). Seeking a contradiction, suppose H ∈ C ∩
⋃

Σα and Dα+1 ∩
↑H 6= Dα∩↑H. Then Eα∩↑H 6= ∅; hence, there exists V ∈ Uα such that H ⊆ h−1V .
By (1), there exist β < α and U ∈ Uβ and K ∈ Eβ such that h−1U ⊆ K ⊆ H.
Hence, U ⊆ V . Since U ∈ Mβ ⊆

⋃
Σα and V ∈ Vα, we have U 6⊆ V , which yields

our desired contradiction.
Let us verify (1) for stage α + 1. By (1) for stage α, we have

Dα+1 = Dα ∪ Eα ⊆
(
C ∩

⋃
Σα

)
∪ (C ∩Mα) = C ∩

⋃
Σα+1,

so we just need to show denseness. Let H ∈ C ∩
⋃

Σα+1. If H ∈
⋃

Σα, then
H ∈ ↑Dα, so we may assume H ∈ Mα. By elementarity, there exists U ∈ Uα such
that h−1U ⊆ H. Choose β < κ such that U ∈ Uα,β ; choose V ∈ Uα,β such that
V ⊆ U . Then Eα(V,U) ⊆ H; hence, H ∈ ↑Dα+1.

The proof of the claim is completed by noting that (2) for stage α + 1 can be
verfied just as in the proof of Lemma 3.19, except that Lemma 3.6 is used in place
of Lemma 3.1.

Just as in the proof of Lemma 3.19, U is a base of X; hence, it suffices to show that
U is κop-like. Suppose γ < λ and δ < κ and U ∈ Uγ,δ and 〈〈ζα, ηα〉〉α<κ ∈ (λ× κ)κ

and 〈Wα〉α<κ ∈
∏

α<κ Uζα,ηα and U ⊆
⋂

α<κ Wα. Then it suffices to show that
Wα = Wβ for some α < β < κ. Choose V ∈ Uγ,δ such that V ⊆ U . For each
α < κ, choose Vα ∈ Vζα,ηα

such that Wα ⊆ Vα; set Hα = Eζα
(Wα, Vα). Then

Eγ(V,U) ⊆
⋂

α<κ Hα. By (1) and (2), Dλ is κop-like; hence, there exists J ∈ [κ]ω1

such that Hα = Hβ for all α, β ∈ J ; hence, Wα ⊆ Vβ for all α, β ∈ J . If α, β ∈ J
and ζα < ζβ , then

⋃
Σζβ

3 Wα ⊆ Vβ , in contradiction with Vβ ∈ Vζβ
. Hence,

ζα = ζβ for all α, β ∈ J . If α, β ∈ J and ηα < ηβ , then
⋃

Γζβ ,ηβ
3 Wα ⊆ Vβ ,

in contradiction with Vβ ∈ Vζβ ,ηβ
. Hence, ηα = ηβ for all α, β ∈ J . Hence,

{Wα : α ∈ J} ⊆ Nζmin J ,ηmin J
; hence, Wα = Wβ for some α < β < κ. �

Lemma 3.25. Let κ be an uncountable regular cardinal; let X be a compactum
such that w(X) ≥ κ and X is a continuous image of a product of compacta each
with weight less than κ. Then π(X) = w(X).

Proof. It suffices to prove that π(X) ≥ κ. Seeking a contradiction, suppose A is
a π-base of X of size less than κ. Let 〈Xi〉i∈I be a sequence of compacta each
with weight less than κ and let h be a continuous surjection from

∏
i∈I Xi to X.

Choose M ≺ Hθ such that A∪{C(X), h, 〈C(Xi)〉i∈I} ⊆ M and |M | = |A|. Choose
p ∈ M ∩

∏
i∈I Xi and set Y = {q ∈

∏
i∈I Xi : p � (I \ M) = q � (I \ M)}.

Then it suffices to show that h[Y ] = X, for that implies κ ≤ w(X) ≤ w(Y ) < κ.
Seeking a contradiction, suppose h[Y ] 6= X. Then there exists U ∈ A such that
U ∩ h[Y ] = ∅. By elementarity, there exists σ ∈ [I ∩M ]<ω and 〈Vi〉i∈σ such that
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Vi is a nonempty open subset of Xi for all i ∈ σ, and
⋂

i∈σ π−1
i Vi ⊆ h−1U . Hence,

Y ∩
⋂

i∈σ π−1
i Vi 6= ∅, in contradiction with U ∩ h[Y ] = ∅. �

Definition 3.26. Given any cardinal κ, set log κ = min{λ : 2λ ≥ κ}.

Lemma 3.27. Let κ be an uncountable regular cardinal; let X be a compactum
such that w(X) ≥ κ and X is a continuous image of a product of compacta each
with weight less than κ. Then πχ(X) = w(X).

Proof. Let 〈Xi〉i∈I be a sequence of compacta each with weight less than κ and
let h be a continuous surjection from

∏
i∈I Xi to X. For any space Y , we have

π(Y ) = πχ(Y )d(Y ). Hence, w(X) = π(X) = πχ(X)d(X) by Lemma 3.25; hence,
we may assume d(X) = w(X). Arguing as in the proof of Lemma 3.25, if A is a
π-base of X and A ∪ {C(X), h, 〈C(Xi)〉i∈I} ⊆ M ≺ Hθ, then X is a continuous
image of

∏
i∈I∩M Xi; hence, we may assume |I| = π(X). By 5.5 of [14], d(X) ≤

d(
∏

i∈I Xi) ≤ κ · log|I|. By 2.37 of [14], d(Y ) ≤ πχ(Y )c(Y ) for all T3 non-discrete
spaces Y . Since κ is a caliber of Xi for all i ∈ I, it is also a caliber of X; hence,
|I| = π(X) = d(X) ≤ πχ(X)κ; hence, log|I| ≤ κ · πχ(X). Therefore, w(X) =
d(X) ≤ κ · πχ(X); hence, we may assume w(X) = κ.

