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Abstract. Extending some results of Malykhin, we prove several indepen-

dence results about base properties of βω \ ω and its powers, especially the

Noetherian type Nt(βω \ ω), the least κ for which βω \ ω has a base that is
κ-like with respect to containment. For example, Nt(βω \ ω) is at least s, but

can consistently be ω1, c, c+, or strictly between ω1 and c. Nt(βω \ ω) is also

consistently less than the additivity of the meager ideal. Nt(βω \ ω) is closely
related to the existence of special kinds of splitting families.

1. Introduction

Definition 1.1. Given a cardinal κ, define a poset to be κ-like (κop-like) if no
element is above (below) κ-many elements. Define a poset to be almost κop-like if
it has a κop-like dense subset.

In the context of families of subsets of a topological space, we will always im-
plicitly order by inclusion. We are particularly interested in κop-like bases, π-bases,
local bases, and local π-bases of the space ω∗ of nonprincipal ultrafilters on ω.
Recall that a local base (local π-base) at a point in a space is a family of open
neighborhoods of that point (family of nonempty open subsets) such that every
neighborhood of the point contains an element of the family; a base (π-base) of
a space is family of open sets that contains local bases (local π-bases) at every
point. See Engelking [9] for the more background on bases and their cousins. Also
recall the following basic cardinal functions. For more about these functions, see
Juhász [12].

Definition 1.2. Given a space X, let the weight of X, or w(X), be the least κ ≥ ω
such that X has a base of size at most κ. Given p ∈ X, let the character of p, or
χ(p,X), be the least κ ≥ ω such that there is a local base at p of size at most κ.
Let the character of X, or χ(X), be the supremum of the characters of its points.
Analogously define π-weight and π-character, respectively denoting them using π
and πχ.

Now consider the following order-theoretic parallels.

Definition 1.3. Given a space X, let the Noetherian type of X, or Nt(X), be the
least κ ≥ ω such that X has a base that is κop-like. Given p ∈ X, let the local
Noetherian type of p, or χNt(p,X), be the least κ ≥ ω such that there is a κop-like
local base at p. Let the local Noetherian type of X, or χNt(X), be the supremum
of the local Noetherian types of its points. Analogously define Noetherian π-type
and local Noetherian π-type, respectively denoting them using πNt and πχNt.
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Noetherian type and Noetherian π-type were introduced by Peregudov [16]. Let
ω∗ denote the space of nonprincipal ultrafilters on ω. Malykhin [15] proved that
MA implies πNt(ω∗) = c and CH implies Nt(ω∗) = c. We extend these results by
investigating Nt(ω∗), πNt(ω∗), χNt(ω∗), and πχNt(ω∗) as cardinal characteristics
of the continuum. For background on such cardinals, see Blass [7]. We also examine
the sequence 〈Nt((ω∗)1+α)〉α∈On.

Definition 1.4. Let b denote the minimum of |F| where F ranges over the subsets
of ωω that have no upper bound in ωω with respect to eventual domination.

Definition 1.5. A tree π-base of a space X is a π-base that is a tree when ordered
by containment. Let h be the minimum of the set of heights of tree π-bases of ω∗.

Balcar, Pelant, and Simon [1] proved that tree π-bases of ω∗ exist, and that
h ≤ min{b, cf c}. They also proved that the above definition of h is equivalent to
the more common definition of h as the distributivity number of [ω]ω ordered by
⊆∗.

Definition 1.6. Given x, y ∈ [ω]ω, we say that x splits y if |y ∩ x| = |y \ x| = ω.
Let r be the minimum value of |A| where A ranges over the subsets of [ω]ω such
that no x ∈ [ω]ω splits every y ∈ A. Let s be the minimum value of |A| where A
ranges over the subsets of [ω]ω such that every x ∈ [ω]ω is split by some y ∈ A.

It is known that b ≤ r and h ≤ s. (See Theorems 3.8 and 6.9 of [7].)
Clearly, Nt(ω∗) ≤ w(ω∗)+ = c+. We will show that also πχNt(ω∗) = ω and

πNt(ω∗) = h and s ≤ Nt(ω∗). Furthermore, Nt(ω∗) can consistently be c, c+, or
any regular κ satisfying 2<κ = c. Also, Nt(ω∗) = ω1 is relatively consistent with
any values of b and c. The relations ω1 < b = s = Nt(ω∗) < c and ω1 = b =
s < Nt(ω∗) < c are also each consistent. We also prove some relations between r
and Nt(ω∗), as well as some consistency results about the local Noetherian type of
points in ω∗.

2. Basic results

The following proposition is essentially due to Peregudov (see Lemma 1 of [16]).

Proposition 2.1. Suppose a point p in a space X satisfies πχ(p,X) < cf κ ≤ κ ≤
χ(p,X). Then Nt(X) > κ.

Proof. Let A be a base of X. Let U0 and V0 be, respectively, a local π-base at p
of size at most πχ(p,X) and a local base at p of size χ(p,X). For each element of
U0, choose a subset in A, thereby producing local π-base U at p that is a subset
of A of size at most πχ(p,X). Similarly, for each element of V0, choose a smaller
neighborhood of p in A, thereby producing a local base V at p that is a subset of A
of size χ(p,X). Every element of V contains an element of U . Hence, some element
of U is contained in κ-many elements of V; hence, A is not κop-like. �

Definition 2.2. For all x ∈ [ω]ω, set x∗ = {p ∈ ω∗ : p ∈ x}.

Theorem 2.3. It is relatively consistent with any value of c satisfying cf c > ω1

that Nt(ω∗) = c+.

Proof. We may assume cf c > ω1. By Exercise A10 on p. 289 of Kunen [14], there
is a ccc generic extension V [G] such that č = cV [G] and, in V [G], there exists p ∈ ω∗
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such that χ(p, ω∗) = ω1. Henceforth work in V [G]. Let ϕ be a bijection from ω2 to
ω. Define ψ : ω∗ → ω∗ by

x 7→ {E ⊆ ω : {m < ω : {n < ω : ϕ(m,n) ∈ E} ∈ p} ∈ x}.

Since πχ(p, ω∗) ≤ χ(p, ω∗) = ω1, there exists 〈Eα〉α<ω1 ∈ ([ω]ω)ω1 such that every
neighborhood of p contains E∗α for some α < ω1. Hence, for all x ∈ ω∗, every
neighborhood of ψ(x) contains (ϕ“({m} × Eα))∗ for some m < ω and α < ω1;
whence, πχ(ψ(x), ω∗) = ω1. Since ψ is easily verified to be a topological embedding,
χ(x, ω∗) ≤ χ(ψ(x), ω∗) for all x ∈ ω∗. By a result of Pospǐsil [17], there exists
q ∈ ω∗ such that χ(q, ω∗) = c. Hence, πχ(ψ(q), ω∗) = ω1 and χ(ψ(q), ω∗) = c. By
Proposition 2.1, Nt(ω∗) > χ(ψ(q), ω∗) = c. �

Definition 2.4. Given n < ω, let ssn (ssω) denote the least cardinal κ for which
there exists a sequence 〈fα〉α<c of functions on ω each with range contained in n
(each with finite range) such that for all I ∈ [c]κ and x ∈ [ω]ω there exists α ∈ I
such that fα is not eventually constant on x. (The notation ss was chosen with the
phrase “supersplitting number” in mind.) Note that if such an 〈fα〉α<c does not
exist for any κ ≤ c, then ssn (ssω) is by definition equal to c+.

Clearly ssn ≥ ssn+1 ≥ ssω for all n < ω. Moreover, since cf c > ω, we have
ssω = ssn for some n < ω. However, for any particular n ∈ ω \ 2, it is not clear
whether ZFC proves ssω = ssn.

Definition 2.5. Given λ ≥ κ ≥ ω and a space X, a 〈λ, κ〉-splitter of X is a sequence
〈Fα〉α<λ of finite open covers of X such that, for all I ∈ [λ]κ and 〈Uα〉α∈I ∈∏
α∈I Fα, the interior of

⋂
α∈I Uα is empty.

Lemma 2.6. Suppose X is a compact space with a base A of size at most w(X) such
that U ∩V ∈ A∪{∅} for all U, V ∈ A. If κ ≤ w(X) and X has a 〈w(X), κ〉-splitter,
then A contains a κop-like base of X. Hence, Nt(ω∗) ≤ ssω.

Proof. Set λ = w(X) and let 〈Fα〉α<λ be a 〈λ, κ〉-splitter of X. For each α < λ,
the cover Fα is refined by a finite subcover of A; hence, we may assume Fα ⊆ A.
Let A = {Uα : α < λ}. For each α < λ, set Bα = {Uα ∩ V : V ∈ Fα}. Set
B =

⋃
α<λ Bα \ {∅}. Then B is easily seen to be a base of X and a κop-like subset

of A. �

Lemma 2.7. Let X be a compact space without isolated points and let ω ≤ κ ≤
λ ≤ minp∈X χ(p,X). If X has no 〈λ, κ〉-splitter, then Nt(X) > κ.

