SPLITTING FAMILIES AND THE NOETHERIAN TYPE OF
fwlw

DAVID MILOVICH

ABSTRACT. Extending some results of Malykhin, we prove several indepen-
dence results about base properties of Sw \ w and its powers, especially the
Noetherian type Nt(Bw \ w), the least k for which fw \ w has a base that is
k-like with respect to containment. For example, Nt(8w \ w) is at least s, but
can consistently be w1, ¢, ¢, or strictly between w1 and ¢. Nt(Bw \ w) is also
consistently less than the additivity of the meager ideal. Nt(fw \ w) is closely
related to the existence of special kinds of splitting families.

1. INTRODUCTION

Definition 1.1. Given a cardinal x, define a poset to be k-like (k°P-like) if no
element is above (below) x-many elements. Define a poset to be almost k°P-like if
it has a k°P-like dense subset.

In the context of families of subsets of a topological space, we will always im-
plicitly order by inclusion. We are particularly interested in x°P-like bases, m-bases,
local bases, and local m-bases of the space w* of nonprincipal ultrafilters on w.
Recall that a local base (local 7-base) at a point in a space is a family of open
neighborhoods of that point (family of nonempty open subsets) such that every
neighborhood of the point contains an element of the family; a base (w-base) of
a space is family of open sets that contains local bases (local m-bases) at every
point. See Engelking [9] for the more background on bases and their cousins. Also
recall the following basic cardinal functions. For more about these functions, see
Juhdsz [12].

Definition 1.2. Given a space X, let the weight of X, or w(X), be the least Kk > w
such that X has a base of size at most x. Given p € X, let the character of p, or
X(p, X), be the least £ > w such that there is a local base at p of size at most &.
Let the character of X, or x(X), be the supremum of the characters of its points.
Analogously define m-weight and w-character, respectively denoting them using m
and 7my.

Now consider the following order-theoretic parallels.

Definition 1.3. Given a space X, let the Noetherian type of X, or Nt(X), be the
least Kk > w such that X has a base that is k°P-like. Given p € X, let the local
Noetherian type of p, or xNt(p, X), be the least k > w such that there is a x°P-like
local base at p. Let the local Noetherian type of X, or xNt(X), be the supremum
of the local Noetherian types of its points. Analogously define Noetherian w-type
and local Noetherian m-type, respectively denoting them using 7 Nt and wyNt.
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Noetherian type and Noetherian 7-type were introduced by Peregudov [16]. Let
w* denote the space of nonprincipal ultrafilters on w. Malykhin [15] proved that
MA implies TNt(w*) = ¢ and CH implies Nt(w*) = ¢. We extend these results by
investigating Nt(w*), 7 Nt(w*), xNt(w*), and mxNt(w*) as cardinal characteristics
of the continuum. For background on such cardinals, see Blass [7]. We also examine
the sequence (Nt((w*)1T%))qecon.

Definition 1.4. Let b denote the minimum of |F| where F ranges over the subsets
of w* that have no upper bound in w* with respect to eventual domination.

Definition 1.5. A tree w-base of a space X is a m-base that is a tree when ordered
by containment. Let b be the minimum of the set of heights of tree m-bases of w*.

Balcar, Pelant, and Simon [1] proved that tree m-bases of w* exist, and that
h < min{b,cf c}. They also proved that the above definition of § is equivalent to
the more common definition of h as the distributivity number of [w]* ordered by
C*.

Definition 1.6. Given z,y € [w]“, we say that = splits y if [yNz| = |y \ 2| = w.
Let t be the minimum value of |A| where A ranges over the subsets of [w]* such
that no x € [w]“ splits every y € A. Let s be the minimum value of |A| where A
ranges over the subsets of [w]* such that every x € [w]“ is split by some y € A.

It is known that b < v and h < s. (See Theorems 3.8 and 6.9 of [7].)

Clearly, Nt(w*) < w(w*)T = ¢*. We will show that also myNt(w*) = w and
mNt(w*) = h and s < Nt(w*). Furthermore, Nt(w*) can consistently be ¢, ¢t, or
any regular s satisfying 2<% = ¢. Also, Nt(w*) = w; is relatively consistent with
any values of b and ¢. The relations w; < b =5 = Nt(w*) < cand w; = b =
s < Nt(w*) < ¢ are also each consistent. We also prove some relations between v
and Nt(w*), as well as some consistency results about the local Noetherian type of
points in w*.

2. BASIC RESULTS
The following proposition is essentially due to Peregudov (see Lemma 1 of [16]).

Proposition 2.1. Suppose a point p in a space X satisfies mx(p, X) < cfr <k <
X(p, X). Then Nt(X) > k.

Proof. Let A be a base of X. Let Uy and V), be, respectively, a local m-base at p
of size at most 7x(p, X) and a local base at p of size x(p, X). For each element of
Uy, choose a subset in A, thereby producing local w-base U at p that is a subset
of A of size at most mx(p, X). Similarly, for each element of Vg, choose a smaller
neighborhood of p in A, thereby producing a local base V at p that is a subset of A
of size x(p, X). Every element of V contains an element of /. Hence, some element
of U is contained in k-many elements of V; hence, A is not «°P-like. O

Definition 2.2. For all z € [w]¥, set 2* = {p € w* : p € x}.

Theorem 2.3. [t is relatively consistent with any value of ¢ satisfying cf¢ > wy
that Nt(w*) = ¢t

Proof. We may assume cf ¢ > w;. By Exercise A10 on p. 289 of Kunen [14], there
is a ccc generic extension V[G] such that ¢ = ¢"[¢] and, in V[G], there exists p € w*
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such that x(p,w*) = w;. Henceforth work in V[G]. Let ¢ be a bijection from w? to
w. Define ¢: w* — w* by

= {ECw:{m<w:{n<w:¢(m,n) € E} €p} ez}

Since mx(p, w*) < x(p,w*) = w1, there exists (Eq)a<w, € (w]¥)*“* such that every
neighborhood of p contains E7 for some a < w;. Hence, for all x € w*, every
neighborhood of #(x) contains (p“({m} x E,))* for some m < w and o < wy;
whence, mx(¥(x),w*) = w;. Since ¥ is easily verified to be a topological embedding,
x(z,w*) < x(¥(x),w*) for all z € w*. By a result of Pospisil [17], there exists
q € w* such that x(g,w*) = ¢. Hence, mx(¥(q),w*) = w1 and x(¢(q),w*) = ¢. By
Proposition 2.1, Nt(w*) > x(¥(q),w*) = c. O

Definition 2.4. Given n < w, let ss,, (ss,,) denote the least cardinal x for which
there exists a sequence (fy)a<. of functions on w each with range contained in n
(each with finite range) such that for all I € [c]* and z € [w]¥ there exists o € T
such that f, is not eventually constant on . (The notation ss was chosen with the
phrase “supersplitting number” in mind.) Note that if such an (fy)a<c does not
exist for any x < c, then ss, (ss,) is by definition equal to ¢™.

Clearly ss,, > s5,11 > ss5, for all n < w. Moreover, since cfc¢ > w, we have
55, = 56, for some n < w. However, for any particular n € w \ 2, it is not clear
whether ZFC proves ss,, = $5,,.

Definition 2.5. Given A\ > k > w and a space X, a (\, k)-splitter of X is a sequence
(Fa)a<a of finite open covers of X such that, for all I € [A]® and (Uy)aer €

[I,c; Fa, the interior of (., Us is empty.