Let 〈Uα〉α<κ enumerate a base of X. For each α < κ, choose pα ∈ Uα. Since
d(X) = w(X) = κ, there is no α < κ such that {pβ : β < α} is dense in X. Since κ

is a caliber of X, we may choose p ∈ X \
⋃

α<κ {pβ : β < α}. It suffices to show that
πχ(p, X) = κ. Seeking a contradiction, suppose πχ(p, X) < κ. Then there exists
α < κ such that {Uβ : β < α} contains a local π-base at p; hence, p ∈ {pβ : β < α},
in contradiction with how we chose p. �

Theorem 3.28. Let 〈Xi〉i∈I be a sequence of compacta; let X be a homogeneous
compactum; let h :

∏
i∈I Xi → X be a continuous surjection. If there is a regular

cardinal κ such that w(Xi) < κ ≤ w(X) for all i ∈ I, then every base of X contains
a (supi∈I w(Xi))op-like base. Otherwise, w(X) ≤ supi∈I w(Xi) and every base of
X trivially contains a (w(X)+)op-like base.

Proof. The latter case is a trivial application of Proposition 3.18. In the former
case, Lemma 3.27 implies πχ(p, X) = w(X) for all p ∈ X; apply Theorem 3.24. �

Every known homogeneous compactum is a continuous image of a product of
compacta each with weight at most c; hence, Theorem 3.28 provides a uniform
justification for our observation that all known homogeneous compacta have Noe-
therian type at most c+. Analogously, since every known homogeneous compactum
is such a continuous image, it has c+ among its calibers; hence, it has cellularity at
most c.

Let us now turn to the spectrum of Noetherian types of dyadic compacta and a
proof of Theorem 1.6.

Theorem 3.29. Let κ and λ be infinite cardinals such that λ < κ. Let X be the
discrete sum of 2κ and 2λ. Let Y be the quotient space induced by collapsing 〈0〉α<κ

and 〈0〉α<λ to a single point p. If λ < cf κ, then Nt(Y ) = κ+. If λ ≥ cf κ, then
Nt(Y ) = κ.

Proof. Clearly χ(p, Y ) = κ and πχ(p, Y ) = λ. Hence, if λ < cf κ, then κ+ ≤
Nt(Y ) ≤ w(Y )+ = κ+ by Proposition 3.10. Suppose λ ≥ cf κ. We still have
κ ≤ Nt(Y ) by Proposition 3.10, so it suffices to construct a κop-like base of Y . Let
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∼ be the equivalence relation such that Y = X/∼. In building a base of Y , we
proceed in the canonical way when away from p: for each µ ∈ {κ, λ}, set

Aµ = {{x ∈ 2µ : η ⊆ x}/∼ : η ∈ Fn(µ, 2) and η−1{1} 6= ∅}.

Choose f0 : κ → cf κ such that for all α < cf κ the preimage f−1
0 {α} is bounded

in κ. Define f : [κ]<ω → cf κ by f(σ) = f0(supσ) for all σ ∈ [κ]<ω. Choose
g0 : λ → cf κ such that for all α < cf κ the preimage g−1

0 {α} is unbounded in λ.
Define g : [λ]<ω → cf κ by g(σ) = g0(supσ) for all σ ∈ [λ]<ω. Set

Ap =
⋃

α<cf κ

{(
{x ∈ 2κ : x[σ] = {0}} ∪ {x ∈ 2λ : x[τ ] = {0}}

)
/∼ :

〈σ, τ〉 ∈ f−1{α} × g−1{α}
}

.

Set A = Aκ ∪ Aλ ∪ Ap. Let us show that A is a κop-like base of Y . The only
nontrivial aspect of showing that A is a base of Y is verifying that Ap is a local
base at p. Suppose U is an open neighborhood of p. Then there exist σ ∈ [κ]<ω

and τ ∈ [λ]<ω such that(
{x ∈ 2κ : x[σ] = {0}} ∪ {x ∈ 2λ : x[τ ] = {0}}

)
/∼⊆ U.

Choose α < λ such that sup τ < α and g0(α) = f(σ). Set τ ′ = τ ∪ {α} and

V =
(
{x ∈ 2κ : x[σ] = {0}} ∪ {x ∈ 2λ : x[τ ′] = {0}}

)
/∼ .

Then V ⊆ U and V ∈ Ap because f(σ) = g(τ ′). Thus, A is a base of Y .
Let us show that A is κop-like. Suppose U, V ∈ A and U ⊆ V . If U ∈ Aκ,

then, fixing U , there are only finitely possibilities for V in Aκ; the same is true
if κ is replaced by λ or p. Hence, we may assume U ∈ Ai and V ∈ Aj for some
{i, j} ∈ [{κ, λ, p}]2. Since no element of Ap is a subset of an element of Aκ ∪ Aλ,
we have i 6= p. Hence, there exists η ∈ Fn(i, 2) such that U = {x ∈ 2i : η ⊆ x}/∼.
Since

⋃
Aκ ∩

⋃
Aλ = ∅, we have j = p. Hence, there exist σ ∈ [κ]<ω and τ ∈ [λ]<ω

such that

V =
(
{x ∈ 2κ : x[σ] = {0}} ∪ {x ∈ 2λ : x[τ ] = {0}}

)
/∼ .

If i = κ, then σ ⊆ η−1{0}; hence, fixing U , there are only finitely many pos-
sibilities for σ, and at most λ-many possibilities for τ . If i = λ, then τ ⊆
η−1{0}; hence, fixing U , there are only finitely many possibilities for τ , and at
most |sup f−1

0 {g(τ)}|<ω-many possibilities for σ given τ . Thus, there are fewer
than κ-many possibilities for V given U . Thus, A is κop-like. �

Corollary 3.30. If κ is a cardinal of uncountable cofinality, then there is a totally
disconnected dyadic compactum with Noetherian type κ+. If κ is a singular cardinal,
then there is a totally disconnected dyadic compactum with Noetherian type κ.

Proof. For the first case, apply Theorem 3.29 with λ = ω. For the second case,
apply Theorem 3.29 with λ = cf κ. �

Combining the above corollary with the following theorem (and a trivial example
like Nt(2ω) = ω) immediately proves Theorem 1.6.