Proof. Let A be a base of X. Construct a sequence 〈Fα〉α<λ of finite subcovers of
A as follows. Suppose we have α < λ and 〈Fβ〉β<α. For each p ∈ X, choose Vp ∈ A
such that p ∈ Vp 6∈

⋃
β<α Fβ . Let Fα be a finite subcover of {Vp : p ∈ X}. Then

Fα ∩ Fβ = ∅ for all α < β < λ. Suppose X has no 〈λ, κ〉-splitter. Then choose
I ∈ [λ]κ and 〈Uα〉α∈I ∈

∏
α∈I Fα such that

⋂
α∈I Uα has nonempty interior. Then

there exists W ∈ A such that W ⊆
⋂
α∈I Uα. Thus, A is not κop-like. �

Definition 2.8. Let u denote the minimum of the set of characters of points in
ω∗. Let πu denote the minimum of the set of π-characters of points in ω∗.

By a theorem of Balcar and Simon [2], πu = r.

Theorem 2.9. Suppose u = c. Then Nt(ω∗) = ssω.
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Proof. By Lemma 2.6, Nt(ω∗) ≤ ssω. Suppose κ ≤ c. Since every finite open cover
of ω∗ is refined by a finite, pairwise disjoint, clopen cover, ω∗ has a 〈c, κ〉-splitter if
and only if ssω ≤ κ. Hence, Nt(ω∗) ≥ ssω by Lemma 2.7. �

Lemma 2.10. Suppose r = c. Then ss2 ≤ c.

Proof. Let 〈xα〉α<c enumerate [ω]ω. Construct 〈yα〉α<c ∈ ([ω]ω)c as follows. Given
α < c and 〈yβ〉β<α, choose yα such that yα splits every element of {xα}∪{yβ : β <
α}. Suppose I ∈ [c]c and α < c. Then xα is split by yβ for all β ∈ I \ α. Thus,
〈{yα, ω \ yα}〉α<c witnesses ss2 ≤ c. �

Theorem 2.11. The cardinals r and Nt(ω∗) are related as follows.
(1) If r = c, then Nt(ω∗) = ssω ≤ c.
(2) If r < c, then Nt(ω∗) ≥ c.
(3) If r < cf c, then Nt(ω∗) = c+.

Proof. Statement (1) follows from Lemma 2.10, Theorem 2.9, and πu = r. The
proof of Theorem 2.3 shows how to construct p ∈ ω∗ such that πχ(p, ω∗) = πu = r
and χ(p, ω∗) = c. Hence, (2) and (3) follow from Proposition 2.1. �

Definition 2.12. A subset A of [ω]ω has the strong finite intersection property
(SFIP) if the intersection of every finite subset of A is infinite. Given A ⊆ [ω]ω

with the SFIP, define the Booth forcing for A to be [ω]<ω × [A]<ω ordered by
〈σ0, F0〉 ≤ 〈σ1, F1〉 if and only if F0 ⊇ F1 and σ1 ⊆ σ0 ⊆ σ1 ∪

⋂
F1. Define a

generic pseudointersection of A to be
⋃
〈σ,F 〉∈G σ where G is a generic filter of

[ω]<ω × [A]<ω.

Theorem 2.13. For all cardinals κ satisfying κ > cf κ > ω, it is consistent that
r = u = cf κ and Nt(ω∗) = ss2 = c = κ.

Proof. Assuming GCH in the ground model, construct a finite support iteration
〈Pα〉α≤κ as follows. First choose some U0 ∈ ω∗. Then suppose we have α < κ and
Pα and α Uα ∈ ω∗. Let Pα+1

∼= Pα ∗ Qα where Qα is a Pα-name for the Booth
forcing for Uα. Let xα be a Pα+1-name for a generic pseudointersection of Uα added
by Qα; let Uα+1 be a Pα+1-name for an element of ω∗ containing Uα ∪ {xα}. For
limit α < κ, let Uα =

⋃
β<α Uβ .

Let 〈ηα〉α<cf κ be an increasing sequence of ordinals with supremum κ. Then
{xηα : α < cf κ} is forced to generate an ultrafilter in V Pκ . Hence, κ r ≤ u ≤
cf κ < κ = c. Therefore, by Lemma 2.6 and Theorem 2.11, it suffices to show
that κ ss2 ≤ κ. Every nontrivial finite support iteration of infinite length adds
a Cohen real. Hence, we may choose for each α < κ a Pω(α+1)-name yα for an
element of [ω]ω that is Cohen over V Pωα . Then every name S for the range of a
cofinal subsequence of 〈yα〉α<κ is such that

κ ∀z ∈ [ω]ω ∃w ∈ S w splits z.

Hence, 〈yα〉α<κ witnesses that κ ss2 ≤ κ. �

Theorem 2.14. Nt(ω∗) ≥ s.

Proof. Suppose Nt(ω∗) = κ < s. Since Nt(ω∗) < c, we have r = c by Theorem 2.11.
Hence, u = c. By Theorem 2.9, it suffices to show that ssω > κ. Suppose 〈fα〉α<c is
a sequence of functions on ω with finite range and I ∈ [c]κ. Since κ < s, there exists
x ∈ [ω]ω such that fα is eventually constant on x for all α ∈ I. Thus, ssω > κ. �
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Lemma 2.15. Let κ be a cardinal and let P and Q be mutually dense subsets of a
common poset. Then P is almost κop-like if and only if Q is.

Proof. Suppose D is a κop-like dense subset of P . Then it suffices to construct a
κop-like dense subset of Q. Define a partial map f from |D|+ to Q as follows. Set
f0 = ∅. Suppose α < |D|+ and we have constructed a partial map fα from α to
Q. Set E = {d ∈ D : d 6≥ q for all q ∈ ran fα}. If E = ∅, then set fα+1 = fα.
Otherwise, choose q ∈ Q such that q ≤ e for some e ∈ E and let fα+1 be the
smallest function extending fα such that fα+1(α) = q. For limit ordinals γ ≤ |D|+,
set fγ =

⋃
α<γ fα. Set f = f|D|+ .

Let us show that ran f is a κop-like. Suppose otherwise. Then there exists
q ∈ ran f and an increasing sequence 〈ξα〉α<κ in dom f such that q ≤ f(ξα) for
all α < κ. By the way we constructed f , there exists 〈dα〉α<κ ∈ Dκ such that
f(ξβ) ≤ dβ 6= dα for all α < β < κ. Choose p ∈ P such that p ≤ q. Then choose
d ∈ D such that d ≤ p. Then d ≤ dβ 6= dα for all α < β < κ, which contradicts
that D is κop-like. Therefore, ran f is κop-like.

Finally, let us show that ran f is a dense subset of Q. Suppose q ∈ Q. Choose
p ∈ P such that p ≤ q. Then choose d ∈ D such that d ≤ p. By the way we
constructed f , there exists r ∈ ran f such that r ≤ d; hence, r ≤ q. �

Theorem 2.16. πNt(ω∗) = h.

Proof. First, we show that πNt(ω∗) ≤ h. Let A be a tree π-base of ω∗ such that A
has height h with respect to containment. Then A is clearly hop-like. To show that
h ≤ πNt(ω∗), let A be as above and let B be a πNt(ω∗)op-like π-base of ω∗. Then
A and B are mutually dense; hence, by Lemma 2.15, A contains a πNt(ω∗)op-like
π-base C of ω∗. Since C is also a tree π-base, it has height at most πNt(ω∗). Hence,
h ≤ πNt(ω∗). �

Corollary 2.17. If h = c, then πNt(ω∗) = Nt(ω∗) = ss2 = c.

Proof. Suppose h = c. Then r = c because h ≤ b ≤ r ≤ c. Hence, by Theorem 2.16,
Theorem 2.11, and Lemma 2.10, c ≤ πNt(ω∗) ≤ Nt(ω∗) = ssω ≤ ss2 ≤ c. �

3. Models of Nt(ω∗) = ω1

Adding c-many Cohen reals collapses ss2 to ω1. By Lemma 2.6, it therefore also
collapses Nt(ω∗) to ω1. The same result holds for random reals and Hechler reals.

Theorem 3.1. Suppose κω = κ and P = B(2κ)/I where B(2κ) is the Borel alegebra
of the product space 2κ and I is either the meager ideal or the null ideal (with respect
to the product measure). (In other words, P adds κ-many Cohen reals or κ-many
random reals in the usual way.) Then 1P  ω1 = ss2.