Lemma 2.6. Suppose X is a compact space with a base A of size at most w(X) such
that UNV € AU{0} for allU,V € A. If k < w(X) and X has a (w(X), k)-splitter,
then A contains a k°P-like base of X. Hence, Nt(w*) < ss,,.

Proof. Set A = w(X) and let (Fyu)a<x be a (A, k)-splitter of X. For each o < A,
the cover F, is refined by a finite subcover of A; hence, we may assume F, C A.
Let A = {U, : @« < A}. For each a < A, set B, = {U, NV : V € F,}. Set
B =ycrBa\ {0}. Then B is easily seen to be a base of X and a x°P-like subset
of A. O

Lemma 2.7. Let X be a compact space without isolated points and let w < k <
A <minyex x(p, X). If X has no (A, k)-splitter, then Nt(X) > k.

Proof. Let A be a base of X. Construct a sequence (F,)a< of finite subcovers of
A as follows. Suppose we have a < A and (F3)g<q. For each p € X, choose V, € A
such that p € V), & Us.,, Fg- Let Fo be a finite subcover of {V;, : p € X}. Then
FoNFz =0 for all @« < f < A. Suppose X has no (), k)-splitter. Then choose
I € A" and (Ua)aer € [[aes Fa such that (), o; U, has nonempty interior. Then

there exists W € A such that W C [ c; Us. Thus, A is not x°P-like. O

Definition 2.8. Let u denote the minimum of the set of characters of points in
w*. Let mu denote the minimum of the set of w-characters of points in w*.

By a theorem of Balcar and Simon [2], 7u = t.

Theorem 2.9. Suppose u =c. Then Nt(w*) = ss,,.
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Proof. By Lemma 2.6, Nt(w*) < ss,,. Suppose k < ¢. Since every finite open cover
of w* is refined by a finite, pairwise disjoint, clopen cover, w* has a (¢, k)-splitter if
and only if ss,, < k. Hence, Nt(w*) > ss,, by Lemma 2.7. O

Lemma 2.10. Suppose v = ¢. Then sso < c.

Proof. Let (24)a<c enumerate [w]*. Construct (yq)a<c € (Jw]*)¢ as follows. Given
a < ¢ and (Yg)g<a, choose y, such that y, splits every element of {z,}U{ys: 8 <
a}. Suppose I € [¢]° and @ < ¢. Then =z, is split by yg for all 8 € I\ . Thus,
{Ya,w \ Yo })a<c Witnesses sso < c. O

Theorem 2.11. The cardinals v and Nt(w*) are related as follows.
(1) Ift=c, then Nt(w*) =ss, <c.
(2) Ifv < ¢, then Nt(w*) > c.
(3) Ifv < cfe, then Nt(w*) = cT.

Proof. Statement (1) follows from Lemma 2.10, Theorem 2.9, and 7u = v. The
proof of Theorem 2.3 shows how to construct p € w* such that mx(p,w*) = Tu =1
and x(p,w*) = ¢. Hence, (2) and (3) follow from Proposition 2.1. O

Definition 2.12. A subset A of [w]¥ has the strong finite intersection property
(SFIP) if the intersection of every finite subset of A is infinite. Given A C [w]¥
with the SFIP, define the Booth forcing for A to be [w]<¥ x [A]<“ ordered by
(00, Fo) < (o1, F1) if and only if Fy D Fy and 01 C 09 C o7 U()F;. Define a

generic pseudointersection of A to be U<U’F>€Ga where G is a generic filter of
W] < x [A]<.

Theorem 2.13. For all cardinals k satisfying k > cf kK > w, it is consistent that
t=u=cfk and Nt(w*) = 589 = ¢ = K.

Proof. Assuming GCH in the ground model, construct a finite support iteration
(Pa)a<x as follows. First choose some Uy € w*. Then suppose we have o < k and
P, and Ik, U, € w*. Let Pyy1 = P, x Q, where Q, is a P,-name for the Booth
forcing for U,. Let x,, be a P,1-name for a generic pseudointersection of U, added
by Qu; let Uyq1 be a Pyiq-name for an element of w* containing U, U {z,}. For
limit o < &, let Uy = Us_, Us.

Let (na)a<ctx be an increasing sequence of ordinals with supremum x. Then
{zy, : o < cfk} is forced to generate an ultrafilter in VP~ Hence, IF, t < u <
cfk < kK = ¢. Therefore, by Lemma 2.6 and Theorem 2.11, it suffices to show
that Ik, sso < k. Every nontrivial finite support iteration of infinite length adds
a Cohen real. Hence, we may choose for each a < k a P,(q41)-name y, for an
element of [w]* that is Cohen over VP«e. Then every name S for the range of a
cofinal subsequence of (Yu)a<s is such that

Ik Vz € [w]* Jw e S w splits 2.
Hence, (Yo)a<rx witnesses that -, sso < k. O

Theorem 2.14. Nt(w*) > s.

Proof. Suppose Nt(w*) = k < 5. Since Nt(w*) < ¢, we have v = ¢ by Theorem 2.11.
Hence, u = ¢. By Theorem 2.9, it suffices to show that ss,, > k. Suppose {fo)a<c is
a sequence of functions on w with finite range and I € [¢]®. Since k < s, there exists
x € [w]* such that f, is eventually constant on x for all &« € I. Thus, ss5, > k. O
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Lemma 2.15. Let k be a cardinal and let P and @ be mutually dense subsets of a
common poset. Then P is almost k°P-like if and only if Q is.

Proof. Suppose D is a k°P-like dense subset of P. Then it suffices to construct a
k°P-like dense subset of Q). Define a partial map f from |D|T to @ as follows. Set
fo = 0. Suppose a < |D|T and we have constructed a partial map f, from « to
Q. Set E={de D:d%qforall ¢ €ranf,}. If E =0, then set for1 = fa.
Otherwise, choose ¢ € @ such that ¢ < e for some e € E and let f,4+1 be the
smallest function extending f, such that f,y1(a) = q. For limit ordinals v < |D|*,
set fy =Uycy fa- Set f= fip+.

Let us show that ran f is a x°P-like. Suppose otherwise. Then there exists
g € ran f and an increasing sequence (£,)a<y in dom f such that ¢ < f(&,) for
all @« < k. By the way we constructed f, there exists (dy)a<x € D" such that
f(€s) < dg # dq for all @ < 8 < k. Choose p € P such that p < g. Then choose
d € D such that d < p. Then d < dg # d, for all @ < § < k, which contradicts
that D is k°P-like. Therefore, ran f is xk°P-like.

Finally, let us show that ran f is a dense subset of Q). Suppose ¢ € Q). Choose
p € P such that p < g. Then choose d € D such that d < p. By the way we
constructed f, there exists r € ran f such that » < d; hence, r < q. O

Theorem 2.16. 7Nt(w*) = 5.

Proof. First, we show that mNt(w*) < §. Let A be a tree m-base of w* such that A
has height h with respect to containment. Then A is clearly h°P-like. To show that
h < wNt(w*), let A be as above and let B be a mNt(w*)°P-like m-base of w*. Then
A and B are mutually dense; hence, by Lemma 2.15, A contains a wNt(w*)°P-like
m-base C of w*. Since C is also a tree m-base, it has height at most 7 Nt(w*). Hence,
h < wNt(w*). O

Corollary 2.17. If § = ¢, then tNt(w*) = Nt(w*) = 8852 = c.