Theorem 3.31. Let X be a dyadic compactum with base A consisting only of
cozero sets. If Nt(X) ≤ ω1, then A contains an ωop-like base of X. Hence, no
dyadic compactum has Noetherian type ω1.
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Proof. Let Q be an ωop
1 -like base of X of size w(X). Import all the notation

from the proof of Lemma 3.19 verbatim, except that we require 〈Mα〉α<κ to be
an ω1-approximation sequence in 〈Hθ,∈,F , h,Q〉. Then U is an ωop-like subset of
A as before. On the other hand, Vα/Fα is not necessarily a base of X/Fα for all
α < κ. However, we will show that U is still a base of X. In doing so, we will
repeatedly use the fact that if U,Q ∈ M ≺ Hθ and U is a nonempty open subset of
X, then all supersets of U in Q are in M because {V ∈ Q : U ⊆ V } is a countable
element of M .

Suppose q ∈ Q ∈ Q. Then it suffices to find U ∈ U such that q ∈ U ⊆ Q.
Let β be the least α < κ such that there exists A ∈ Aα satisfying q ∈ A ⊆ A ⊆
Q. Fix such an A ∈ Aβ . For each p ∈ A, choose 〈Ap, Qp〉 ∈ A × Q such that
p ∈ Ap ⊆ Qp ⊆ Qp ⊆ Q. Since Mβ 3 A ⊆ Q ∈ Q, we have Q ∈ Mβ . Hence, by
elementarity, we may assume there exists σ ∈

[
A
]<ω such that 〈〈Ap, Qp〉〉p∈σ ∈ Mβ

and A ⊆
⋃

p∈σ Ap. Choose p ∈ σ such that q ∈ Ap. Suppose Qp 6∈
⋃

Σβ . Then
all nonempty open subsets of Qp are also not in

⋃
Σβ ; hence, there exist U ∈ Uβ

and V ∈ Vβ such that q/Fβ ⊆ U ⊆ V ⊆ Ap ⊆ Q. Therefore, we may assume
Qp ∈

⋃
Σβ .

Choose α < β such that Qp ∈ Mα. Then Q ∈ Mα because Qp ⊆ Q. Hence,
there exists τ ∈ [Aα]<ω such that Qp ⊆

⋃
τ ⊆

⋃
τ ⊆ Q. Choose W ∈ τ such that

q ∈ W . Then q ∈ W ⊆ W ⊆ Q, in contradiction with the minimality of β. Thus,
U is a base of X. �

Question 3.32. If κ is an singular cardinal with cofinality ω, then is there a dyadic
compactum with Noetherian type κ+? Is there a dyadic compactum with weakly
inaccessible Noetherian type?

We note that the spectrum of Noetherian types of all compacta is trivial.

Theorem 3.33. Let κ be a regular uncountable cardinal. Then there exists a totally
disconnected compactum X such that Nt(X) = κ and X has a Pκ-point.

Proof. Let X be the closed subspace of 2κ consisting of all f ∈ 2κ for which f(α) = 0
or f [α] = {1} for all odd α < κ. First, let us show that X has a κop-like base. For
each σ ∈ Fn(κ, 2), set Uσ = {f ∈ X : f ⊇ σ}. Let E denote the set of σ ∈ Fn(κ, 2)
for which sup dom σ is even and Uσ 6= ∅. Set A = {Uσ : σ ∈ E}, which is clearly
a base of X. Let us show that A is κop-like. Suppose σ, τ ∈ E and Uσ ⊆ Uτ . If
sup dom σ < sup dom τ , then for each f ∈ Uσ the sequence

(f � sup dom τ) ∪ {〈sup dom τ, 1− τ(sup dom τ)〉} ∪ {〈β, 0〉 : sup dom τ < β < κ}
is in Uσ \ Uτ , which is absurd. Hence, sup dom τ ≤ sup dom σ; hence, there are
fewer than κ-many possibilities for τ given σ. Thus, A is κop-like.

Finally, it suffices to show that 〈1〉α<κ is a Pκ-point of X, for a Pκ-point must
have local Noetherian type at least κ. For each α < κ, set σα = {〈2α+1, 1〉}. Then
{Uσα : α < κ} is a local base at 〈1〉α<κ. Moreover, Uσα ) Uσβ

for all α < β < κ.
Since κ is regular, it follows that 〈1〉α<κ is a Pκ-point. �

Corollary 3.34. Every infinite cardinal is the Noetherian type of some totally
disconnected compactum.

Proof. By Lemma 2.9, all totally disconnected metric compacta have Noetherian
type ω. By Theorem 3.33, if κ is a regular uncountable cardinal, then there is
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a totally disconnected compactum X with Noetherian type κ. If κ is a singular
cardinal, then there is a totally disconnected dyadic compactum with Noetherian
type κ by Corollary 3.30. �

4. k-adic compacta

The results of the previous section used reflection properties of free boolean
algebras—see Lemma 3.1—and more generally coproducts of boolean algebras of
bounded size—see Lemma 3.6. Let us define a more general family of reflection
properties.

Definition 4.1. Let B be a boolean algebra and let κ and λ be cardinals. Then we
say B has the (κ, λ)-FN if and only if, for every M such that {B,∧,∨} ⊆ M ≺ Hθ

and |M | ∩ κ ⊆ M ∩ κ ∈ κ + 1, and for every b ∈ B, there exists A ∈ [B ∩ M ]<λ

such that M ∩ ↑b = M ∩ ↑A.

Remark. For regular κ, the (κ, κ)-FN and the (κ+, κ)-FN are both equivalent to
the κ-FN as defined by Fuchino, Koppelberg, and Shelah [8]. In particular, the
(ω1, ω)-FN is equivalent to the Freese-Nation property and the (ω2, ω1)-FN is equiv-
alent to the weak Freese-Nation property.

The (κ, ω)-FN is equivalent to the (κ, 2)-FN for all κ: if A ∈ [B ∩M ]<ω and
M ∩ ↑b = M ∩ ↑A, then

∧
A ∈ M and M ∩ ↑b = M ∩ ↑

∧
A. Therefore, a boolean

algebra has the (ω1, ω)-FN if and only if it satisfies the conclusion of Lemma 3.1.
Likewise, a boolean algebra satisfies the conclusion of Lemma 3.6 if and only if it
has the (κ, ω)-FN.