Proof. Working in the generic extension V [G], we have κ = c and a sequence
〈xα〉α<κ in [ω]ω such that V [G] = V [〈xα〉α<κ] and, if E ∈ P(κ)∩ V and α ∈ κ \E,
then xα is Cohen or random over V [〈xβ〉β∈E ]. (See [13] for a proof.) Suppose
I ∈ [κ]ω1 and y ∈ [ω]ω. Then y ∈ V [〈xα〉α∈J ] for some J ∈ [κ]ω ∩ V ; hence, xα
splits y for all α ∈ I \ J . Thus, 〈{xα, ω \ xα}〉α<κ witnesses ss2 = ω1. �

Definition 3.2. Let d denote the minimum of the cardinalities of subsets of ωω

that are cofinal with respect to eventual domination.
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Corollary 3.3. Every transitive model of ZFC has a ccc forcing extension that
preserves b, d, and c, and collapses ss2 to ω1.

Proof. Add c-many random reals to the ground model. Then every element of ωω

in the extension is eventually dominated by an element of ωω in the ground model;
hence, b, d, and c are preserved by this forcing, while ss2 becomes ω1. �

Definition 3.4. We say that a transfinite sequence 〈xα〉α<η of subsets of ω is
eventually splitting if for all y ∈ [ω]ω there exists α < η such that for all β ∈ η \ α
the set xβ splits y.

Theorem 3.5. Let κ = κω. Then ss2 = ω1 is forced by the κ-long finite support
iteration of Hechler forcing.

Proof. Let P be the κ-long finite support iteration of Hechler forcing. Let G be
a generic filter of P. For each α < κ, let gα be the generic dominating function
added at stage α; set xα = {n < ω : gα(n) is even}. Suppose p ∈ G and I and y
are names such that p forces I ∈ [κ]ω1 and y ∈ [ω]ω. Choose q ∈ G and a name
h such that q ≤ p and q forces h to be an increasing map from ω1 to I. For each
α < ω1, set Eα = {β < κ : q 6 h(α) 6= β̌}; let kα be a surjection from ω to Eα. Let
q ≥ r ∈ G and n < ω and γ ≤ κ and J be a name such that r forces J ∈ [ω1]ω1

and sup ranh = γ̌ and h(α) = kα(n)ˇ for all α ∈ J . Set F = {kα(n) : α < ω1} ∩ γ;
let j be the order isomorphism from some ordinal η to F . Then cf η = cf γ = ω1.
For all α < κ, the set xα is Cohen over V [〈gβ〉β<α]; hence, 〈xj(α)〉α<η is eventually
splitting in V [〈gα〉α<γ ]. By a result of Baumgartner and Dordal [5], 〈xj(α)〉α<η is
also eventually splitting in V [G]. Choose β < η such that xj(α) splits yG for all
α ∈ η \ β. Then there exist s ∈ G and α ∈ γ \ j(β) such that r ≥ s  α̌ ∈ h“J .
Hence, α ∈ IG and xα splits yG. Thus, 〈{xα, ω \ xα}〉α<κ witnesses ss2 = ω1 in
V [G]. �

Definition 3.6. Let add(B) denote the additivity of the ideal of meager sets of
reals.

It is known that add(B) ≤ b and that it is consistent that add(B) < b. (See 5.4
and 11.7 of [7] and 7.3.D of [4]).

Corollary 3.7. If κ = cf κ > ω, then it is consistent that ss2 = ω1 and add(B) =
c = κ.

Proof. Starting with GCH in the ground model, perform a κ-long finite support
iteration of Hechler forcing. This forces add(B) = c = κ (see 11.6 of [7]). By
Theorem 3.5, this also forces ss2 = ω1. �

4. Models of ω1 < Nt(ω∗) < c

To prove the consistency of ω1 < Nt(ω∗) < c, we employ generalized iteration
of forcing along posets as defined by Groszek and Jech [10]. We will only use finite
support iterations along well-founded posets. For simplicity, we limit our definition
of generalized iterations to this special case.

Definition 4.1. Suppose X is a well-founded poset and P a forcing order consisting
of functions on X. Given any x ∈ X, partial map f on X, and down-set Y of X,
set P � Y = {p � Y : p ∈ P}, X � x = {y ∈ X : y < x}, X �≤ x = {y ∈ X : y ≤ x},
P � x = P � (X � x), P �≤ x = P � (X �≤ x), f � x = f � (X � x), and f �≤ x = f �
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(X �≤ x). Then P is a finite support iteration along X if there exists a sequence
〈Qx〉x∈X satisfying the following conditions for all x ∈ X and all p, q ∈ P.

(1) P � x is a finite support iteration along X � x.
(2) Qx is a (P � x)-name for a forcing order.
(3) P �≤ x = {p ∪ {〈x, q〉} : 〈p, q〉 ∈ (P � x) ∗Qx}.
(4) 1P � x  1P(x) = 1Qx .
(5) P is the set of functions r on X for which r �≤ y ∈ P �≤ y for all y ∈ X and

1P�z  r(z) = 1Qz for all but finitely many z ∈ X.
(6) p ≤ q if and only if p � y ≤ q � y and p � y  p(y) ≤ q(y) for all y ∈ X.

Given a finite support iteration P along X and x ∈ X and a filter G of P, set
Gx = {p(x) : p ∈ G}, G � x = {p � x : p ∈ G}, and G �≤ x = {p �≤ x : p ∈ G}.
Given any down-set Y of X, set G � Y = {p � Y : p ∈ G}.

Remark. If P is a finite support iteration along a well-founded poset X with
down-set Y , then P � Y is an iteration along Y , and 1P�Y = 1P � Y .

Definition 4.2. Suppose P is a finite support iteration along a well-founded poset
X with down-sets Y and Z such that Y ⊆ Z. Then there is a complete embedding
jZY : P � Y → P � Z given by jZY (p) = p ∪ (1P � Z \ Y ) for all p ∈ P � Y . This
embedding naturally induces an embedding of the class of (P � Y )-names, which
in turn naturally induces an embedding of the class of atomic forumlae in the
(P � Y )-forcing language. Let jZY also denote these embeddings.

Proposition 4.3. Suppose P, Y , and Z are as in the above definition, and ϕ is an
atomic formula in the (P � Y )-forcing language. Then, for all p ∈ P � Z, we have
p  jZY (ϕ) if and only if p � Y  ϕ.

Proof. If p � Y  ϕ, then p ≤ jZY (p � Y )  jZY (ϕ). Conversely, suppose p � Y 6 ϕ.
Then we may choose q ≤ p � Y such that q  ¬ϕ. Hence, jZY (q)  ¬jZY (ϕ). Set
r = q ∪ (p � Z \ Y ). Then jZY (q) ≥ r ≤ p; hence, p 6 jZY (ϕ). �

Lemma 4.4. Suppose P is a finite support iteration along a well-founded poset
X and x is a maximal element of X. Set Y = X \ {x}. Then there is a dense
embedding φ : P → (P � Y ) ∗ jYX�x(Qx) given by φ(p) = 〈p � Y, jYX�x(p(x))〉. Hence,
if G is a P-generic filter, then Gx is (Qx)G�x-generic over V [G � Y ].

Proof. First, let us show that φ is an order embedding. Suppose r, s ∈ P. Then
r ≤ s if and only if r � Y ≤ s � Y and r � x  r(x) ≤ s(x). Also, φ(r) ≤ φ(s) if
and only if r � Y ≤ s � Y and r � Y  jYX�x(r(x) ≤ s(x)). By Proposition 4.3,
r � Y  jYX�x(r(x) ≤ s(x)) if and only if r � x  r(x) ≤ s(x); hence, r ≤ s if and
only if φ(r) ≤ φ(s).

Finally, let us show that ranφ is dense. Suppose 〈p, q〉 ∈ (P � Y )∗jYX�x(Qx). Then
there exist r ≤ p and s ∈ dom

(
jYX�x(Qx)

)
such that r  s = q ∈ jYX�x(Qx). Hence,

〈r, s〉 ≤ 〈p, q〉. Also, s is a (jYX�x“(P � x))-name; hence, there exists a (P � x)-name
t such that jYX�x(t) = s. Hence, r  jYX�x(t ∈ Qx); hence, r � x  t ∈ Qx. Hence,
r ∪ {〈x, t〉} ∈ P and φ(r ∪ {〈x, t〉}) = 〈r, s〉. Thus, ranφ is dense. �

Remark. Proposition 4.3 and Lemma 4.4 and their proofs remain valid for arbitrary
iterations along posets as defined in [10].

Lemma 4.5. Let P be a forcing order, A a subset of [ω]ω with the SFIP, Q the
Booth forcing for A, x a Q-name for a generic pseudointersection of A, and B a
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P-name such that 1P forces Ǎ ⊆ B ⊆ [ω]ω and forces B to have the SFIP. Let
i and j be the canonical embeddings, respectivly, of P-names and Q-names into
(P ∗ Q̌)-names. Then 1P∗Q̌ forces i(B) ∪ {j(x)} to have the SFIP.

