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Abstract. We show that if a power homogeneous compactum X has
character κ+ and density at most κ, then there is a nonempty open
U ⊆ X such that every p in U is flat, “flat” meaning that p has a family
F of χ(p,X)-many neighborhoods such that p is not in the interior
of the intersection of any infinite subfamiliy of F . The binary notion
of a point being flat or not flat is refined by a cardinal function, the
local Noetherian type, which is in turn refined by the κ-wide splitting
numbers, a new family of cardinal functions we introduce. We show that
the flatness of p and the κ-wide splitting numbers of p are invariant
with respect to passing from p in X to 〈p〉α<λ in Xλ, provided that
λ < χ(p,X), or, respectively, that λ < cf κ. The above <χ(p,X)-power-
invariance is not generally true for the local Noetherian type of p, as
shown by a counterexample where χ(p,X) is singular.

1. Introduction

Definition 1.1. A space X is homogeneous if for any p, q ∈ X there is a
homeomorphism h : X → X such that h(p) = q.

There are several known restrictions on the cardinalities of homogeneous
compacta. First we mention a classical result, and then we very briefly
survey some more recent progress.

Theorem 1.2.

• Arhangel ′skĭı’s Theorem: if X is compact, then |X| ≤ 2χ(X).
• Čech-Pospǐsil Theorem: if X is a compactum without isolated points

and κ = minp∈X χ(p,X), then |X| ≥ 2κ.
• Hence, if X is an infinite homogeneous compactum, then |X| =

2χ(X).

In constrast to Theorem 1.2, the cardinality of the ordered compactum
ωω + 1 is not of the form 2κ for any κ.

(See Engelking [7], Juhász [8], and Kunen [10] for all undefined terms.
Our convention is that πw(·), χ(·), πχ(·), d(·), c(·), and t(·) respectively
denote π-weight, character, π-character, density, cellularity, and tightness
of topological spaces.)

Theorem 1.3.

• |X| ≤ 2πχ(X)c(X) for every homogeneous T2 X. [4]
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• |X| ≤ 2t(X) for every homogeneous compactum X. [24]
• |X| ≤ 2c(X) for every T5 homogeneous compactum X. [13]

In contrast, |βN| = 22ℵ0 despite βN being compact and having countable
π-weight.

Despite the above knowledge (and much more), many important ques-
tions about homogeneous compacta remain open. See Van Mill [14] and
Kunen [9] to survey these questions. For example, Van Douwen’s Prob-
lem asks whether there is a homogeneous compactum X with c(X) > 2ℵ0 .
This question is open in all models of ZFC, and has been open for several
decades. (A more general version of this question, also open, asks whether
every compactum is a continuous image of a homogeneous compactum.)
Milovich [15] connected Van Douwen’s Problem with the order theory of
local bases through the next theorem. We include a short proof for the
reader’s convenience.

Definition 1.4.

• A preordered set 〈P,≤〉 is κ-founded |{q ∈ P : q ≤ p}| < κ for all
p ∈ P .
• A preordered set 〈P,≤〉 is κop-like if |{q ∈ P : q ≥ p}| < κ for all
p ∈ P .
• Unless indicated otherwise, families of sets are assumed to be ordered

by inclusion.
• For any point p in a space X, the local Noetherian type of p in X,

or χNt(p,X), denotes the least infinite cardinal κ for which p has a
κop-like local base in X.
• The local Noetherian type of X, or χNt(X), denotes

sup
p∈X

χNt(p,X).

• The Noetherian type of X, or Nt(X), denotes the least infinite car-
dinal κ such that X has a κop-like base.

Malykhin, Peregudov, and Šapirovskĭi studied the properties ℵ1 ≥ Nt(X)
and Nt(X) = ℵ0 in the 1970s and 1980s (see, e.g., [11, 18]). Peregudov
introduced Noetherian type in 1997 [17]. Bennett and Lutzer rediscovered
the property Nt(X) = ℵ0 in 1998 [3]. In 2008, Milovich introduced local
Noetherian type [15].

Lemma 1.5 ([15, Lemma 2.4]). Every preordered set P has a cofinal sub-
set that is |P |-founded. Likewise, every family U of open sets has a dense
|U|op-like subfamily. Hence, χNt(p,X) ≤ χ(p,X) for all points p in spaces
X.

Lemma 1.6 ([15, Lemma 3.20]). If X is a compactum such that χ(X) =
πχ(p,X) for all p ∈ X, then χNt(p,X) = ω for some p ∈ X.