Theorem 4.2. If κ ≥ ω and B has the (κ+, cf κ)-FN, then every subset of B is
almost κop-like.

Proof. Proceed as in the proof of Theorem 3.2. The only modifications worth noting
happen in the last paragraph. Where Lemma 3.1 is used to produce r ∈ B∩Mα such
that Mα∩↑q = Mα∩↑r, instead use the (κ+, cf κ)-FN to produce A ∈ [B∩Mα]<cf κ

such that Mα ∩ ↑q = Mα ∩ ↑A. For each r ∈ A, argue as before that there
exists pr ∈ Q ∩ Mα such that Dα ∩ ↑r ⊆ Dα ∩ ↑pr. By an induction hypothesis,
|Dα ∩ ↑pr| < κ; hence, |Dα ∩ ↑q| ≤ |

⋃
r∈A(Dα ∩ ↑pr)| < κ. �

Corollary 4.3. It is independent of ¬CH whether every separable compactum X
satisfies χNt(X) ≤ ω1.

Proof. Fuchino, Koppelberg, and Shelah [8] proved that P(ω) has the (ω2, ω1)-FN
in the Cohen model. Arguing as in the proof of Theorem 3.4, every separable
compactum X, being a continuous image of βω, satisfies χKNt(X) ≤ ω1 and
πNt(X) ≤ ω1 in this model. On the other hand, p = c implies there is a Pc-point p
in βω \ ω. Assuming p = c > ω1, let us show that this p does not have an ωop

1 -like
base in the separable compactum βω. Let U be a local base at p in βω. Choose
V ∈ [U ]ω1 and U ∈ U such that U \ ω ⊆

⋂
V. For every V ∈ V, the compact set

U \ V is contained in ω, so U \ V ⊆ n for some n < ω. Therefore, there exist
W ∈ [V]ω1 and n < ω such that U \W ⊆ n for all W ∈ W. Choose U0 ∈ U such
that U0 ⊆ U \ n. Then U0 ⊆

⋂
W; hence, U is not ωop

1 -like. �
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Theorem 4.4. Let κ ≥ ω and let X be a compactum such that πχ(p, X) = w(X)
for all p ∈ X and such that X is a continuous image of a totally disconnected com-
pactum Y such that Clop(Y ) has the (κ+, cf κ)-FN. Then every base of X contains
an κop-like base of X.

Proof. Proceed as in the proof of Theorem 3.24. Modify that proof just as the
proof of Theorem 3.2 was modified in the above proof of Theorem 4.2. �

Ščepin discovered a nice characterization of the Stone spaces of boolean algebras
having the (ω1, ω)-FN.

Definition 4.5 (Ščepin [27]). Given a space X, let RC(X) denote the set of regular
closed subsets of X. A space X is k-metrizable if there exists ρ : X × RC(X) →
[0,∞) such that we have the following for all C ∈ RC(X).

(1) C = {x ∈ X : ρ(x,C) = 0}.
(2) If C ⊇ B ∈ RC(X), then ρ(x,C) ≤ ρ(x,B) for all x ∈ X.
(3) The map ρC : X → R defined by ρC(x) = ρ(x,C) is continuous.
(4) For each increasing union

⋃
α<β Cα of regular closed sets, if C =

⋃
α<β Cα,

then ρ(x,C) = infα<β ρ(x,Cα).
A compactum is k-adic if it is a continuous image of k-metrizable compactum.

Remark. Ščepin’s notation is “κ-metrizable.” Let us use “k-metrizable” for two
reasons. First, “κ” has nothing to do with a cardinal κ; it’s a Russian abbreviation
for canonical. (Canonically closed means regular closed in this context.) Second,
for some authors, κ-metrizable means something else, such as having a decreasing
uniform base of the form {Uα}α<κ.

The following theorem is implicit in results of Ščepin [27] and more explicit in
Heindorf and Šapiro [11]. (See especially Section 2.9 of the latter.)

Theorem 4.6. A totally disconnected compactum X is k-metrizable if and only if
Clop(X) has the (ω1, ω)-FN.

Lemma 4.7 (Ščepin [27]). If X is a k-adic compactum, then πχ(X) = w(X).

Given the above lemma and the preceding three theorems, it is trivial to gener-
alize our main results from the previous section about the class of dyadic compacta,
which are continuous images of powers of 2, to the class of compacta that are con-
tinuous images of totally disconnected k-metrizable compacta. Moreover, the next
two theorems show that the latter class properly contains the former class.

Theorem 4.8 (Ščepin [27]). Metrizable spaces are k-metrizable. Moreover, prod-
ucts and hyperspaces (with the Vietoris topology) preserve k-metrizability. In par-
ticular, every power of 2 is k-metrizable.

Theorem 4.9 (Šapiro [25]). If κ ≥ ω2, then the hyperspace of 2κ is not dyadic.
Hence, there is a totally disconnected compactum that is k-metrizable but not dyadic.

With a little more care, we can further generalize our results about dyadic com-
pacta to all k-adic compacta.

Definition 4.10. Given a space X and a set M , define πX
M : X → X/M by πX

M (p) =
p/M .
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Lemma 4.11. Let X be a compactum. Then X is k-metrizable if and only if πX
M

is an open map for all M satisfying C(X) ∈ M ≺ Hθ.