Proof. Seeking a contradiction, suppose r0 = 〈p0, 〈σ, F 〉ˇ〉 ∈ P ∗ Q̌ and n < ω and
p0  H ∈ [B]<ω and r0  j(x) ∩

⋂
i(H) ⊆ ň. Then p0 forces F̌ ∪ H ⊆ B, which

is forced to have the SFIP; hence, there exist p1 ≤ p0 and m ∈ ω \ n such that
p1  m̌ ∈

⋂
(F̌∪H). Set r1 = 〈p1, 〈σ∪{m}, F 〉ˇ〉. Then r0 ≥ r1  m̌ ∈ j(x)∩

⋂
i(H),

contradicting how we chose r0. �

Lemma 4.6. Suppose P and Q are forcing orders such that P is ccc and Q has
property (K). Then 1P forces Q̌ to have property (K).

Proof. Suppose the lemma fails. Then there exist p ∈ P and f such that p 
f ∈ Q̌ω1 and p  ∀J ∈ [ω1]ω1 ∃α, β ∈ J f(α) ⊥ f(β). For each α < ω1, choose
pα ≤ p and qα ∈ Q such that pα  f(α) = q̌α. Then there exists I ∈ [ω1]ω1

such that qα 6⊥ qβ for all α, β ∈ I. Let J be the P-name {〈α̌, pα〉 : α ∈ I}. Then
p  ∀α, β ∈ J f(α) = q̌α 6⊥ q̌β = f(β). Hence, p  |J | ≤ ω. Since P is ccc, there
exists α ∈ I such that p  J ⊆ α̌. But this contradicts p ≥ pα  α̌ ∈ J . �

Lemma 4.7. Suppose P is a finite support iteration along a well-founded poset X
and 1P � x forces Qx to have property (K) for all x ∈ X. Then P has property (K).

Proof. We may assume the lemma holds whenever X is replaced by a poset of lesser
height. Let I ∈ [P]ω1 . We may assume {supp(p) : p ∈ I} is a ∆-system; let σ be
its root. Set Y0 =

⋃
x∈σX � x. Then P � Y0 has property (K). Let n = |σ \ Y0| and

〈xi〉i<n biject from n to σ\Y0. Set Yi+1 = Yi∪{xi} for all i < n. Suppose i < n and
P � Yi has property (K). By Lemma 4.6, 1P�Yi forces jYiX�xi(Qxi) to have property
(K). Hence, P � Yi+1 has property (K), for it densely embeds into P � Yi∗jYiX�xi(Qxi)
by Lemma 4.4. By induction, P � Yn has property (K); hence, there exists J ∈ [I]ω1

such that p � Yn 6⊥ q � Yn for all p, q ∈ J . Fix p, q ∈ J and choose r such that
r ≤ p � Yn and r ≤ q � Yn. Set s = r ∪ (p � supp(p) \ Yn) ∪ (q � supp(q) \ Yn) and
t = s ∪ (1P � X \ dom s). Then t ≤ p, q. �

Lemma 4.8. Suppose cf κ = κ ≤ λ = λ<κ. Then there exists a κ-like, κ-directed,
well-founded poset Ξ with cofinality and cardinality λ.

Proof. Let {xα : α < λ} biject from λ to [λ]<κ. Construct 〈yα〉α<λ ∈ ([λ]<κ)λ as
follows. Given α < λ and 〈yβ〉β<α, choose ξα ∈ λ\

⋃
β<α yβ and set yα = xα∪{ξα}.

Let Ξ be {yα : α < λ} ordered by inclusion. Then Ξ is cofinal with [λ]<κ; hence,
Ξ is κ-directed and has cofinality λ. Also, Ξ is well-founded because 〈yα〉α<λ is
nondecreasing. Finally, Ξ is κ-like because for all I ∈ [λ]κ we have |

⋃
α∈I yα| ≥

|{ξα : α ∈ I}| = κ; whence, {yα : α ∈ I} has no upper bound in [λ]<κ. �

Definition 4.9. A point q in a space X is a Pκ-point if every intersection of fewer
than κ-many neighborhoods of q contains a neighborhood of q.

Definition 4.10. For all x, y ⊆ ω, define x ⊆∗ y as |x \ y| < ω. Let p denote the
minimum value of |A| where A ranges over the subsets of [ω]ω that have SFIP yet
have no pseudointersection.

Remark. It easily seen that ω1 ≤ p ≤ h.
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Theorem 4.11. Suppose ω1 ≤ cf κ = κ ≤ λ = λ<κ. Then there is a property (K)
forcing extension in which

p = πNt(ω∗) = Nt(ω∗) = ss2 = b = κ ≤ λ = c.

Moreover, in this extension ω∗ has Pκ-points; whence, maxq∈ω∗ χNt(q, ω∗) = κ.

Proof. Let Ξ be as in Lemma 4.8. Let 〈σα〉α<λ biject from λ to Ξ. Let 〈〈ζα, ηα〉〉α<λ
biject from λ to λ2. Given α < λ and 〈τζβ ,ηβ 〉β<α ∈ Ξα, choose τζα,ηα ∈ Ξ such
that σζα < τζα,ηα 6≤ τζβ ,ηβ for all β < α. We may so choose τζα,ηα because Ξ is
directed and has cofinality λ.

Let us construct a finite support iteration P along Ξ. Since Ξ is well-founded,
we may define Qσ in terms of P � σ for each σ ∈ Ξ. Suppose σ ∈ Ξ and, for all
τ < σ, we have |P �≤ τ | < κ and 1P�τ forces Qτ to have property (K). Then
P � σ has property (K) by Lemma 4.7, and hence is ccc. Moreover, |P � σ| < κ
because P � σ is a finite support iteration along Ξ � σ and |Ξ � σ| < κ. Hence,
1P�σ  |c<κ| ≤ ((κω)<κ)ˇ≤ λ. Let Eσ be a (P � σ)-name for the set of all E in the
(P � σ)-generic extension for which E ∈ [[ω]ω]<κ and E has the SFIP. Then we may
choose a (P � σ)-name fσ such that 1P�σ forces fσ to be a surjection from λ to Eσ.
We may assume we are given corresponding fτ for all τ < σ. If there exist α, β < λ
such that σ = τα,β , then let Qσ be a (P � σ)-name for Q′σ × Fn(ω, 2) where Q′σ
is a (P � σ)-name for the Booth forcing for fσα(β). If there are no such α and β,
then let Qσ be a (P � σ)-name for a singleton poset. Then 1P�σ forces Qσ to have
property (K). Also, we may assume |Qσ| < κ. Hence, |P �≤ σ| < κ.

By induction, |P �≤ σ| < κ and 1P�σ forces Qσ to have property (K) for all
σ ∈ Ξ. Hence, P has property (K) by Lemma 4.7, and hence is ccc. Also, since
|Ξ| ≤ λ and P is a finite support iteration, |P| ≤ λ. Let G be a P-generic filter.
Then cV [G] ≤ λω = λ. Moreover, cV [G] ≥ λ because P adds λ-many Cohen reals.

By Theorem 2.16 and Lemma 2.6, it suffices to show that bV [G] ≤ κ ≤ pV [G], that
ss
V [G]
2 ≤ κ, and that some q ∈ (ω∗)V [G] is a Pκ-point. First, we prove κ ≤ pV [G].

Suppose E ∈ ([[ω]ω]<κ)V [G] and E has the SFIP. Then there exists α < λ such
that E ∈ V [G � σα] because Ξ is κ-directed. Hence, there exists β < λ such that
(fσα)G�σα(β) = E. Hence, E has a pseudointersection in V [G �≤ τα,β ]. Thus,
κ ≤ pV [G].

Second, let us show that bV [G] ≤ κ. For each α < κ, let uα be the increasing
enumeration of the Cohen real added by the Fn(ω, 2) factor of Qτ0,α . Then it
suffices to show that {uα : α < κ} is unbounded in (ωω)V [G]. Suppose v ∈ (ωω)V [G].
Then there exists σ ∈ Ξ such that v ∈ V [G � σ]. Since Ξ is κ-like, there exists
α < κ such that τ0,α 6≤ σ. By Lemma 4.4, uα enumerates a real Cohen generic over
V [G � σ]; hence, uα is not eventually dominated by v.

Third, let us prove ss
V [G]
2 ≤ κ. For each α < λ, let xα be the Cohen real added

by the Fn(ω, 2) factor of Qτ0,α . Suppose I ∈ ([λ]κ)V [G] and y ∈ ([ω]ω)V [G]. Then
there exists σ ∈ Ξ such that y ∈ V [G � σ]. Since Ξ is κ-like, there exists α ∈ I such
that τ0,α 6≤ σ. By Lemma 4.4, xα is Cohen generic over V [G � σ], and therefore
splits y. Thus, 〈{xα, ω \ xα}〉α<λ witnesses ss

V [G]
2 ≤ κ.