Theorem 1.7 ([15, Theorem 1.7]). Assuming GCH, if X is a homogeneous
compactum, then χNt(X) ≤ c(X).
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Proof. Let X be a homogeneous compactum; we may assume X is infinite.
By Theorem 1.3, |X| ≤ 2πχ(X)c(X). Since |X| = 2χ(X) by Theorem 1.2, we
have χ(X) ≤ πχ(X)c(X) by GCH. If πχ(X) = χ(X), then χNt(X) = ω
by Lemma 1.6. Hence, we may assume πχ(X) < χ(X); hence, χNt(X) ≤
χ(X) ≤ c(X) by Lemma 1.5. �

Therefore, if, for example, someone proved that there were a model of
ZFC + GCH with a homogeneous compactum in which some (equivalently,
every) point p had a local base B such that 〈B,⊇〉 is isomorphic to ω×ω1×ω2

with the product order (ω × ω2 would work just as well), then this space
would be a consistently existent counterexample for Van Douwen’s Problem.
Indeed, ω × ω1 × ω2 is not ℵ1-founded and every other local base at p
would, by [15, Lemma 2.21], be sufficiently similar (more precisely, Tukey
equivalent) to ω × ω1 × ω2 so as to be also not ℵ1-founded. Therefore,
Theorem 1.7 implies that the cellularity of such a space would be at least
ℵ2.

For example, lexicographically order X0 = 2ω, X1 = 2ω1 , and X2 = 2ω2 ,
and then form the product X =

∏
i<3Xi. The space X is compact and

every point in X has a local base of type ω × ω1 × ω2. However, X is not
homogeneous because there are points p0, p1, p2 ∈ X such that πχ(pi, X) =
ℵi for all i < 3. It is not clear whether this obstruction to homogeneity can
be bypassed with a more clever example, but Arhangel′skĭı [1] has shown
that if a product of linearly ordered compacta is homogeneous, then every
factor is first countable.

Also in [15], a mysterious correlation between the Noetherian types and
the cellularities of the known homogeneous compacta is proven. Briefly, ev-
ery known homogeneous compactum is a continuous image of a product of
compacta each with weight at most 2ℵ0 . Every (known or unknown) homo-
geneous compactum X that is such a continuous image satisfies c(X) ≤ 2ℵ0 ,

χNt(X) ≤ 2ℵ0 , and Nt(X) ≤
(
2ℵ0
)+

. An important question is whether this
correlation has a deep reason, or is merely a coincidence born of ignorance
of more exotic homogeneous compacta.

Another curiosity is that although the lexicographic ordering of 2ω·ω is
a homogeneous compactum with cellularity 2ℵ0 (see [12]), and the double-

arrow space is a homogeneous compactum with Noetherian type
(
2ℵ0
)+

(see
[15, Example 2.25] or [17]), every known example of a homogeneous com-
pactum X (in any model of ZFC) actually satisfies χNt(X) = ω (see [15,
Observation 1.4]). In other words, all known homogeneous compacta are
flat.

Definition 1.8. We say that a point p in a space X is flat if χNt(p,X) = ω.
We say that X is flat if χNt(X) = ω.

Theorem 2.22 says that p is flat in X if and only if 〈p〉i∈I is flat in XI for
all sets I. Moreover, Theorem 2.26 implies that X is flat if and only if Xω

is flat. On the other hand, Example 2.14 shows that for every uncountable
cardinal λ, there is a non-flat compactum X such that λ < cf(χ(X)) and
Xλ is flat.
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To the best of the authors’ knowledge, all known power homogeneous
compacta are also flat.

Definition 1.9 ([5]). A space is power homogeneous if some (nonzero)
power of it is homogeneous.

There are many inhomogeneous, power homogeneous compacta. For ex-
ample, Dow and Pearl [6] proved that if X is any first countable, zero di-
mensional compactum, then Xω is homogeneous. Nevertheless, homogeneity
casts a long shadow over the class of power homogeneous spaces. In partic-
ular, Van Douwen’s Problem is still open if “homogeneous” is replaced by
“power homogeneous.” Moreover, many theorems about homogeneous com-
pacta have been shown to hold when “homogeneous” is replaced by “power
homogeneous.” For example, see [13], as well as the more recent papers cited
in the theorem below.

Theorem 1.10.

• |X| ≤ 2πχ(X)c(X) for every power homogeneous Hausdorff X. [4]
• |X| ≤ 2t(X) for every power homogeneous compactum X. [2]
• |X| ≤ 2c(X) for every T5 homogeneous compactum X [20]
• |X| ≤ d(X)πχ(X) for every power homogeneous Hausdorff X. [19]

Theorem 1.3’s cardinality bound of 2πχ(X)c(X) was used in the proof
of Theorem 1.7, so it is natural to ask to what extent Theorem 1.7 is
true of power homogeneous compacta, which satisfy the same cardinal-
ity bound. Specifically, assuming GCH, do all power homogeneous com-
pacta X satisfy χNt(X) ≤ c(X), or at least χNt(X) ≤ d(X)? Section 3
presents a partial positive answer to the last question. We show that if
d(X) < cf χ(X) = maxp∈X χ(p,X), then there is a nonempty open U ⊆ X
such that χNt(p,X) = ω for all p ∈ U . (Note that χNt(X) ≤ χ(X).)