Proof. Ščepin [28] proved that a compactum X is k-metrizable if and only if, for all
sufficiently large regular cardinals µ, there is a closed unbounded C ⊆ [Hµ]ω such
that C(X) ∈ M ≺ Hµ and πX

M is open for all M ∈ C. (Ščepin stated this result
in terms of σ-complete inverse systems of metric compacta; the above formulation
is due to Bandlow [3].) It follows at once that X is k-metrizable if πX

M is open
for all M satisfying C(X) ∈ M ≺ Hθ. Conversely, suppose X is k-metrizable and
C(X) ∈ M ≺ Hθ. Fix µ and C as above. We may assume θ > µω; hence, by
elementarity, we may assume C ∈ M . Choose a countable N ≺ H(2<θ)+ such that
C(X), C, M ∈ N . Then M ∩N ∩Hµ ∈ C, so πX

M∩N∩Hµ
, which is equal to πX

M∩N ,
is open. Suppose U ⊆ X is open and p ∈ U . Since πX

M∩N is open, there exists a
cozero V ⊆ X such that p ∈ V ∈ M ∩N and V/(M ∩N) ⊆ U/(M ∩N). The last
relation is equivalent to the statement that, for all q ∈ V , there exists r ∈ U such
that, for all f ∈ C(X) ∩M ∩N , we have f(q) = f(r). By elementarity, for every
open U ⊆ X and p ∈ U , there exists a cozero V ⊆ X such that p ∈ V ∈ M and, for
all q ∈ V , there exists r ∈ U such that, for all f ∈ C(X)∩M , we have f(q) = f(r).
Thus, p/M ∈ V/M ⊆ U/M . Since V is cozero and V ∈ M , the set V/M is cozero.
Hence, πX

M is open. �

Theorem 4.12. Let X be a k-metrizable compactum and Q a family of cozero
subsets of X such that for every U ∈ Q there exists V ∈ Q such that V ⊆ U . Then
Q is almost ωop-like.

Proof. Proceed by induction on |Q|. Argue as in the proof of Theorem 3.2 until
the verification of (3) for stage α + 1, where we need a different argument to show
that Dα ∩ ↑q is finite. Let U = q and choose V ∈ Q such that V ⊆ U . By
Lemma 4.11, U/Mα is open; hence, there exists f ∈ C(X)∩Mα such that V/Mα ⊆
(f−1{0})/Mα ⊆ U/Mα. Since f ∈ Mα, we have V ⊆ f−1{0}. By elementarity,
there exists W ∈ Q ∩ Mα such that W ⊆ f−1{0}. By (3) for stage α, it suffices
to show that Dα ∩ ↑U ⊆ Dα ∩ ↑W . Suppose Z ∈ Dα ∩ ↑U . Then W/Mα ⊆
(f−1{0})/Mα ⊆ U/Mα ⊆ Z/Mα. Since Z ∈ Dα ⊆ Mα and Z is cozero, we have
W ⊆ Z. Thus, Dα ∩ ↑U ⊆ Dα ∩ ↑W . �

Corollary 4.13. Let X be a k-adic compactum and U be a family of subsets of X
such that for all U ∈ U there exists V ∈ U such that V ∩ X \ U = ∅. Then U is
almost ωop-like. Hence, πNt(X) = χKNt(X) = ω.

Proof. Proceed as in the proof of Theorem 3.4. Use the above theorem instead of
Theorem 3.2. �

Theorem 4.14. Let X be a homogeneous k-adic compactum with base A. Then A
contains an ωop-like base of X.

Proof. By homogeneity and Lemma 4.7, we have πχ(p, X) = w(X) for all p ∈ X.
By Lemma 3.20, we may assume A consists only of cozero sets. Proceed as in the
proof of Lemma 3.19. Replace 2λ with a k-metrizable compactum Y and replace B
with the set of cozero subsets of Y . For the proof of (2) for stage α + 1, we need a
different argument that, given H ∈ Eα and N ∈ Σα, the set Dα ∩N ∩ ↑H is finite.

Choose U ∈ Uα such that H = Eα,U ; choose V ∈ Uα such that V ⊆ U . Since πY
N

is open by Lemma 4.11, we have (h−1V )/N ⊆ (f−1{0})/N ⊆ (h−1U)/N for some
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f ∈ C(Y ) ∩ N . Since f ∈ N , we have h−1V ⊆ f−1{0}. Choose β < α such that
f ∈ Mβ . By elementarity, we may choose W0 ∈ Aβ such that h−1W0 ⊆ f−1{0}.
Choose W1 ∈ Vβ such that W 1 ⊆ W0; choose W2 ∈ Uβ such that W 2 ⊆ W1.
By (2) for stage α, it suffices to prove Dα ∩ N ∩ ↑Eα,U ⊆ ↑Eβ,W2 . Suppose G ∈
Dα ∩N ∩ ↑Eα,U . Then we have

(f−1{0})/N ⊆ (h−1U)/N ⊆ Eα,U/N ⊆ G/N.

Since G ∈ N and G is cozero, we have f−1{0} ⊆ G. Hence,

Eβ,W2 ⊆ h−1W1 ⊆ h−1W0 ⊆ f−1{0} ⊆ G.

Thus, Dα ∩N ∩ ↑Eα,U ⊆ ↑Eβ,W2 as desired. �

Theorem 4.15. Let X be a k-adic compactum. Then Nt(X) 6= ω1.

Proof. Proceed as in the proof of Theorem 3.31. �

Question 4.16. Is every k-adic compactum a continuous image of a totally discon-
nected k-metrizable compactum?

If still greater generality is desired, then one can easily combine the techniques
of the proofs of Theorems 4.2, 4.12, and 4.14 to prove the following.

Theorem 4.17. Let κ be an infinite cardinal and let Y be a compactum such that,
for all open U ⊆ Y and for all M satisfying C(Y ) ∈ M ≺ Hθ and κ+ ∩ |M | ⊆
κ+ ∩M ∈ κ+ + 1, the set U/M is the intersection of fewer than (cf κ)-many open
subsets of Y/M . If X is Hausdorff and a continuous image of Y , then we have the
following.

(1) If U ⊆ P(X) and, for all U ∈ U , there exists V ∈ U such that V ∩X \ U =
∅, then U is almost κop-like. Hence, πNt(X) ≤ κ and χKNt(X) ≤ κ.

(2) If πχ(p, X) = w(X) for all p ∈ X, then every base of X contains a κop-like
base.

On the other hand, Lemma 4.7 cannot be so easily generalized. For example, if
X is the Stone space of the interval algrebra generated by {[a, b) : a, b ∈ R}, then
w(X) = c and πχ(X) = π(X) = ω, despite it being shown in [8] that Clop(X) has
the (ω2, ω1)-FN.