Finally, let us construct a Pκ-point q ∈ (ω∗)V [G]. Let v be an extension of the
ordering of Ξ to a well-ordering of Ξ. For each σ ∈ Ξ, set Yσ = {τ ∈ Ξ : τ @ σ}.
Set ρ = minv Ξ and choose Uρ ∈ (ω∗)V . Suppose τ ∈ Ξ and σ is a final predecessor
of τ with respect to v and Uσ ∈ (ω∗)V [G�Yσ ]. If there are no α, β < λ such that
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σ = τα,β and (fσα)G�σα(β) ⊆ Uσ, then choose Uτ ∈ (ω∗)V [G�Yτ ] such that Uτ ⊇ Uσ.
Now suppose such α and β exist. Let vσ be the pseudointersection of (fσα)G�σα(β)
added by Q′σ.

By Lemmas 4.4 and 4.5, Uσ ∪ {vσ} has the SFIP; hence, we may choose Uτ ∈
(ω∗)V [G�Yτ ] such that Uτ ⊇ Uσ ∪{vσ}. For τ ∈ Ξ that are limit points with respect
to v, choose Uτ ∈ (ω∗)V [G�Yτ ] such that Uτ ⊇

⋃
σ@τ Uσ; set q =

⋃
τ∈Ξ Uτ . Then,

arguing as in the proof of κ ≤ pV [G], we have that q is a Pκ-point in (ω∗)V [G]. �

The forcing extension of Theorem 4.11 can be modified to satisfy b = s <
Nt(ω∗) < c.

Definition 4.12. Given a class J of posets and a cardinal κ, let MA(κ; J ) denote
the statement that, given any P ∈ J and fewer than κ-many dense subsets of P,
there is a filter of P intersecting each of these dense sets. We may replace J with
a descriptive term for J when there is no ambiguity. For example, MA(c; ccc) is
Martin’s axiom.

Theorem 4.13. Suppose ω1 < cf κ = κ ≤ λ = λ<κ. Then there is a property (K)
forcing extension in which

ω1 = πNt(ω∗) = b = s < Nt(ω∗) = ss2 = κ ≤ λ = c.

Proof. Let P be as in the proof of Theorem 4.11. Set R = P × Fn(ω1, 2), which
has property (K) because P does. Let K be a generic filter of R. Let π0 and π1 be
the natural coordinate projections on R; let π0 and π1 also denote their respective
natural extensions to the class of R-names. Set G = π0“K and H = π1“K. Then
cV [K] = λ clearly holds. Adding ω1-many Cohen reals to any model of ZFC forces
b = s = ω1, and πNt(ω∗) = h ≤ b, so πNt(ω∗)V [K] = bV [K] = sV [K] = ω1.

For each α < λ, let xα be the Cohen real added by the Fn(ω, 2) factor of Qτ0,α .
Suppose I ∈ ([λ]κ)V [K] and y ∈ ([ω]ω)V [K]. Then there exists σ ∈ Ξ such that
y ∈ V [(G � σ) × H]. Since Ξ is κ-like, there exists α ∈ I such that τ0,α 6≤ σ.
By Lemma 4.4, xα is Cohen generic over V [G � σ]; hence, xα is Cohen generic over
V [(G � σ)×H] and therefore splits y. Thus, 〈{xα, ω\xα}〉α<λwitnesses ss

V [K]
2 ≤ κ.

Therefore, it suffices to show that Nt(ω∗)V [K] ≥ κ. Suppose µ < κ and A is an
R-name for a base of ω∗. Choose an R-name q for an element of ω∗ with character
λ. Let f be a name for an injection from λ into A such that q ∈

⋂
ran f . Let g

be a name for an element of ([ω]ω)λ such that q ∈ g(α)∗ ⊆ f(α) for all α < λ. For
each α < λ, let uα be a name for g(α) such that uα = {{ň} ×Aα,n : n < ω} where
each Aα,n is a countable antichain of R. Since max{ω1, µ} < λ, there exist ξ < ω1

and J ∈ [λ]µ such that ranπ1(uα) ⊆ Fn(ξ, 2) for all α ∈ J . It suffices to show that
{(uα)K : α ∈ J} has a pseudointersection in V [K].

For each α ∈ J , set vα = {〈ň, r〉 : 〈ň, 〈p, r〉〉 ∈ uα and p ∈ G}. Set H0 =
H∩Fn(ξ, 2). By Bell’s Theorem [6], MA(p; σ-centered) is a theorem of ZFC. Hence,
V [G] satisfies MA(κ; σ-centered). By an argument of Baumgartner and Tall com-
municated by Roitman [18], adding a single Cohen real preserves MA(κ; σ-centered).
Since Booth forcing for {(vα)H0 : α ∈ J} is σ-centered, {(vα)H0 : α ∈ J}, which is
equal to {(uα)K : α ∈ J}, has a pseudointersection in V [G×H0]. �

5. Local Noetherian type and π-type

Definition 5.1. For every infinite cardinal κ, let u(κ) denote the space of uniform
ultrafilters on κ.
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Dow and Zhou [8] proved that there is a point in ω∗ that (along with satisfying
some additional properties) has an ωop-like local base. We present a simpler con-
struction of an ωop-like local base which also naturally generalizes to every u(κ).
This construction is essentially due to Isbell [11], who was interested in actual
intersections as opposed to pseudointersections.

Definition 5.2. Given cardinals λ ≥ κ ≥ ω and a point p in a space X, a local
〈λ, κ〉-splitter is a set U of λ-many open neighborhoods of p such that p is not in
the interior of

⋂
V for any V ∈ [U ]κ.

Lemma 5.3. Every poset P is almost |P |op-like.

Proof. Let κ = |P | and let 〈pα〉α<κ biject from κ to P . Define a partial map
f : κ → P as follows. Suppose α < κ and we have a partial map fα : α → P . If
ran fα is dense in P , then set fα+1 = fα. Otherwise, set β = min{δ < κ : pδ 6≥
q for all q ∈ ran fα} and set fα+1 = fα ∪ {〈α, pβ〉}. For limit ordinals γ ≤ κ, set
fγ =

⋃
α<γ fα. Set f = fκ. Then f is nonincreasing; hence, ran f is κop-like.

Moreover, ran f is dense in P . �

Lemma 5.4. Suppose X is a space with a point p at which there is no finite local
base. Then χNt(p,X) is the least κ ≥ ω for which there is a local 〈χ(p,X), κ〉-splitter
at p. Moreover, if λ > χ(p,X), then p does not have a local 〈λ, κ〉-splitter at p for
any κ < λ or κ ≤ cf λ.

Proof. By Lemma 5.3, χ(p,X) ≥ χNt(p,X); hence, a χNt(p,X)op-like local base
at p (which necessarily has size χ(p,X)) is a local 〈χ(p,X), χNt(p,X)〉-splitter at
p. To show the converse, let λ = χ(p,X) and let 〈Uα〉α<λ be a sequence of open
neighborhoods of p. Let {Vα : α < λ} be a local base at p. For each α < λ, choose
Wα ∈ {Vβ : β < λ} such that Wα ⊆ Uα ∩ Vα. Then {Wα : α < λ} is a local
base at p. Let κ < χNt(p,X). Then there exist α < λ and I ∈ [λ]κ such that
Wα ⊆

⋂
β∈IWβ . Hence, p is in the interior of

⋂
β∈I Uβ . Hence, {Uα : α < λ} is not

a local 〈λ, κ〉-splitter at p.
To prove the second half of the lemma, suppose λ > χ(p,X) and A is a set of

λ-many open neighborhoods of p. Let B be a local base at p of size χ(p,X). Then,
for all κ < λ and κ ≤ cf λ, there exist U ∈ B and C ∈ [A]κ such that U ⊆

⋂
C.

Hence, A is not a local 〈λ, κ〉-splitter at p. �

Theorem 5.5. For each κ ≥ ω, there exists p ∈ u(κ) such that χNt(p, u(κ)) = ω
and χ(p, u(κ)) = 2κ.

Proof. Let A be an independent family of subsets of κ of size 2κ. Set B =⋃
F∈[A]ω{x ⊆ κ : ∀y ∈ F |x \ y| < κ}. Since A is independent, we may extend A to

an ultrafilter p on κ such that p∩B = ∅. For each x ⊆ κ, set x∗ = {q ∈ u(κ) : x ∈ q}.
Then {x∗ : x ∈ A} is a local 〈2κ, ω〉-splitter at p. Since χ(p, u(κ)) ≤ 2κ, it follows
from Lemma 5.4 that χNt(p, u(κ)) = ω and χ(p, u(κ)) = 2κ. �

Definition 5.6. Let a denote the minimum of the cardinalities of infinite, maximal
almost disjoint subfamilies of [ω]ω. Let i denote the minimum of the cardinalities
of infinite, maximal independent subfamilies of [ω]ω.