Proof. Suppose hh = ¢. Then vt = ¢ because hh < b <t < ¢. Hence, by Theorem 2.16,
Theorem 2.11, and Lemma 2.10, ¢ < 7 Nt(w*) < Nt(w*) = ss,, < 859 < c. O

3. MODELS OF Nt(w*) = wy

Adding c-many Cohen reals collapses ss2 to wi. By Lemma 2.6, it therefore also
collapses Nt(w*) to wi. The same result holds for random reals and Hechler reals.

Theorem 3.1. Suppose ¥ = k and P = B(2%) /T where B(2") is the Borel alegebra
of the product space 2% and T is either the meager ideal or the null ideal (with respect
to the product measure). (In other words, P adds k-many Cohen reals or k-many
random reals in the usual way.) Then 1p IF wy = s83.

Proof. Working in the generic extension V[G], we have k = ¢ and a sequence
(Ta)a<r In [w]“ such that V[G] = V[(za)a<x] and, if E € P(k)NV and a € 5\ E,
then z, is Cohen or random over V[(xg)secg]. (See [13] for a proof.) Suppose
I e [k]¥ and y € [w]¥. Then y € V[(za)aes] for some J € [k]* NV hence, z,
splits y for all & € I'\ J. Thus, ({Za,w \ Ta})a<k Witnesses ss2 = w;. O

Definition 3.2. Let 0 denote the minimum of the cardinalities of subsets of w®
that are cofinal with respect to eventual domination.
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Corollary 3.3. FEwvery transitive model of ZFC has a ccc forcing extension that
preserves b, 0, and ¢, and collapses ss9 to w.

Proof. Add ¢-many random reals to the ground model. Then every element of w*
in the extension is eventually dominated by an element of w* in the ground model;
hence, b, 0, and ¢ are preserved by this forcing, while sso becomes w; . O

Definition 3.4. We say that a transfinite sequence (xo)a<y of subsets of w is
eventually splitting if for all y € [w]* there exists o < 7 such that for all 5 € n\ «
the set xg splits y.

Theorem 3.5. Let k = k¥. Then ss9 = w1 is forced by the k-long finite support
iteration of Hechler forcing.

Proof. Let P be the k-long finite support iteration of Hechler forcing. Let G be
a generic filter of P. For each a < k, let g, be the generic dominating function
added at stage a; set x, = {n < w : go(n) is even}. Suppose p € G and I and y
are names such that p forces I € [k]“* and y € [w]¥. Choose ¢ € G and a name
h such that ¢ < p and ¢ forces h to be an increasing map from w; to I. For each
a <wy, set By = {08 < k:qlff h(a) # (}; let kq be a surjection from w to E,. Let
g>reGandn<wandy <k and J be a name such that r forces J € [wy]“"
and supranh = 4 and h(a) = ko(n) for all @ € J. Set F = {ko(n) : a < w1} N7y
let j be the order isomorphism from some ordinal n to F. Then cfn = cfv = w;.
For all a < &, the set x, is Cohen over V[(gs)s<al; hence, (z;(a))a<y is eventually
splitting in V[(ga)a<~]. By a result of Baumgartner and Dordal [5], (2;(a))a<y 18
also eventually splitting in V[G]. Choose 3 < 7 such that z;(,) splits yg for all
a € n\ B. Then there exist s € G and « € v\ j(§) such that r > sk & € h*“J.
Hence, a € I and x, splits yg. Thus, ({Za,w \ Ta})a<k Witnesses sso = wy in
VIG]. O

Definition 3.6. Let add(B) denote the additivity of the ideal of meager sets of
reals.

It is known that add(B) < b and that it is consistent that add(B) < b. (See 5.4
and 11.7 of [7] and 7.3.D of [4]).

Corollary 3.7. If k = c¢f kK > w, then it is consistent that ss5 = wy and add(B) =
¢ =K.

Proof. Starting with GCH in the ground model, perform a x-long finite support
iteration of Hechler forcing. This forces add(B) = ¢ = & (see 11.6 of [7]). By
Theorem 3.5, this also forces sso = wq. [l

4. MODELS OF w; < Nt(w*) < ¢

To prove the consistency of w; < Nt(w*) < ¢, we employ generalized iteration
of forcing along posets as defined by Groszek and Jech [10]. We will only use finite
support iterations along well-founded posets. For simplicity, we limit our definition
of generalized iterations to this special case.

Definition 4.1. Suppose X is a well-founded poset and IP a forcing order consisting
of functions on X. Given any x € X, partial map f on X, and down-set ¥ of X,
set P Y ={p|Y:peP}, X|o={yeX:y<z}, X |<czx={ye X :y <z},
Pla=P|(X[a),Plea=P[(X|ca), flo=/1(X]a)and flca=]]
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P | z is a finite support iteration along X | x.
Q. is a (P [ 2)-name for a forcing order.
Plcz={pu{(z,q)}: (p.q) € @[ 2)*Q}.
]]-IP [CE I+ ]].[P(.I) = ]]'Qm'
PP is the set of functions 7 on X for which r [« y € P [< y for all y € X and
1p), IF r(z) = 1g, for all but finitely many z € X.
(6) p<gifandonlyifp [y <glyandp |yl p(y) <q(y) forall y € X.

Given a finite support iteration P along X and x € X and a filter G of P, set
Gy ={p(z) : peG}, Glae={pla:peG},and G <z ={p|<x:peqG}
Given any down-set Y of X, set G [Y ={p|Y :p € G}.

Remark. If P is a finite support iteration along a well-founded poset X with
down-set Y, then P [ Y is an iteration along Y, and 1p;y = 1p [ Y.

Definition 4.2. Suppose P is a finite support iteration along a well-founded poset
X with down-sets Y and Z such that Y C Z. Then there is a complete embedding
JE:P1Y — P| Z given by jZ(p) = pU(1lp | Z\Y) for all p € P|Y. This
embedding naturally induces an embedding of the class of (P | Y)-names, which
in turn naturally induces an embedding of the class of atomic forumlae in the
(P | Y)-forcing language. Let jZ also denote these embeddings.

Proposition 4.3. Suppose P, Y, and Z are as in the above definition, and ¢ is an
atomic formula in the (P [ Y)-forcing language. Then, for allp € P | Z, we have

p - jg(go) if and only if p | Y IF .

Proof. If p | Y IF ¢, then p < jZ(p | Y) I- j&(p). Conversely, suppose p | Y Iff .
Then we may choose ¢ < p | Y such that q I =¢. Hence, jZ(q) IF —jZ(¢). Set
r=qU(p[Z\Y). Then j{(q) > r < p; hence, p I} j¥ (). O
Lemma 4.4. Suppose P is a finite support iteration along a well-founded poset
X and z is a mazimal element of X. Set Y = X \ {«}. Then there is a dense
embedding ¢: P — (P [Y) *j§rz(Qw) given by ¢(p) = (p | Y, j%rm(p(l‘)» Hence,
if G is a P-generic filter, then Gy is (Qg)go-generic over V|G | Y].

Proof. First, let us show that ¢ is an order embedding. Suppose r,s € P. Then
r<sifandonlyifr [Y <s[Y and r [z IF r(z) < s(x). Also, ¢(r) < ¢(s) if
andonlyif r [ Y <s[Yandr Y IF j%rgﬂ(r(x) < s(z)). By Proposition 4.3,
r 1Y Ik jX . (r(z) < s(x)) if and only if r [ 2 |- 7(x) < s(z); hence, r < s if and
only if ¢(r) < ¢(s).