5. More on local Noetherian type

In this section, we find two sufficient conditions for a compactum to have a point
with an ωop-like local base. The first of these conditions will be used to prove
Theorem 1.7. We also present some related results about local bases in terms of
Tukey reducibility.

Definition 5.1. Given cardinals λ ≥ κ ≥ ω and a subset E in a space X, a local
〈λ, κ〉-splitter at E is a set U of λ-many open neighborhoods of E such that E is
not contained in the interior of

⋂
V for any V ∈ [U ]κ. If p ∈ X, then we call a local

〈λ, κ〉-splitter at {p} a local 〈λ, κ〉-splitter at p.

Theorem 5.2. Suppose X is a compactum and ω1 ≤ κ = minp∈X πχ(p, X). Then
there is a local 〈κ, ω〉-splitter at some p ∈ X.
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Proof. Given any map f , let
∏

f denote {〈xi〉i∈dom f : ∀i ∈ dom f xi ∈ f(i)}.
Given any infinite open family E , let Φ(E) denote the set of 〈σ,Γ〉 ∈ [E ]<ω×([E ]ω)<ω

for which every τ ∈
∏

Γ satisfies
⋂

σ ⊆
⋃

ran τ . Then Φ(E) = ∅ always implies E
is ωop-like and centered.

Let R denote the set of nonempty regular open subsets of X. Choose 〈Wn〉n<ω ∈
Rω such that Wn+1 ( Wn 6= X for all n < ω. Let Ω denote the class of transfinite
sequences 〈〈Uα, Vα〉〉α<η of elements of R2 satisfying the following.

(1) η ≥ ω and 〈〈Un, Vn〉〉n<ω = 〈〈Wn+1,Wn〉〉n<ω.
(2) Uα ⊆ Vα for all α < η.
(3) P(Vα) ∩

{⋂
σ \
⋃

τ : σ, τ ∈
[⋃

β<α{Uβ , Vβ}
]<ω

}
⊆ {∅} for all α < η.

(4) Φ
(⋃

α<η{Uα, Vα}
)

= ∅.

Seeking a contradiction, suppose η is a limit ordinal and 〈〈Uα, Vα〉〉α<η 6∈ Ω, but
〈〈Uβ , Vβ〉〉β<α ∈ Ω for all α < η. Then (1), (2), and (3) hold for 〈〈Uα, Vα〉〉α<η,
so there exists 〈σ,Γ〉 ∈ Φ

(⋃
α<η{Uα, Vα}

)
. We may choose i ∈ dom Γ such that

Γ(i) 6⊆
⋃

β<α{Uβ , Vβ} for all α < η. Set Λ = Γ � (dom Γ \ {i}). We may assume
dom Γ is minimal among its possible values; hence, there exists τ ∈

∏
Λ such that⋂

σ 6⊆
⋃

ran τ . Choose α < η and W ∈ Γ(i) such that σ ∪ ran τ ⊆
⋃

β<α{Uβ , Vβ}
and W ∈ {Uα, Vα}. Then

⋂
σ \

⋃
ran τ 6⊆ W by (2) and (3). Since W is regular,⋂

σ \
⋃

ran τ 6⊆ W ; hence,
⋂

σ 6⊆ W ∪
⋃

ran τ , in contradiction with 〈σ,Γ〉 ∈
Φ
(⋃

α<η{Uα, Vα}
)
. Thus, Ω is closed with respect to unions of increasing chains.

It follows from (3) that Ω ⊆ (R2)<|R|+ . Moreover, 〈〈Wn+1,Wn〉〉n<ω ∈ Ω.
Hence, by Zorn’s Lemma, Ω has a maximal element 〈〈Uα, Vα〉〉α<η. Set B =⋃

α<η{Uα, Vα}. Let us show that η ≥ κ. Suppose not. For each x ∈ X, choose
Yx, Zx ∈ R such that x ∈ Yx ⊆ Y x ⊆ Zx and Zx does not contain any nonempty
open set of the form

⋂
σ \

⋃
τ where σ, τ ∈ [B]<ω. Choose ρ ∈ [X]<ω such that⋃

x∈ρ Yx = X. Let us show that Φ(B ∪ {Yx, Zx}) = ∅ for some x ∈ ρ. Seek-
ing a contradiction, suppose 〈σx,Γx〉 ∈ Φ(B ∪ {Yx, Zx}) for all x ∈ ρ. We may
assume

⋃
x∈ρ

⋃
ranΓx ⊆ B. Let Λ be a concatenation of {Γx : x ∈ ρ} and set

τ = B ∩
⋃

x∈ρ σi. Then for all ζ ∈
∏

Λ we have

⋂
τ =

⋂
y∈ρ

⋂
(σy ∩ B) =

⋃
x∈ρ

(
Yx ∩

⋂
y∈ρ

⋂
(σy ∩ B)

)
⊆
⋃
x∈ρ

⋂
σx ⊆

⋃
ran ζ.

Hence, 〈τ,Λ〉 ∈ Φ(B), in contradiction with (4). Therefore, we may choose x ∈ ρ
such that Φ(B ∪ {Yx, Zx}) = ∅. But then 〈〈Uα, Vα〉〉α<η+1 ∈ Ω if we set Uη = Yx

and Vη = Zx, in contradiction with the maximality of 〈〈Uα, Vα〉〉α<η. Thus, η ≥ κ.
Set A = {Vα : α < η}. By (3), |A| = |η| ≥ κ. Set K =

⋂
α<η Uα. Then it

suffices to show that A is a local 〈|η|, ω〉-splitter at some x ∈ K. Suppose not.
Then each x ∈ K has an open neighborhood Wx that is a subset of infinitely many
elements of A. Hence, Φ(B ∪ {Wx}) 6= ∅ for all x ∈ K. Choose ρ ∈ [K]<ω such
that K ⊆

⋃
x∈ρ Wx. Choose an open set W such that W ∪

⋃
x∈ρ Wx = X and

W ∩K = ∅. By compactness, B ∪ {W} is not centered; hence, Φ(B ∪ {W}) 6= ∅.
Reusing our earlier concatenation argument, we have Φ(B) 6= ∅, in contradiction
with (4). Thus, A is a local 〈|η|, ω〉-splitter at some x ∈ K. �
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Lemma 5.3. Suppose E is a subset of a space X and E has no finite neigh-
borhood base. Then χNt(E,X) is the least κ ≥ ω for which there is a local
〈χ(p, X), κ〉-splitter at E.