It is known that b ≤ a and r ≤ i ≥ d ≥ s. (See 8.4, 8.12, 8.13 and 3.3 of [7].)
Because of Kunen’s result that a = ℵ1 in the Cohen model (see VIII.2.3 of [14]), it
is consistent that a < r. Also, Shelah [20] has constructed a model of r ≤ u < a.
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In ZFC, the best upper bound of χNt(ω∗) of which we know is c by Lemma 5.3.
We will next prove Theorem 5.10, which implies that, except for c and possibly
cf c, all of the cardinal characteristics of the continuum with definitions included in
Blass [7] can consistently be simultaneously strictly less than χNt(ω∗).

Lemma 5.7. Suppose κ, λ, and µ are regular cardinals and κ ≤ λ > µ. Then
(κ× λ)op is not almost µop-like.

Proof. Let I be a cofinal subset of κ × λ. Then it suffices to show that I is not
µ-like. If κ = λ, then I is not µ-like because it is λ-directed. Suppose κ < λ.
Then there exists α < κ such that |I ∩ ({α} × λ)| = λ; hence, I has an increasing
λ-sequence; hence, I is not µ-like. �

Lemma 5.8. Given any infinite independent subfamily I of [ω]ω, there exists J ⊆
[ω]ω such that if x is a generic pseudointersection of J then I ∪{x} is independent,
but I ∪ {x, y} is not independent for any y ∈ [ω]ω ∩ V \ I.

Proof. See Exercise A12 on page 289 of Kunen [14]. �

Definition 5.9. We say a Pκ-point in a space is simple if it has a local base of
order type κop.

Theorem 5.10. Suppose ω1 ≤ cf κ = κ ≤ cf λ = λ = λ<κ. Then there is a
property (K) forcing extension satisfying p = a = i = u = κ ≤ λ = χNt(ω∗) = c.

Proof. We will construct a finite support iteration 〈Pα〉α≤λκ where λκ denotes the
ordinal product of λ and κ. It suffices to ensure that the iteration is at every stage
property (K) and of size at most λ, and that V Pλκ satisfies max{a, i, u} ≤ κ ≤ p
and λ ≤ χNt(ω∗). Our strategy is to interleave an iteration of length λκ and three
iterations of length κ. At every stage below λκ, add another piece of what will be
an ultrafilter base that, ordered by ⊇∗, will be isomorphic to a cofinal subset of
κ × λ. Also, at every stage we will add a pseudointersection, such that the final
model satisfies p ≥ κ. After each limit stage of cofinality λ, add an element to each
of three objects that, when completed, will be a maximal almost disjoint family of
size κ, a maximal independent family of size κ, and a base of a simple Pκ-point in
ω∗.

Let ϕ : λ2 → λ be a bijection such that ϕ(α, β) ≥ α for all α, β < λ. For
each 〈α, β〉 ∈ κ × λ, set Eα,β = {〈γ, δ〉 ∈ κ × λ : λγ + δ < λα + β}. Suppose
〈α, β〉 ∈ κ× λ and we have constructed 〈Pγ〉γ≤λα+β to have property (K) and size
at most λ at all of its stages, and a sequence 〈xγ,δ〉〈γ,δ〉∈Eα,β of Pλα+β-names each
forced to be in [ω]ω. Set B = {xγ,δ : 〈γ, δ〉 ∈ Eα,β}. Let 〈Sγ〉γ<κ be a partition of
λ into κ-many stationary sets such that S0 contains all successor ordinals. Suppose
we have constructed a sequence 〈ργ,δ〉〈γ,δ〉∈Eα,β ∈ λEα,β such that we always have
ργ,δ ∈ Sγ and ργ,δ0 < ργ,δ1 whenever δ0 < δ1. Set Dα,β = {〈γ, ργ,δ〉 : 〈γ, δ〉 ∈ Eα,β}.
Further suppose that {〈〈γ, ργ,δ〉, xγ,δ〉 : 〈γ, δ〉 ∈ Eα,β} is forced to be an order
embedding of Dα,β into 〈[ω]ω,⊇∗〉 and that its range B is forced to have the SFIP.
Also suppose that we have the following if α > 0.

(5.1) λα+β ∀σ ∈ [B]<ω ∃δ < λ
⋂
σ 6⊆∗ x0,δ

For each ε < λ, set Aε = {xγ,δ : 〈γ, δ〉 ∈ Eα,β and 〈γ, ργ,δ〉 < 〈α, ε〉}.
Let yβ be a Pλα+β-name for a surjection from λ to [ω]ω. We may assume that

corresponding yγ have already been constructed for all γ < β. Let ϕ(ζ, η) = β.
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Claim. If α > 0, then we may choose z ∈ {yζ(η), ω \ yζ(η)} such that

λα+β ∀σ ∈ [B]<ω ∃δ < λ z ∩
⋂
σ 6⊆∗ x0,δ.

Proof. Suppose not. Let {z0, z1} = {yζ(η), ω \ yζ(η)}. Then, working in a generic
extension by Pλα+β , there exist σ0, σ1 ∈ [B]<ω and such that zi ∩

⋂
σi ⊆∗ x0,δ for

all i < 2 and δ < λ. Hence,
⋂⋃

i<2 σi ⊆∗ x0,δ for all δ < λ, in contradiction with
(5.1). �

If α > 0, then choose z as in the above claim; otherwise, choose z arbitrarily.
If α = 0, then set ρα,β = β + 1. Otherwise, we may choose ρα,β ∈ Sα such that
ρα,β > ρα,γ for all γ < β and

λα+β ∀σ ∈ [Aρα,β ]<ω ∃δ < ρα,β z ∩
⋂
σ 6⊆∗ x0,δ.

Set Dα,β+1 = Dα,β ∪ {〈α, ρα,β〉}. Let A′ be a Pλα+β-name forced to satisfy A′ =
Aρα,β ∪{z} if z splits B and A′ = Aρα,β otherwise. Let Q0 be a name for the Booth
forcing for A′ ∪{ω \n : n < ω}; let xα,β be a name for a generic pseudointersection
of A′ ∪{ω \n : n < ω}. (The purpose of {ω \n : n < ω} is to ensure that xα,β does
not almost contain any element of [ω]ω ∩ V Pλα+β .)

Let Fλα+β to be a Pλα+β-name for a surjection from λ to the elements of [[ω]ω]<κ

that have the SFIP. We may assume that corresponding Fγ have already been
constructed for all γ < λα + β. Let Q1 be a name for the Booth forcing for
Fλα+ζ(η).

Further suppose we have constructed sequences 〈wγ〉γ<α and 〈Uγ〉γ<α of Pλα-names
such that λγ Uδ ∪{wδ} ⊆ Uγ ∈ ω∗ for all δ < γ < α, and such that wγ is forced to
be a pseudointersection of Uγ for all γ < α. If β 6= 0, then let Q2 be a name for the
trivial forcing. If β = 0, then choose Uα such that λα

⋃
γ<α Uγ ∪{wγ} ⊆ Uα ∈ ω∗,

let Q2 be a name for the Booth forcing for Uα, and let wα be a name for a generic
pseudointersection of Uα.

Further suppose we have constructed a sequence 〈aγ〉γ<α of Pλα-names whose
range is forced to be an almost disjoint subfamily of [ω]ω. If β 6= 0, then let Q3

be a name for the trivial forcing. If β = 0, then let Q3 be a name for the Booth
forcing for {ω \ aγ : γ < α}, and let aα be a name for a generic pseudointersection
of {ω \ aγ : γ < α}.

Further suppose we have constructed a sequence 〈iγ〉γ<α of Pλα-names whose
range is forced to be an independent subfamily of [ω]ω. If β 6= 0, then let Q4 be a
name for the trivial forcing. If β = 0, then set I = {iγ : γ < α} and let J and x be
as in Lemma 5.8; let Q4 be a name for the Booth forcing for J ; let iα be a name
for x.

Set Pλα+β+1 = Pλα+β ∗
∏
n<5 Qn. We may assume |

∏
n<5 Qn| ≤ λ; hence,

Pλα+β+1 has property (K) and size at most λ. Also, B ∪ {xα,β} is forced to have
the SFIP by Q0-genericity because for every b ∈ B we have that {b}∪A′ is forced to
have the SFIP because {b}∪A′ ⊆ B∪{z} if z splits B and {b}∪A′ ⊆ B otherwise.
Let us also show that (5.1) holds if we replace β with β+1. We may assume α > 0.
Let σ ∈ [B]<ω. Then there exists δ < λ such that λα+β z ∩

⋂
(σ ∪ τ) 6⊆∗ x0,δ

for all τ ∈ [Aρα,β ]<ω; hence,
{(⋂

σ
)
\ x0,δ

}
∪A′ is forced to have the SFIP; hence,

λα+β+1 xα,β ∩
⋂
σ 6⊆∗ x0,δ by Q0-genericity. Thus, (5.1) holds as desired.