Finally, let us show that ran ¢ is dense. Suppose (p, q) € (P | Y)xj¥ Fm’(QI)' Then
there exist r < p and s € dom(j}g rw(@m)) such that r IF s =q € j};m(Qz). Hence,
(r,s) < {p,q). Also, s is a (j}(/rz “(P | «))-name; hence, there exists a (P | z)-name
t such that j§rm(t) = s. Hence, r IF j};rz(t € Q.); hence, r [ x IF t € Q,. Hence,
rU{{z,t)} € Pand ¢(r U{(z,t)}) = (r,s). Thus, ran ¢ is dense. O

Remark. Proposition 4.3 and Lemma 4.4 and their proofs remain valid for arbitrary
iterations along posets as defined in [10].

Lemma 4.5. Let P be a forcing order, A a subset of [w]* with the SFIP, Q the
Booth forcing for A, x a Q-name for a generic pseudointersection of A, and B a
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P-name such that 1p forces ACBC [w]“ and forces B to have the SFIP. Let
i and j be the canonical embeddings, respectivly, of P-names and Q-names into
(P xQ)-names. Then lp,q forces i(B) U {j(x)} to have the SFIP.

Proof. Seeking a contradiction, suppose 1o = (po, (0, F)) € P+ Q and n < w and
po Ik H € [B]<¥ and 7q I j(x) N(i(H) C #. Then pg forces F U H C B, which
is forced to have the SFIP; hence, there exist p; < pp and m € w \ n such that
p1 IFm € N(FUH). Set 71 = (p1, (cU{m}, F)). Thenro > ry I- 1 € j(x)N(i(H),
contradicting how we chose ry. d

Lemma 4.6. Suppose P and Q are forcing orders such that P is ccc and Q has
property (K). Then 1p forces Q to have property (K).

Proof. Suppose the lemma fails. Then there exist p € P and f such that p IF
feqQ and p Ik VJ € [wi]** 3a,6 € J f(a) L f(B). For each o < wy, choose
Po < p and g, € Q such that p, IF f(a) = Go. Then there exists I € [w]“*
such that g, [ qg for all o, 8 € I. Let J be the P-name {(&,ps) : @ € I}. Then
plEVa,8 € J fla) =Ga L ¢z = f(B). Hence, p IF |J| < w. Since P is ccc, there
exists a € I such that p I J C &. But this contradicts p > p, IF & € J. O

Lemma 4.7. Suppose P is a finite support iteration along a well-founded poset X
and 1p | x forces Q, to have property (K) for all x € X. Then P has property (K).

Proof. We may assume the lemma holds whenever X is replaced by a poset of lesser
height. Let I € [P]“*. We may assume {supp(p) : p € I} is a A-system; let o be
its root. Set Yy =, c, X [ 2. Then P [ Yy has property (K). Let n = |0\ Yp| and
(2)i<n biject from n to o\ Yy. Set Y;11 = Y;U{x;} for all i < n. Suppose i < n and
P |'Y; has property (K). By Lemma 4.6, Lpy, forces j}?m (Q,,) to have property

(K). Hence, P | Y;41 has property (K), for it densely embeds into P [ Y; *j}?m (Qx,)
by Lemma 4.4. By induction, P | Y,, has property (K); hence, there exists J € [I]**
such that p [ Y,, L q | Y, for all p,q € J. Fix p,q € J and choose r such that
r<plY,andr <gq|Y, Sets=rU(p]|supp(p)\Y,) U (q ] supp(q)\ Y,) and

t=sU(1lp | X \ doms). Then ¢ < p,q. ]

Lemma 4.8. Suppose cf k = k < X = A<F. Then there exists a r-like, r-directed,
well-founded poset = with cofinality and cardinality .

Proof. Let {z, : @ < A} biject from A to [A]<". Construct (ya)a<xr € ([A\]<%)* as
follows. Given av < A and (yg)p<a, choose &, € A\ Ug_, Ys and set yo = 20 U{&a}
Let = be {yo : @ < A} ordered by inclusion. Then = is cofinal with [A]<*; hence,
E is k-directed and has cofinality A. Also, Z is well-founded because (Yo )a<x 18
nondecreasing. Finally, Z is s-like because for all I € [A]" we have |U,c; ¥al >
{&w : @ € I}| = k; whence, {y, : @ € I} has no upper bound in [A]<*. O

Definition 4.9. A point ¢ in a space X is a P -point if every intersection of fewer
than xk-many neighborhoods of ¢ contains a neighborhood of g.

Definition 4.10. For all z,y C w, define z C* y as |z \ y| < w. Let p denote the
minimum value of |A| where A ranges over the subsets of [w]* that have SFIP yet
have no pseudointersection.

Remark. Tt easily seen that w; < p < bh.



SPLITTING FAMILIES AND THE NOETHERIAN TYPE OF fw \ w 9

Theorem 4.11. Suppose w1 < cfk = k < X\ = A<". Then there is a property (K)
forcing extension in which

p=7Nt(w*) = Nt(w*)=sss =b=r < A=c
Moreover, in this extension w* has P.-points; whence, maxge,- XNt(q,w*) = k.

Proof. Let = be as in Lemma 4.8. Let (0,)a<x biject from A to Z. Let (({a, Ma))a<r
biject from A to A%, Given a < X and (7¢, ,,)8<a € 2% choose T¢, 5. € E such
that o¢, < 7¢, na £ Tesms for all B < a. We may so choose ¢, ,,, because = is
directed and has cofinality .

Let us construct a finite support iteration P along =. Since = is well-founded,
we may define Q, in terms of P | ¢ for each o € Z. Suppose ¢ € = and, for all
T < o, we have |P [< 7| < k and Lp;, forces Q, to have property (K). Then
P | o has property (K) by Lemma 4.7, and hence is ccc. Moreover, |P | o| < k
because P | o is a finite support iteration along = [ o and |Z | | < k. Hence,
Ipjo IF [e=%] < ((k¥)<%) < A. Let & be a (P | o)-name for the set of all F in the
(P | o)-generic extension for which F € [[w]*]<* and F has the SFIP. Then we may
choose a (P | o)-name f, such that 1pj, forces f, to be a surjection from A to &,.
We may assume we are given corresponding f, for all 7 < o. If there exist o, 8 < A
such that o = 7, g, then let Q, be a (P | o)-name for Q) x Fn(w, 2) where Q/
is a (P | o)-name for the Booth forcing for f,_(8). If there are no such a and g,
then let Q, be a (P [ o)-name for a singleton poset. Then 1p}, forces Q, to have
property (K). Also, we may assume |Q,| < x. Hence, |P [< o] < k.

By induction, [P [< o| < k and lpj, forces Q, to have property (K) for all
o € =. Hence, P has property (K) by Lemma 4.7, and hence is ccc. Also, since
|Z] < X and P is a finite support iteration, |P| < A. Let G be a P-generic filter.
Then ¢V < A\¥ = X\. Moreover, ¢"I¢] > X because P adds A\-many Cohen reals.

By Theorem 2.16 and Lemma 2.6, it suffices to show that BVICl < g < pV[G], that
55¥[G] < k, and that some ¢ € (w*)VI is a P,-point. First, we prove x < p"¢].
Suppose E € ([[w]*]<*)VI¢] and E has the SFIP. Then there exists o < X such
that F € V[G | 0,] because E is k-directed. Hence, there exists 8 < A such that
(fou)Glon(B) = E. Hence, E has a pseudointersection in V|G [< 7q,g]. Thus,
k< pV[G].