Proof. Set κ = χNt(E,X) and λ = χ(E,X). By Lemma 2.4, λ ≥ κ; hence, a
κop-like neighborhood base of E (which necessarily has size λ) is a local 〈λ, κ〉-splitter
at E. To show the converse, let 〈Uα〉α<λ be a sequence of open neighborhoods of
E. Let {Vα : α < λ} be a neighborhood base of E. For each α < λ, choose
Wα ∈ {Vβ : β < λ} such that Wα ⊆ Uα ∩ Vα. Then {Wα : α < λ} is a neigh-
borhood base of E. Let µ < κ. Then there exist α < λ and I ∈ [λ]µ such
that Wα ⊆

⋂
β∈I Wβ . Hence, E is contained in the interior of

⋂
β∈I Uβ . Hence,

{Uα : α < λ} is not a local 〈λ, µ〉-splitter at E. �

Proof of Theorem 2.14. We may assume χ(X) ≥ ω1. By Theorem 5.2, there is a
local 〈χ(X), ω〉-splitter at some p ∈ X. By Lemma 5.3, χNt(p, X) = ω. �

Proof of Theorem 1.7. Let X be a homogeneous compactum. By a result of Arhan-
gel′skĭı (see 1.5 of [1]), |Y | ≤ 2πχ(Y )c(Y ) for all homogeneous spaces Y . Since |X| =
2χ(X) by Arhangel′skĭı’s Theorem and the Čech-Pospǐsil Theorem, we have χ(X) ≤
πχ(X)c(X) by GCH. If πχ(X) = χ(X), then χNt(X) = ω by Theorem 2.14. Hence,
we may assume πχ(X) < χ(X); hence, χNt(X) ≤ χ(X) ≤ c(X) by Theorem 2.5.

�

Example 5.4. Consider 2ω1 ordered lexicographically. Every point in this space
has character and local Noetherian type ω1, and some but not all points have
π-character ω.

Definition 5.5 (Tukey [29]). Given two quasiorders P and Q, we say f is a Tukey
map from P to Q and write f : P ≤T Q if f is a map from P to Q such that all
preimages of bounded subsets of Q are bounded in P . We say that P is Tukey
reducible to Q and write P ≤T Q if there exists f : P ≤T Q. We say that P and Q
are Tukey equivalent and write P ≡T Q if P ≤T Q ≤T P .

Tukey showed that two directed sets are Tukey equivalent if and only if they
embed as cofinal subsets of a common directed set. In particular, any two local bases
at a common point in a topological space are Tukey equivalent. Another, easily
checked fact is thats P ≤T [cf P ]<ω for every directed set P . Also, [κ]<ω ≤T [λ]<ω

if κ ≤ λ.

Lemma 5.6. Suppose κ ≥ ω and E is a subset of a space X with a local 〈κ, ω〉-splitter
at E. Then 〈[κ]<ω,⊆〉 ≤T 〈A,⊇〉 for every neighborhood base A of E.

Proof. Let U be a local 〈κ, ω〉-splitter at E. Let N be the set of open neighborhoods
of E. Then N is Tukey equivalent to every neighborhood base of E (with respect
to ⊇), so it suffices to show that [U ]<ω ≤T 〈N ,⊇〉. Define f : [U ]<ω → N by
f(σ) =

⋂
σ for all σ ∈ [U ]<ω. Then, for all N ∈ N , we have |f−1 ↑N | < ω

because U is a local 〈κ, ω〉-splitter; whence, f−1 ↑N is bounded in [U ]<ω. Thus,
f : [U ]<ω ≤T 〈N ,⊇〉. �

Theorem 5.7. Suppose X is a compactum and ω1 ≤ κ = minp∈X πχ(p, X). Then,
for some p ∈ X, every local base A at p satisfies 〈[κ]<ω,⊆〉 ≤T 〈A,⊇〉.

Proof. Combine Theorem 5.2 and Lemma 5.6. �
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Lemma 5.8. Suppose E is a subset of a space X and E has no finite neighborhood
base. Then the following are equivalent.

(1) χNt(E,X) = ω.
(2) There is a local 〈χ(E,X), ω〉-splitter at E.
(3) Every neighborhood base A of E satisfies 〈[χ(E,X)]<ω,⊆〉 ≡T 〈A,⊇〉.

Proof. By Lemma 5.3, (1) and (2) are equivalent. Let B be a neighborhood base
of E of size χ(E,X). By Lemma 5.6, (2) implies [χ(E,X)]<ω ≤T 〈A,⊇〉 ≡T

〈B,⊇〉 ≤T [χ(E,X)]<ω for every neighborhood base A of E. Thus, (2) implies
(3). Finally, suppose A is a neighborhood base of E and [χ(E,X)]<ω ≡T 〈A,⊇〉.
Then [χ(E,X)]<ω and 〈A,⊇〉 embed as cofinal subsets of a common directed set.
Hence, 〈A,⊆〉 is almost ωop-like by Lemma 2.21. Hence, A contains an ωop-like
neighborhood base of E. Thus, (3) implies (1). �

Theorem 5.9. Suppose X is an infinite homogeneous compactum and πχ(X) =
χ(X). Then, for all p ∈ X and for all local bases A at p, we have 〈A,⊇〉 ≡T

〈[χ(X)]<ω,⊆〉.

Proof. Combine Theorem 2.14 and Lemma 5.8. �

Definition 5.10. Given n < ω and ordinals α, β0, . . . , βn, let α → (β0, . . . , βn)
denote the proposition that for all f : [α]2 → n + 1 there exist i ≤ n and H ⊆ α
such that f [[H]2] = {i} and H has order type βi.