To complete our inductive construction of 〈Pγ〉γ≤λκ, it suffices to show that
{〈〈γ, ργ,δ〉, xγ,δ〉 : 〈γ, δ〉 ∈ Eα,β+1} is forced to be an order embedding of Dα,β+1

into 〈[ω]ω,⊇∗〉. Suppose 〈γ, δ〉 ∈ Eα,β . Then 〈α, ρα,β〉 6≤ 〈γ, ργ,δ〉 and λα+β+1
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xα,β 6⊇∗ xγ,δ by Q0-genericity. If 〈γ, ργ,δ〉 < 〈α, ρα,β〉, then xγ,δ ∈ A′; whence,
λα+β+1 xγ,δ )∗ xα,β . Suppose 〈γ, ργ,δ〉 6< 〈α, ρα,β〉. Then ρα,β < ργ,δ; hence,
ργ,δ ≥ ρα,β+1 = ρ0,ρα,β ; hence, xγ,δ ⊆∗ x0,ρα,β . By construction, A′∪{ω\x0,ρα,β} is
forced to have the SFIP; hence, λα+β+1 xγ,δ ⊆∗ x0,ρα,β 6⊇∗ xα,β by Q0-genericity.
Thus, {〈〈γ, ργ,δ〉, xγ,δ〉 : 〈γ, δ〉 ∈ Eα,β+1} is forced to be an embedding as desired.

Let us show that V Pλκ satisfies λ ≤ χNt(ω∗). Let G be a generic filter of
Pλκ and set B = {(xα,β)∗G : 〈α, β〉 ∈ κ × λ}. Then B is a local base at some
p ∈ (ω∗)V [G] because every element of ([ω]ω)V [G] is handled by an appropriate Q0.
By Lemma 2.15, B contains a χNt(p, ω∗)op-like local base {(xα,β)∗G : 〈α, β〉 ∈ I} at
p for some I ⊆ κ× λ. Set J = {〈α, ρα,β〉 : 〈α, β〉 ∈ I}. Then J is cofinal in κ× λ;
hence, by Lemma 5.7, J is not ν-like for any ν < λ. Hence, χNt(ω∗)V [G] ≥ λ.

Finally, let us show that V Pλκ satisfies max{a, i, u} ≤ κ ≤ p. Working in V [G],
notice that u ≤ κ because

⋃
α<κ(Uα)G ∈ ω∗ and {(wα)∗G : α < κ} is a local base

at
⋃
α<κ(Uα)G. Moreover, {(aα)G : α < κ} and {(iα)G : α < κ} witness that

a ≤ κ and i ≤ κ. For p ≥ κ, note that very element of [[ω]ω]<κ with the SFIP is
(Fλα+ζ(η))G for some α < κ and ζ, η < λ. By Q1-genericity, a pseudointersection
of (Fλα+ζ(η))G is added at stage λα+ ϕ(ζ, η). �

Theorem 5.11. πχNt(ω∗) = ω.

Proof. Fix p ∈ ω∗. By a result of Balcar and Vojtáš [3], there exists 〈yx〉x∈p such
that yx ∈ [x]ω for all x ∈ p and {yx}x∈p is an almost disjoint family. Clearly,
{y∗x}x∈p is a pairwise disjoint—and therefore ωop-like—local π-base at p. �

6. Powers of ω∗

Definition 6.1. A box is a subset E of a product space
∏
i∈I Xi such that there

exist σ ∈ [I]<ω and 〈Ei〉i∈σ such that E =
⋂
i∈σ π

−1
i Ei. Let Ntbox(

∏
i∈I Xi) denote

the least infinite κ such that
∏
i∈I Xi has a κop-like base of open boxes.

Lemma 6.2 (Peregudov [16]). In any product space X =
∏
i∈I Xi, we have Nt(X) ≤

Ntbox(X) ≤ supi∈I Nt(Xi).

Lemma 6.3 (Malykhin [15]). Let X =
∏
i∈I Xi where each Xi is a nonsingleton

T1 space. If w(X) ≤ |I|, then Nt(X) = Ntbox(X) = ω.

Remark. In Lemma 6.3, the hypothesis that the factor spaces be nonsingleton and
T1 can be weakened to merely require that each factor space is the union of two
nontrivial open sets. Also, the conclusion of Lemma 6.3 may be amended with
the statement that X has a 〈|I|, ω〉-splitter: use 〈{π−1

i Ui, π
−1
i Vi}〉i∈I where each

{Ui, Vi} is a nontrivial open cover of Xi.

Theorem 6.4. The sequence 〈Nt((ω∗)ω+α)〉α∈On is nonincreasing. Moreover,
Nt((ω∗)c) = ω.

Proof. Note that if ω ≤ α ≤ β, then (ω∗)β ∼= ((ω∗)α)β . Then apply Lemmas 6.2
and 6.3. �

Lemma 6.5. Let 0 < n < ω and X be a space. Then Ntbox(Xn) = Nt(X).

Proof. Set κ = Ntbox(Xn). By Lemma 6.2, κ ≤ Nt(X). Let us show that Nt(X) ≤
κ. LetA be a κop-like base ofXn consisting only of boxes. Let B denote the set of all
nonempty open V ⊆ X for which there exists

∏
i<n Ui ∈ A such that V =

⋂
i<n Ui.

Then B is a base of X because if p ∈ U and U is an open subset of X, then there
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exists
∏
i<n Ui ∈ A such that 〈p〉i<n ∈

∏
i<n Ui ⊆ Un; whence, p ∈

⋂
i<n Ui ⊆ U

and
⋂
i<n Ui ∈ B.

It suffices to show that B is κop-like. Suppose not. Then there exist
∏
i<n Ui ∈ A

and 〈
∏
i<n Vα,i〉α<κ ∈ Aκ such that

∅ 6=
⋂
i<n

Ui ⊆
⋂
i<n

Vα,i 6=
⋂
i<n

Vβ,i

for all α < β < κ. Clearly,
∏
i<n Vα,i 6=

∏
i<n Vβ,i for all α < β < κ. Choose U ∈ A

such that U ⊆ (
⋂
i<n Ui)

n. Then U ⊆
∏
i<n Vα,i for all α < κ, in contradiction

with how we chose A. �

Lemma 6.6. If 0 < n < ω and X is a compact space such that χ(p,X) = w(X)
for all p ∈ X, then Nt(X) = Nt(Xn).

Proof. By Lemma 6.5, it suffices to show thatNtbox(Xn) ≤ Nt(Xn). By Lemma 2.7,
either Xn has a 〈w(Xn), Nt(Xn)〉-splitter, or Nt(Xn) = w(Xn)+. Hence, by
Lemma 2.6, Ntbox(Xn) ≤ Nt(Xn). �

Theorem 6.7. If 0 < n < ω, then Nt(ω∗) ≥ Nt((ω∗)n) ≥ min{Nt(ω∗), c}. More-
over, max{u, cf c} = c implies Nt(ω∗) = Nt((ω∗)n).

Proof. Lemma 6.2 implies Nt(ω∗) ≥ Nt((ω∗)n). To prove the rest of the theorem,
first consider the case r < c. As in the proof of Theorem 2.3, construct a point
p ∈ ω∗ such that πχ(p, ω∗) = r and χ(p, ω∗) = c. Then πχ(〈p〉i<n, (ω∗)n) = r
and χ(〈p〉i<n, (ω∗)n) = c; hence, Nt((ω∗)n) ≥ c by Theorem 2.1. Moreover, if
cf c = c, then Nt((ω∗)n) = Nt(ω∗) = c+. If u = c, then Nt(ω∗) = Nt((ω∗)n)
by Lemma 6.6. Finally, in the case r = c, we have u = c, which again implies
Nt(ω∗) = Nt((ω∗)n). �

Corollary 6.8. Suppose max{u, cf c} = c. Then 〈Nt((ω∗)1+α)〉α∈On is nonincreas-
ing.

Proof. By Theorem 6.7 and Lemma 6.2, Nt((ω∗)n) = Nt(ω∗) ≥ Nt((ω∗)α) when-
ever 0 < n < ω ≤ α. The rest follows from Theorem 6.4. �

Theorem 6.9. Suppose u = c. Then Nt((ω∗)1+α) = Nt(ω∗) for all α < cf c.

Proof. Let λ be an arbitrary infinite cardinal less than Nt(ω∗). By Lemma 2.7, it
suffices to show that (ω∗)1+α does not have a 〈c, λ〉-splitter. Seeking a contradiction,
suppose 〈Fβ〉β<c is such a 〈c, λ〉-splitter. We may assume

⋃
β<c Fβ consists only

of open boxes because we can replace each Fβ with a suitable refinement. Since
α < cf c, there exist σ ∈ [1 + α]<ω and I ∈ [c]c such that, for every U ∈

⋃
β∈I Fβ ,

there exists ϕ(U) ⊆ (ω∗)σ such that U = π−1
σ ϕ(U). Let j be a bijection from c to

I. Then 〈ϕ“Fj(β)〉β<c is a 〈c, λ〉-splitter of (ω∗)σ. Hence, Nt((ω∗)σ) ≤ λ < Nt(ω∗)
by Lemma 2.6. But Nt((ω∗)σ) < Nt(ω∗) contradicts Theorem 6.7. �

Lemma 6.10. Suppose a space X has a 〈cf w(X), cf w(X)〉-splitter. Then Nt(X) ≤
w(X).