Second, let us show that < k. For each a < K, let u, be the increasing
enumeration of the Cohen real added by the Fn(w, 2) factor of Q, .. Then it
suffices to show that {u, : @ < s} is unbounded in (w*)VI]. Suppose v € (w)"1C1.
Then there exists o € = such that v € V[G | 0]. Since E is s-like, there exists
o < k such that 75 o £ 0. By Lemma 4.4, u, enumerates a real Cohen generic over
V|G | o]; hence, u, is not eventually dominated by v.

Third, let us prove 55;/ @] < k. For each a < A, let z,, be the Cohen real added
by the Fn(w, 2) factor of Q,, .. Suppose I € ([\]*)V[¢) and y € ([w]*)VI¢]. Then
there exists o € E such that y € V[G | o]. Since = is k-like, there exists o € I such
that 7o £ 0. By Lemma 4.4, z, is Cohen generic over V[G | o], and therefore

pVIG]

splits y. Thus, ({Za,w \ Za})a<r Witnesses ssg[G] < K.

Finally, let us construct a Pe-point ¢ € (w*)VI]. Let C be an extension of the
ordering of Z to a well-ordering of E. For each 0 € =, set Y, = {r € E: 7 C o}.
Set p = minc = and choose U, € (w*)V. Suppose 7 € = and ¢ is a final predecessor
of 7 with respect to C and U, € (w*)VIEYl, If there are no a, 3 < A such that
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0 =Tap and (fs,)Glo. (B) € Us,, then choose U, € (w*)VIE1¥] such that U, D U,.
Now suppose such « and 3 exist. Let v, be the pseudointersection of (fs, )G 0. (5)
added by Q7.

By Lemmas 4.4 and 4.5, U, U {v,} has the SFIP; hence, we may choose U, €
(w*)VIEIY] such that U, D U, U{v,}. For 7 € = that are limit points with respect
to C, choose U, € (w*)VI¢I""] such that U, D U,cr Uss set ¢ = U, ez Ur. Then,
arguing as in the proof of £ < p¥[¢l, we have that ¢ is a P,-point in (w*)VI¢. O

The forcing extension of Theorem 4.11 can be modified to satisfy b = s <
Nt(w*) <.

Definition 4.12. Given a class J of posets and a cardinal x, let MA(k; J) denote
the statement that, given any P € J and fewer than x-many dense subsets of P,
there is a filter of [P intersecting each of these dense sets. We may replace J with
a descriptive term for J when there is no ambiguity. For example, MA(¢; cce) is
Martin’s axiom.

Theorem 4.13. Suppose wi < cfk =k < X\ = A\<". Then there is a property (K)
forcing extension in which

w; =7Nt(w*) =b=s < Nt(w*)=sso =k < A=c.

Proof. Let P be as in the proof of Theorem 4.11. Set R = P x Fn(wy, 2), which
has property (K) because P does. Let K be a generic filter of R. Let 7y and 7; be
the natural coordinate projections on R; let mg and 7 also denote their respective
natural extensions to the class of R-names. Set G = mg“K and H = m “K. Then
¢VIK] = X clearly holds. Adding wi-many Cohen reals to any model of ZFC forces
b=s5=wp, and Nt(w*) = < b, so TNt(w*)VIE] = pVIE] = gVIK] — ().

For each o < A, let x,, be the Cohen real added by the Fn(w, 2) factor of Q.
Suppose I € ([A*)VIE] and y € ([w]*)VIE]. Then there exists o € Z such that
y € V[(G10o)x H]. Since E is k-like, there exists o € I such that 75, € 0.
By Lemma 4.4, z,, is Cohen generic over V[G [ o]; hence, z,, is Cohen generic over
V[(G | o) x H] and therefore splits y. Thus, ({Za,w\Za})a<rWitnesses 55;/[1(] < K.

Therefore, it suffices to show that Nt(w*)V[E] > k. Suppose < k and A is an
R-name for a base of w*. Choose an R-name ¢ for an element of w* with character
A. Let f be a name for an injection from A into A such that ¢ € (ran f. Let g
be a name for an element of ([w]*)* such that q € g(a)* C f(a) for all & < A. For
each a < A, let u, be a name for g(«) such that uy = {{n} X Aan 1 n < w} where
each A, is a countable antichain of R. Since max{wi, u} < A, there exist £ < wn
and J € [AJ* such that ran 7y (u,) C Fn(g, 2) for all a € J. It suffices to show that
{(ua)k : & € J} has a pseudointersection in V[K].

For each o € J, set v, = {(R,7) : (A, (p,7)) € uy andp € G}. Set Hy =
HnNFn(¢, 2). By Bell’s Theorem [6], MA(p; o-centered) is a theorem of ZFC. Hence,
V|G] satisfies MA(k; o-centered). By an argument of Baumgartner and Tall com-
municated by Roitman [18], adding a single Cohen real preserves MA(x; o-centered).
Since Booth forcing for {(va)m, : @ € J} is o-centered, {(va)m, : @ € J}, which is
equal to {(us)x : o € J}, has a pseudointersection in V[G x Hy). O

5. LoCAL NOETHERIAN TYPE AND 7-TYPE

Definition 5.1. For every infinite cardinal k, let u(x) denote the space of uniform
ultrafilters on k.
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Dow and Zhou [8] proved that there is a point in w* that (along with satisfying
some additional properties) has an w°P-like local base. We present a simpler con-
struction of an w°P-like local base which also naturally generalizes to every u(k).
This construction is essentially due to Isbell [11], who was interested in actual
intersections as opposed to pseudointersections.

Definition 5.2. Given cardinals A > k > w and a point p in a space X, a local
(A, k)-splitter is a set U of A-many open neighborhoods of p such that p is not in
the interior of (V for any V € [U]".

Lemma 5.3. Every poset P is almost |P|°P-like.

Proof. Let k = |P| and let (pa)a<sx biject from x to P. Define a partial map
f:k — P as follows. Suppose @ < k and we have a partial map f,: a — P. If
ran f, is dense in P, then set fo41 = fo. Otherwise, set § = min{d < k : ps 2
q for all ¢ € ran f,} and set fo+1 = fo U {{a,ps)}. For limit ordinals v < &, set
fy = Ua<,y fa- Set f = fi.. Then f is nonincreasing; hence, ran f is x°P-like.
Moreover, ran f is dense in P. (I

Lemma 5.4. Suppose X is a space with a point p at which there is no finite local
base. Then xNt(p, X) is the least k > w for which there is a local (x(p, X), k)-splitter
at p. Moreover, if A > x(p, X), then p does not have a local (\, k)-splitter at p for
any kK < X or k < cf .

Proof. By Lemma 5.3, x(p, X) > xNt(p, X); hence, a xNt(p, X )°P-like local base
at p (which necessarily has size x(p, X)) is a local {x(p, X), xNt(p, X))-splitter at
p. To show the converse, let A = x(p, X) and let (U,)a<x be a sequence of open
neighborhoods of p. Let {V,, : @« < A} be a local base at p. For each a < A, choose
Wy € {Vg : B < A} such that W, C U, NV,. Then {W, : @ < A} is a local
base at p. Let K < xNt(p,X). Then there exist & < A and I € [A]"® such that
Wa € Nper Wp- Hence, p is in the interior of (5., Ug. Hence, {U, : v < A} is not
a local (\, k)-splitter at p.