Lemma 5.11. Suppose κ = cf κ > ω and P is a directed set such that [κ]<ω ≤T P .
Then P contains a set of κ-many pairwise incomparable elements.

Proof. Let Q be a well-founded, cofinal subset of P . Then P ≡T Q; let f : [κ]<ω ≤T

Q. Define g : [κ]2 → 3 by g({α < β}) = 0 if f({α}) 6≤ f({β}) 6≤ f({α}) and
g({α < β}) = 1 if f({α}) > f({β}) and g({α < β}) = 2 if f({α}) ≤ f({β}). By
the Erdös-Dushnik-Miller Theorem, κ → (κ, ω + 1, ω + 1). Since Q is well-founded,
there is no H ∈ [κ]ω such that g[[H]2] = {1}. Since f is Tukey and all infinite
subsets of [κ]<ω are unbounded, there is no H ⊆ κ of order type ω + 1 such that
g[[H]2] = {2}. Hence, there exists H ∈ [κ]κ such that g[[H]2] = {0}; whence,
f [[H]1] is a κ-sized, pairwise incomparable subset of P . �

Theorem 5.12. Suppose κ = cf κ > ω and X is a compactum such that every point
has a local base not containing a set of κ-many pairwise incomparable elements.
Then some point in X has π-character less than κ.

Proof. Combine Theorem 5.7 and Lemma 5.11 to prove the contrapositive of the
theorem. �

Corollary 5.13. Suppose X is a compactum such that every point has a local base
that is well quasi-ordered with respect to ⊇. Then some point in X has countable
π-character.

Finally, let us present a few results about local Noetherian type and topological
embeddings.

Lemma 5.14. Suppose X is a space, Y ⊆ X, and p ∈ Y satisfies χ(p, Y ) =
χ(p, X). Then χNt(p, X) ≤ χNt(p, Y ).
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Proof. Set λ = χ(p, Y ) and κ = χNt(p, Y ); we may assume λ > ω by Theorem 2.5.
By Lemma 5.3, we may choose a local 〈λ, κ〉-splitter A at p in Y . For each U ∈ A,
choose an open subset f(U) of X such that f(U) ∩ Y = U . Set B = f [A]. Then
|B| = λ because f is bijective. Suppose C ∈ [B]κ and p is in the interior of

⋂
C

with respect to X. Then p is in the interior of Y ∩
⋂
C with respect to Y , in

contradiction how we chose A. Thus, B is a local 〈λ, κ〉-splitter at p in X. By
Lemma 5.3, χNt(p, X) ≤ κ. �

Definition 5.15. For all infinite cardinals κ, let u(κ) denote the space of uniform
ultrafilters on κ.

Theorem 5.16. For each κ ≥ ω, there exists p ∈ u(κ) such that χNt(p, u(κ)) = ω
and χ(p, u(κ)) = 2κ.

Proof. Generalizing an argument of Isbell [12] about βω, let A be an independent
family of subsets of κ of size 2κ. Set B =

⋃
F∈[A]ω{x ⊆ κ : ∀y ∈ F |x\y| < κ}. Since

A is independent, we may extend A to an ultrafilter p on κ such that p∩B = ∅. For
each x ⊆ κ, set x∗ = {q ∈ u(κ) : x ∈ q}. Then {x∗ : x ∈ A} is a local 〈2κ, ω〉-splitter
at p. Since χ(p, u(κ)) ≤ 2κ, it follows from Lemma 5.3 that χNt(p, u(κ)) = ω and
χ(p, u(κ)) = 2κ. �

Theorem 5.17. Suppose κ ≥ ω and X is a space such that χ(X) = 2κ and u(κ)
embeds in X. Then there is an ωop-like local base at some point in X. Hence,
χNt(X) = ω if X is homogeneous.

Proof. Let j embed u(κ) into X. By Theorem 5.16, there exists p ∈ u(κ) such that
χNt(p, u(κ)) = ω and χ(p, u(κ)) = 2κ. By Lemma 5.14, χNt(j(p), X) = ω. �

Theorem 5.18. Suppose p is a point in a dense subspace Y of a T3 space X. Then
χNt(p, X) ≥ χNt(p, Y ).

Proof. Set κ = χNt(p, Y ) and let A be a κop-like local base at p in X. By
Lemma 2.21, we may assume A consists only of regular open sets. Set B =
{U ∩ Y : U ∈ A}. Given any U, V ∈ A such that U 6⊆ V , we have U \ V 6= ∅;
whence, U ∩ Y \ V 6= ∅; whence, U ∩ Y 6⊆ V ∩ Y . Therefore, B is κop-like; hence,
χNt(p, Y ) ≤ χNt(p, X). �

Example 5.19. Consider the sequential fan Y with ω-many spines. More explicitly,
Y is the space ω2 ∪{p} obtained by taking ω× (ω +1) and collapsing the subspace
ω×{ω} to a point p. It is easily checked that Y is T3.5. Choose a compactification
X of Y . Then c(X) = c(Y ) = ω and X is not homogeneous because it has isolated
points. We will show χNt(p, X) ≥ ω1, thereby demonstrating that homogeneity
cannot be removed from the hypothesis of Theorem 1.7. It suffices to show that
χNt(p, Y ) ≥ ω1, for we can then apply Theorem 5.18. Given f ∈ ωω, set Uf =
{p} ∪ {〈m,n〉 ∈ ω2 : n ≥ f(m)}. Set A = {Uf : f ∈ ωω}, which is a local base
at p in Y . Suppose B ⊆ A and B is a local base at p. Then it suffices to show
that B is not ωop-like. By an easy diagonalization argument, no local base at p is
countable. Choose B0 ∈ [A]ω1 . Given n < ω, Bn ∈ [B]ω1 , and Uf0 , . . . , Ufn−1 ∈ B,
choose Bn+1 ∈ [Bn]ω1 such that g(n) = h(n) for all Ug, Uh ∈ Bn+1. Then choose
Ufn ∈ Bn+1 \ {Uf0 , . . . , Ufn−1}. For each n < ω, set g(n) = max{f0(n), . . . , fn(n)}
Then Ug ⊆ Ufn for all n < ω; hence, B is not ωop-like.
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