Proof. Set κ = cf w(X) and λ = w(X). Let 〈Fα〉α<κ be a 〈κ, κ〉-splitter of X. Let
h : λ → κ satisfy |h−1{α}| < λ for all α < κ. Then 〈Fh(α)〉α<λ is a 〈λ, λ〉-splitter
because if I ∈ [λ]λ, then h“I ∈ [κ]κ. By Lemma 2.6, Nt(X) ≤ λ. �
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Remark. The proof of the above lemma shows that for any infinite cardinal κ, a
space with a 〈cf κ, cf κ〉-splitter also has a 〈κ, κ〉-splitter.

Theorem 6.11. Nt((ω∗)cf c) ≤ c.

Proof. The sequence 〈{π−1
α ({2n : n < ω}∗), π−1

α ({2n + 1 : n < ω}∗)}〉α<cf c is a
〈cf c, ω〉-splitter of (ω∗)cf c. Apply Lemma 6.10. �

Theorem 6.12. For all cardinals κ satisfying κ > cf κ > ω1, it is consistent that
c = κ and r < cf c. The last inequality implies Nt((ω∗)1+α) = c+ for all α < cf c
and Nt((ω∗)β) = c = κ for all β ∈ c \ cf c.

Proof. Starting with c = κ in the ground model, the proof of Theorem 2.3 shows
how to force r = u = ω1 while preserving c. Now suppose r < cf c. Fix α < cf c and
β ∈ c \ cf c. By Theorems 6.11 and 6.4, Nt((ω∗)β) ≤ c. To see that Nt((ω∗)β) ≥ c,
proceed as in the proof of Theorem 6.7, constructing a point with character c and
π-character |β|. Similarly prove Nt((ω∗)1+α) = c+ by constructing a point with
character c and π-character |r + α|. �

Lemma 6.13. Suppose κ, λ, and µ are cardinals and p is a point in a product
space X =

∏
α<κXα satisfying the following for all α < κ.

(1) 0 < κ < w(X) and ω ≤ λ ≤ w(X).
(2) κ < cf w(X) or λ < w(X).
(3) µ < λ or µ = cf λ.
(4) χ(p(α), Xα) < λ or the intersection of any µ-many neighborhoods of p(α)

has nonempty interior.
Then χ(p,X) < w(X) or Nt(X) > µ.

Proof. Let A be a base of X. Set B = {U ∈ A : p ∈ U}. For each α < κ, let
Cα be a local base at p(α) of size χ(p(α), Xα). Set F =

⋃
r∈[κ]<ω

∏
α∈r Cα. For

each σ ∈ F , set Uσ =
⋂
α∈domσ π

−1
α σ(α). For each V ∈ B, choose σ(V ) ∈ F such

that p ∈ Uσ(V ) ⊆ V . We may assume χ(p,X) = w(X); hence, by (1) and (2),
there exist r ∈ [κ]<ω and D ∈ [B]λ such that domσ(V ) = r for all V ∈ D. Set
s = {α ∈ r : χ(p(α), Xα) < λ} and t = r \ s. By (3), there exist τ ∈

∏
α∈s Cα

and E ∈ [D]µ such that σ(V ) � s = τ for all V ∈ E . By (4),
⋂
V ∈E σ(V )(α)

has nonempty interior for all α ∈ t. Hence,
⋂
E has nonempty interior because it

contains Uτ ∩
⋂
α∈t π

−1
α

⋂
V ∈E σ(V )(α). Thus, Nt(X) > µ. �

Theorem 6.14. Suppose 0 < α < c and 〈Xβ〉β<α is a sequence of spaces each with
weight at most c. Set X =

∏
β<α(Xβ ⊕ ω∗). Then Nt(X) ≥ p.

Proof. Let ν be an arbitrary infinite cardinal less than p. Set κ = |α|, λ = ν+, and
µ = ν. Choose q ∈ ω∗ such that χ(q, ω∗) = c; set p = 〈q〉β<α. Then Lemma 6.13
applies because if κ ≥ cf w(X) = cf c, then λ ≤ p ≤ cf c < c = w(X). Therefore,
Nt(X) > ν. �

Corollary 6.15. Suppose p = c. Then Nt((ω∗)1+α) = c for all α < c.

Proof. By Theorem 2.11, Nt(ω∗) ≤ c. Hence, by Corollary 6.8, Nt((ω∗)1+α) ≤ c
for all α ∈ On. By Theorem 6.14, Nt((ω∗)1+α) = c for all α < c. �

Corollary 6.16. Suppose α < c and 〈Xβ〉β<α is a sequence of spaces each with
weight at most c. Then

∏
β<α(Xβ⊕ω∗) is not homeomorphic to a product of c-many

nonsingleton spaces.
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Proof. Combine Theorem 6.14 and Lemma 6.3. �

7. Questions

Question 1. Is it consistent that Nt(ω∗) = c+ and r ≥ cf c?

Question 2. Is Nt(ω∗) < ssω consistent? This inequality implies u < c. Hence, by
Theorem 2.11, the inequality further implies

cf c ≤ r ≤ u < c = Nt(ω∗) < ssω = c+.

More generally, does any space X have a base that does not contain an Nt(X)op-like
base?

Question 3. Is ssω < ss2 consistent?

Question 4. Letting g denote the groupwise density number (see 6.26 of [7]), is
Nt(ω∗) < g consistent? χNt(ω∗) < g? In particular, what are Nt(ω∗) and χNt(ω∗)
in the Laver model (see 11.7 of [7])?

Question 5. Is cf Nt(ω∗) < Nt(ω∗) < c consistent? cf Nt(ω∗) = ω?

Question 6. Is cf c < Nt(ω∗) < c consistent?

Question 7. What is χNt(ω∗) in the forcing extension of the proof of Theorem 4.13?
More generally, is it consistent that χNt(ω∗) < Nt(ω∗) ≤ c?

Question 8. Is χNt(ω∗) = ω consistent? An affirmative answer would be a strength-
ening of Shelah’s result [19] that ω∗ consistently has no P-points. If the answer is
negative, then which, if any, of p, h, s, and g are lower bounds of χNt(ω∗) in ZFC?

Question 9. Is cf c < χNt(ω∗) consistent? cf c < χNt(ω∗) < c?

Question 10. Does any Hausdorff space have uncountable local Noetherian π-type?
(It is easy to construct such T1 spaces: give ω1 + 1 the topology {(ω1 + 1)\ (α∪σ) :
α < ω1 and σ ∈ [ω1 + 1]<ω} ∪ {∅}.)

Question 11. Is it consistent that Nt((ω∗)1+α) < min{Nt(ω∗), c} for some α < c?
Is it consistent that Nt((ω∗)1+α) < Nt(ω∗) for some α < cf c?
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[4] T. Bartoszyński and H. Judah, Set theory. On the structure of the real line, A K Peters, Ltd.,

Wellesley, MA, 1995.
[5] J. E. Baumgartner and P. Dordal, Adjoining Dominating Functions, J. Symbolic Logic 50

(1985), no. 1, 94–101.

[6] M. G. Bell, On the combinatorial principle P (c), Fund. Math. 114 (1981), no. 2, 149–157.
[7] A. Blass, Combinatorial Cardinal Characteristics of the Continuum. In M. Foreman, A.

Kanamori, and M. Magidor, eds., Handbook of Set Theory. Kluwer, to appear.

[8] A. Dow and J. Zhou, Two real ultrafilters on ω, Topology Appl. 97 (1999), no. 1-2, 149–154.
[9] R. Engelking, General Topology, Heldermann Verlag, Berlin, 2nd ed., 1989.

[10] M. Groszek and T. Jech, Generalized iteration of forcing, Trans. Amer. Math. Soc. 324

(1991), no. 1, 1–26.
[11] J. Isbell, The category of cofinal types. II, Trans. Amer. Math. Soc. 116 (1965), 394–416.



18 DAVID MILOVICH

[12] I. Juhász, Cardinal functions in topology—ten years later, Mathematical Centre Tracts, 123,
Mathematisch Centrum, Amsterdam, 1980.

[13] K. Kunen, Random and Cohen reals, Handbook of set-theoretic topology, 887–911,

North-Holland, Amsterdam, 1984.
[14] K. Kunen, Set theory. An introduction to independence proofs, Studies in Logic and the

Foundations of Mathematics, 102. North-Holland Publishing Co., Amsterdam-New York,

1980.
[15] V. I. Malykhin, On Noetherian Spaces, Amer. Math. Soc. Transl. 134 (1987), no. 2, 83–91.

[16] S. A. Peregudov, On the Noetherian type of topological spaces, Comment. Math. Univ. Car-
olin. 38 (1997), no. 3, 581–586.
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