To prove the second half of the lemma, suppose A > x(p, X) and A is a set of
A-many open neighborhoods of p. Let B be a local base at p of size x(p, X). Then,
for all kK < X and k < cf A, there exist U € B and C € [A]" such that U C C.
Hence, A is not a local (\, k)-splitter at p. O

Theorem 5.5. For each k > w, there exists p € u(k) such that xNt(p,u(k)) = w
and x(p, u(k)) = 2",

Proof. Let A be an independent family of subsets of k of size 2. Set B =
Urepapedz S r:Vy € F |z \y| < x}. Since A is independent, we may extend A to
an ultrafilter p on k such that pNB = . For each z C k, set * = {q € u(k) : = € q}.
Then {z* : © € A} is a local (2", w)-splitter at p. Since x(p, u(k)) < 2%, it follows
from Lemma 5.4 that xNt(p,u(k)) = w and x(p, u(k)) = 2". O

Definition 5.6. Let a denote the minimum of the cardinalities of infinite, maximal
almost disjoint subfamilies of [w]*. Let i denote the minimum of the cardinalities
of infinite, maximal independent subfamilies of [w]®.

It is known that b < aand t <i >0 > 5. (See 8.4, 8.12, 8.13 and 3.3 of [7].)
Because of Kunen’s result that a = X; in the Cohen model (see VIII.2.3 of [14]), it
is consistent that a < v. Also, Shelah [20] has constructed a model of vt < u < a.
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In ZFC, the best upper bound of y Nt(w*) of which we know is ¢ by Lemma 5.3.
We will next prove Theorem 5.10, which implies that, except for ¢ and possibly
cf ¢, all of the cardinal characteristics of the continuum with definitions included in
Blass [7] can consistently be simultaneously strictly less than yN¢(w*).

Lemma 5.7. Suppose Kk, A\, and u are regular cardinals and kK < X\ > u. Then
(k X \)°P is not almost u°P-like.

Proof. Let I be a cofinal subset of x x A. Then it suffices to show that I is not
p-like. If kK = A, then I is not p-like because it is A-directed. Suppose k < A.
Then there exists a < k such that |[I N ({a} x A)| = A; hence, I has an increasing
A-sequence; hence, I is not p-like. O

Lemma 5.8. Given any infinite independent subfamily I of [w]®, there exists J C
[w]¥ such that if  is a generic pseudointersection of J then IU{x} is independent,
but I U{z,y} is not independent for any y € [w]* NV \ I.

Proof. See Exercise A12 on page 289 of Kunen [14]. O

Definition 5.9. We say a P,-point in a space is simple if it has a local base of
order type k°P.

Theorem 5.10. Suppose w; < cfk = k < cf X = X = A\<*. Then there is a
property (K) forcing extension satisfyingp =a=i=u=xr < A= xNt(w*) =c¢.

Proof. We will construct a finite support iteration (Py)qa<x, where Ak denotes the
ordinal product of A and k. It suffices to ensure that the iteration is at every stage
property (K) and of size at most A, and that VF ~ satisfies max{a,i,u} < x < p
and A < xNt(w*). Our strategy is to interleave an iteration of length Ax and three
iterations of length k. At every stage below Ak, add another piece of what will be
an ultrafilter base that, ordered by O*, will be isomorphic to a cofinal subset of
Kk X A. Also, at every stage we will add a pseudointersection, such that the final
model satisfies p > k. After each limit stage of cofinality A, add an element to each
of three objects that, when completed, will be a maximal almost disjoint family of
size k, a maximal independent family of size x, and a base of a simple P,-point in
w*.
Let ¢: A2 — X be a bijection such that p(a,3) > « for all a,3 < X. For
each (a,0) € kK x A\, set Eq3 = {(7,0) € Kk X A : Ay + 6 < Aa+ f}. Suppose
(a, B) € k x X and we have constructed (P),<xa+p to have property (K) and size
at most A at all of its stages, and a sequence (2, 5)(y5)eE, 5 Of Pratg-names each
forced to be in [w]“. Set B = {z45 : (7,9) € Eqa g} Let (S,)y<x be a partition of
A into k-many stationary sets such that Sy contains all successor ordinals. Suppose
we have constructed a sequence (p4.5)(+.5)e Eaps € AFe.s such that we always have
Py, € Sy and py 5, < py,s, Whenever 69 < d1. Set Dy g = {(7,p4,5) : (7,9) € Eq g}
Further suppose that {((7,py.5),%+.5) : (7,0) € Eqspg} is forced to be an order
embedding of D, g into ([w]¥, D*) and that its range B is forced to have the SFIP.
Also suppose that we have the following if a > 0.

(5.1) Fxats Vo € [B]< 36 < X (o Z* 20,5

For each e < A, set A. = {x,5: (7,0) € Eqap and (v, py,5) < () }.
Let ys be a Pyq4pg-name for a surjection from A to [w|*. We may assume that
corresponding y., have already been constructed for all v < . Let ¢(¢,n) = 8.
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Claim. If a > 0, then we may choose z € {yc(n), w \ yc(n)} such that
IFxat+s Vo € [B]SY 36 < X zN ﬂa Z* x5

Proof. Suppose not. Let {20, 21} = {yc(n), w \ yc(n)}. Then, working in a generic
extension by Pxa44, there exist 0g, 01 € [B]< and such that z; N[ o; C* x5 for
all i < 2 and 0 < X. Hence, ({J;.50i € 20,5 for all § < A, in contradiction with
(5.1). O

If a > 0, then choose z as in the above claim; otherwise, choose z arbitrarily.
If o = 0, then set po,3 = B+ 1. Otherwise, we may choose p, g € S, such that
Pa,B > Pa~ for all v < and

Faats Vo € [Ay, ;] 36 < pa,s zﬂﬂa Z* o

Set Do gy1 = Dag U {{, pa,p)}. Let A" be a Pyq4p-name forced to satisfy A" =
Ap, ;U{z}if z splits Band A" = A, , otherwise. Let Qp be a name for the Booth
forcing for A’U{w\n: n < w}; let zo 3 be a name for a generic pseudointersection
of AU{w\n:n <w}. (The purpose of {w\n:n < w} is to ensure that z, 3 does
not almost contain any element of [w]* N VFra+s.)

Let Fq+3 to be a Pyo4g-name for a surjection from X to the elements of [[w]“]<"
that have the SFIP. We may assume that corresponding F’, have already been
constructed for all v < Ao+ 3. Let Qi be a name for the Booth forcing for
FAOH—C (77)

Further suppose we have constructed sequences (w,)~<q and (Uy),<q of Pyq-names
such that Iy, UsU{ws} C Uy € w* for all 6 < v < a, and such that w, is forced to
be a pseudointersection of U, for all v < a. If § # 0, then let Q2 be a name for the
trivial forcing. If 3 = 0, then choose U, such that I-xa U, ., UyU{wy} C Ua € w7,
let Q2 be a name for the Booth forcing for U,, and let w, be a name for a generic
pseudointersection of U,,.

Further suppose we have constructed a sequence (a)y<a 0f Pro-names whose
range is forced to be an almost disjoint subfamily of [w]“. If 8 # 0, then let Qs
be a name for the trivial forcing. If 8 = 0, then let Q3 be a name for the Booth
forcing for {w \ ay : v < a}, and let a, be a name for a generic pseudointersection
of {fw\ay:vy<a}l.

Further suppose we have constructed a sequence (iy)y<q Of Pyo-names whose
range is forced to be an independent subfamily of [w]. If 8 # 0, then let Q4 be a
name for the trivial forcing. If 5 = 0, then set I = {i, : v < o} and let J and x be
as in Lemma 5.8; let Q4 be a name for the Booth forcing for J; let i, be a name
for z.

Set Praypr1 = Prots * [[,c5 Qn- We may assume [[], 5 Qn| < A; hence,
Pra+s+1 has property (K) and size at most A\. Also, B U {z, g} is forced to have
the SFIP by Qp-genericity because for every b € B we have that {b} UA’ is forced to
have the SFIP because {b} U A’ C BU{z} if z splits B and {b} U A’ C B otherwise.
Let us also show that (5.1) holds if we replace 8 with 8+ 1. We may assume « > 0.
Let 0 € [B]<“. Then there exists § < X such that IFyxqyg 2N (o UT) €* zos
for all 7 € [A,, ,]<%; hence, { (o) \ zo,s} U A’ is forced to have the SFIP; hence,
IFaats+1 Ta,g N[0 €* x5 by Qo-genericity. Thus, (5.1) holds as desired.

To complete our inductive construction of (P,)y<xx, it suffices to show that
{7, Pv,8), T~,5) = (7,0) € Eq 41} is forced to be an order embedding of D g41
into ([w]¥,D>*). Suppose (v,d) € Eq 3. Then (o, pag) £ (7, pv.s) and lFaaysi1
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Tap B* 245 by Qo-genericity. If (v, pys) < (@, pa,s), then z,5 € A’; whence,
IFaxa48+1 Ty,s 2% Tag. Suppose (v, py.5) £ (@, pa,p). Then po g < pys; hence,
Py,6 2> Pas+1 = pop, 5; hence, 2, 5 C* xq ,, ;. By construction, A"U{w\zg,, ,}is
forced to have the SFIP; hence, IFxa1 541 Z4,6 ©F T0,p, 5 2" Ta,3 by Qo-genericity.
Thus, {((7, p+.5): Z~,5) = (7,0) € Eq 41} is forced to be an embedding as desired.
Let us show that VP« satisfies A < yNt(w*). Let G be a generic filter of
Py, and set B = {(zap)& @ (@, 3) € £ x A\}. Then B is a local base at some
p € (w*)VI because every element of ([w]*)VI%] is handled by an appropriate Q.
By Lemma 2.15, B contains a xNt(p,w*)°P-like local base {(zq g)¢ @ (o, B) € I} at
p for some I C k x X. Set J = {(c, pa,g) : (o, 5) € I}. Then J is cofinal in Kk x X;
hence, by Lemma 5.7, J is not v-like for any v < A. Hence, XNt(w*)V[G] >
Finally, let us show that V¥« satisfies max{a,i,u} < x < p. Working in V[G],
notice that u < s because |J,..(Ua)a € w* and {(wa)g @ @ < &} is a local base
at Uper(Ua)g. Moreover, {(aa)c @ @ < s} and {(ia)c : @ < w} witness that
a <k and i < k. For p > k, note that very element of [[w]“]<* with the SFIP is
(Fxat¢(n))g for some o < k and ¢,n < A. By Q;-genericity, a pseudointersection
of (Fha+c¢(n))s is added at stage Ao+ ¢(C, 7). O

Theorem 5.11. mxNt(w*) = w.

Proof. Fix p € w*. By a result of Balcar and Vojtds [3], there exists (y)zep such
that y, € [z]* for all € p and {y,}sep is an almost disjoint family. Clearly,
{yt}uep is a pairwise disjoint—and therefore w°P-like—local 7-base at p. [l

6. POWERS OF w*

Definition 6.1. A bor is a subset E of a product space [[;.; X; such that there
exist o € [I]<¢ and (E;);e, such that E = (., m; ' E;. Let Ntpox([T;c; Xi) denote

i€o i
the least infinite x such that [[,.; X; has a x°P-like base of open boxes.

X, we have Nt(X) <

iel
Lemma 6.2 (Peregudov [16]). In any product space X =[]
Ntpox(X) < sup;e; NH(X;).

Lemma 6.3 (Malykhin [15]). Let X = [[,.; X; where each X; is a nonsingleton
Ty space. If w(X) < |I|, then Nt(X) = Nitpox(X) = w.

i€l

Remark. In Lemma 6.3, the hypothesis that the factor spaces be nonsingleton and
T1 can be weakened to merely require that each factor space is the union of two
nontrivial open sets. Also, the conclusion of Lemma 6.3 may be amended with
the statement that X has a (|I|,w)-splitter: use ({m; 'U;, m; ' Vi})ies where each
{U;, V;} is a nontrivial open cover of X;.

Theorem 6.4. The sequence (Nt((w*)*T%))ocon is nonincreasing. Moreover,
Nt((w*)") = w.

Proof. Note that if w < a < 3, then (w*)? = ((w*)®)?. Then apply Lemmas 6.2
and 6.3. 0
Lemma 6.5. Let 0 <n <w and X be a space. Then Nitpox(X™) = Nt(X).

Proof. Set k = Ntpox(X™). By Lemma 6.2, K < Nt(X). Let us show that N¢(X) <
k. Let A be a k°P-like base of X™ consisting only of boxes. Let I3 denote the set of all
nonempty open V' C X for which there exists [],_,, U; € A such that V =, U;.
Then B is a base of X because if p € U and U is an open subset of X, then there
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exists [[,., Ui € A such that (p)i<,, € [[,., Ui € U™; whence, p € (,_,,U; CU
and mi<n U, eB.

It suffices to show that B is k°P-like. Suppose not. Then there exist ]
and ([],.,, Vai)a<x € A" such that

0 # ﬂUiQ ﬂVa,ﬁ’é mVB,i
i<n i<n i<n

for all a < B < k. Clearly, [[;_,, Va,i # [ i<, V3,i for all « < 8 < k. Choose U € A
such that U C (M, U:;)". Then U C [],_, Va, for all @ < &, in contradiction
with how we chose A. O

U ecA

i<n

Lemma 6.6. If0 < n < w and X is a compact space such that x(p, X) = w(X)
for allp € X, then Nt(X) = Nt(X™).

Proof. By Lemma 6.5, it suffices to show that Ntpex(X™) < Nt(X™). By Lemma 2.7,
either X™ has a (w(X"), Nt(X™))-splitter, or Nt(X") = w(X™)*. Hence, by
Lemma 2.6, Ntyo(X") < Nt(X™). O

Theorem 6.7. If0 < n < w, then Nt(w*) > Nt((w*)") > min{Nt(w*),c}. More-
over, max{u, cf ¢} = ¢ implies Nt(w*) = Nt((w*)").

Proof. Lemma 6.2 implies Nt(w*) > Nt((w*)™). To prove the rest of the theorem,
first consider the case t < ¢. As in the proof of Theorem 2.3, construct a point
p € w* such that mx(p,w*) = v and x(p,w*) = ¢. Then 7x((p)i<n, (W*)™) = ¢
and x((p)i<n, (W*)™) = ¢; hence, Nt((w*)™) > ¢ by Theorem 2.1. Moreover, if
cfc¢ = ¢, then Nt((w*)™) = Nt(w*) = ¢F. If u = ¢, then Nt(w*) = Nt((w*)")
by Lemma 6.6. Finally, in the case v = ¢, we have u = ¢, which again implies
Nt(w*) = Nt((w*)™). O

Corollary 6.8. Suppose max{u,cfc} =c. Then (Nt((w*)17%))ncon is nonincreas-
mg.

Proof. By Theorem 6.7 and Lemma 6.2, Nt((w*)") = Nt(w*) > Nt((w*)®) when-
ever 0 < n < w < «. The rest follows from Theorem 6.4. O

Theorem 6.9. Suppose u=c. Then Nt((w*)1T%) = Nt(w*) for all a« < cfe.

Proof. Let A be an arbitrary infinite cardinal less than Nt(w*). By Lemma 2.7, it
suffices to show that (w*)!1 T does not have a (c, \)-splitter. Seeking a contradiction,
suppose (Fg)g<. is such a (c, A\)-splitter. We may assume U6<c]:5 consists only
of open boxes because we can replace each F3 with a suitable refinement. Since
a < cfe, there exist 0 € [1 4+ a]<“ and I € [¢] such that, for every U € Ugc; Fis
there exists p(U) C (w*)? such that U = 7, 1¢(U). Let j be a bijection from ¢ to
I. Then (9“Fj(s))p<c is a (¢, A)-splitter of (w*)?. Hence, Nt((w*)?) <A < Nt(w*)
by Lemma 2.6. But Nt((w*)?) < Nt(w*) contradicts Theorem 6.7. O

<

Lemma 6.10. Suppose a space X has a {cf w(X), cf w(X))-splitter. Then Nt(X)
w(X).

Proof. Set k = cfw(X) and A = w(X). Let (Fa)a<x be a (k, k)-splitter of X. Let
h: X — & satisfy |h~H{a}| < A for all @ < k. Then (Fy(a))a<r is a (A, \)-splitter
because if I € [A\]*, then h“I € [x]". By Lemma 2.6, Nt(X) < \. O
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Remark. The proof of the above lemma shows that for any infinite cardinal &, a
space with a (cf k, cf k)-splitter also has a (k, k)-splitter.

Theorem 6.11. Nt((w*)f¢) <.

Proof. The sequence ({m;'({2n : n < w}*), 71 ({2n + 1 : n < w}*)Pacctc is a
{cf ¢,w)-splitter of (w*)'¢. Apply Lemma 6.10. O

Theorem 6.12. For all cardinals k satisfying k > cf k > w1, it is consistent that
¢ =k and v < cfc. The last inequality implies Nt((w*)**) = ¢ for all a < cfc
and Nt((w*)P) = c¢=k for all B € ¢\ cfec.

Proof. Starting with ¢ = x in the ground model, the proof of Theorem 2.3 shows
how to force t = u = w; while preserving ¢. Now suppose t < cf¢. Fix ao < ¢f ¢ and
B € ¢\ cfc. By Theorems 6.11 and 6.4, Nt((w*)?) < ¢. To see that Nt((w*)?) > ¢,
proceed as in the proof of Theorem 6.7, constructing a point with character ¢ and
m-character |3|. Similarly prove Nt((w*)'*®) = ¢ by constructing a point with
character ¢ and m-character |t + «. O

Lemma 6.13. Suppose k, A, and p are cardinals and p is a point in a product
space X =[], ., Xa satisfying the following for all o < k.
(1) 0<k<w(X) and w <X < w(X).
(2) kK <cfw(X) or A < w(X).
(3) p<Xorpu=cth
(4) x(p(), Xa) < A or the intersection of any p-many neighborhoods of p(«)
has nonempty interior.

Then x(p, X) < w(X) or Nt(X) > p.

Proof. Let A be a base of X. Set B ={U € A:p € U}. For each a < &, let
Ca be a local base at p(a) of size x(p(a), Xa). Set F' = U, gp<w [lae, Ca- For
each o0 € F, set Us = (\ycdomo Ta (). For each V € B, choose o(V) € F such
that p € Uyvy € V. We may assume x(p, X) = w(X); hence, by (1) and (2),
there exist 7 € [x]<¢“ and D € [B]* such that domo(V) = r for all V € D. Set
s ={a €r:x(pla),Xy) <Atand t =r\s. By (3), there exist 7 € [] ., Ca

and £ € [DJ* such that o(V) [ s = 7 for all V. € €. By (4), Nyeso(V)(a )
has nonempty interior for all & € ¢t. Hence, (€ has nonempty interior because it

contains Ur N(,e; o' Nyes (V) (). Thus, Nt(X) > p. O

Theorem 6.14. Suppose 0 < o < ¢ and (Xg)g<q s a sequence of spaces each with
weight at most ¢. Set X = [[5_,(Xp ®w”). Then Nt(X) > p.

Proof. Let v be an arbitrary infinite cardinal less than p. Set x = |a|, A = v, and
p = v. Choose ¢ € w* such that x(q,w*) = ¢; set p = (¢)s<o. Then Lemma 6.13
applies because if kK > cfw(X) = cf¢, then A < p < cf ¢ < ¢ = w(X). Therefore,
Nt(X) > v. O

Corollary 6.15. Suppose p = c. Then Nt((w*)1+?) = ¢ for all a < c.
Proof. By Theorem 2.11, Nt(w*) < ¢. Hence, by Corollary 6.8, Nt((w*)'*®) < ¢

for all & € On. By Theorem 6.14, Nt((w*)!t%) = ¢ for all a < . O

Corollary 6.16. Suppose oo < ¢ and (Xg)p<a S a sequence of spaces each with
weight at most ¢. Then H5<Q(Xﬁ @w™*) is not homeomorphic to a product of c-many
nonsingleton spaces.
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Proof. Combine Theorem 6.14 and Lemma 6.3. O

7. QUESTIONS
Question 1. Ts it consistent that Nt(w*) = ¢* and v > cf ¢?

Question 2. Is Nt(w*) < ss,, consistent? This inequality implies u < ¢. Hence, by
Theorem 2.11, the inequality further implies

cfe<r<u<c= Nt(w*) <ss, =c".

More generally, does any space X have a base that does not contain an N¢(X )°P-like
base?

Question 3. Is ss,, < sso consistent?

Question 4. Letting g denote the groupwise density number (see 6.26 of [7]), is
Nt(w*) < g consistent? xNt(w*) < g? In particular, what are Nt(w*) and y Nt(w*)
in the Laver model (see 11.7 of [7])?

Question 5. Is cf Nt(w*) < Nt(w*) < ¢ consistent? cf Nt(w*) = w?
Question 6. Is cf ¢ < Nt(w*) < ¢ consistent?

Question 7. What is x Nt(w*) in the forcing extension of the proof of Theorem 4.137
More generally, is it consistent that xNt(w*) < Nt(w*) < ¢?

Question 8. Is Y Nt(w*) = w consistent? An affirmative answer would be a strength-
ening of Shelah’s result [19] that w* consistently has no P-points. If the answer is
negative, then which, if any, of p, b, s, and g are lower bounds of Y Nt(w*) in ZFC?

Question 9. Is cf ¢ < xNt(w*) consistent? cf ¢ < yNt(w*) < ¢?

Question 10. Does any Hausdorff space have uncountable local Noetherian w-type?
(It is easy to construct such T3 spaces: give wy + 1 the topology {(w1 +1)\ (eUo) :
a<wpand o € [wy +1]<*} U {0}.)

Question 11. Is it consistent that Nt((w*)!T®) < min{Nt(w*), ¢} for some a < ¢?
Is it consistent that Nt((w*)1T%) < Nt(w*) for some a < cf ¢?
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