Before we can begin Section 3, we must first introduce some more precise
order-theoretic cardinal functions, the κ-wide splitting numbers.

Definition 1.11.

• Given a space X and E ⊆ X, let intE denote the interior of E in
X.
• A sequence 〈Ui〉i∈I of neighborhoods of a point p in a space X is
λ-splitting at p if, for all J ∈ [I]λ, we have p 6∈ int

⋂
j∈J Uj.

• Likewise, a family F of neighborhoods of p is λ-splitting at p if
p 6∈ int

⋂
E for all E ∈ [F ]λ.

• Given an infinite cardinal κ and a point p in a space X, let the κ-wide
splitting number of p in X, or splitκ(p,X), denote the least λ such
that there exists a λ-splitting sequence 〈Uα〉α<κ of neighborhoods of
p.
• Set split<κ(p,X) = supλ<κ splitλ(p,X). (Declare split<ω(p,X) = ω.)
• The κ-wide splitting number of X, or splitκ(X), denotes

sup
p∈X

splitκ(p,X).
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Note that if κ ≤ λ, then splitκ(p,X) ≤ splitλ(p,X). Also, κ+ ≥ splitκ(p,X)
because a κ-long sequence of open sets is vacuously κ+-splitting at every
point.

The κ-wide splitting numbers are relevant because the local Noetherian
type of a point p in a space X is also the χ(p,X)-wide splitting number of
p in X:

Proposition 1.12 ([15, Lemma 5.3]). If κ = χ(p,X) and p does not have
a finite local base, then χNt(p,X) = splitκ(p,X).

Thus, if κ ≤ χ(p,X), then splitκ(p,X) ≤ χNt(p,X) ≤ χ(p,X).
Section 3 requires some basic knowledge of how the κ-wide splitting

numbers are affected by passing from a space X to a power of X. This
question is investigated in depth in in Section 2. An oversimplified answer
is that the κ-wide splitting number does not change as we pass from smaller
powers of X to higher powers of X, except at Xκ, and possibly at Xcf κ.
In fact, the κ-wide splitting number always collapses to ω at Xκ. If κ is
singular, then the κ-wide splitting number might also make a change of
form λ+ to λ at Xcf κ.

The least easy (and most novel) results of Section 2 involve limit cardi-
nals. From a purely technical point of view, three examples are the most
interesting results of this section.

• Example 2.28 gives a (simultaneous) instance of

ℵ1 ≤ τ = cf(χ(p,X)) < χ(p,X)

and χNt(p,X) > χNt(〈p〉α<τ , Xτ ) (assuming only ZFC). Theorem 2.26
shows that the condition ℵ1 ≤ τ is necessary.
• Example 2.29 shows that as λ increases, the λ-wide splitting num-

ber can jump from ω to κ at λ = κ if κ is strongly inaccessible;
Question 2.30 asks if this is possible for merely weakly inaccessible
κ.
• Example 2.11 gives an instance of

χNt(p,X2) < min
i<2

χNt(p(i), X)

(assuming only ZFC). PFA implies that any instance of this inequal-
ity must satisfy χ(p,X2) ≥ ℵ2, but CH implies there is an instance
satisfying χ(p,X2) = ℵ1. (χ(p,X2) ≥ ℵ1 is trivially necessary.)

2. λ-splitting families and products

Lemma 2.1. Suppose f : X → Y and p ∈ X and f is continuous at p and
open at p. We then have splitκ(p,X) ≤ splitκ(f(p), Y ) for all κ.

Proof. Set λ = splitκ(f(p), Y ) and let 〈Vα〉α<κ be a λ-splitting sequence
of neighborhoods of f(p). For each α < κ, let Uα = f−1[Vα]. Suppose
I ∈ [κ]λ. We then have f(p) 6∈ int

⋂
α∈I Vα. If p ∈ int

⋂
α∈I Uα, then f(p) ∈

int f
[⋂

α∈I Uα
]
⊆ int

⋂
α∈I Vα, which is absurd. Thus, p 6∈ int

⋂
α∈I Uα, so

splitκ(p,X) ≤ λ. �
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Since coordinate projections are continuous and open everywhere, we will
use Lemma 2.1 many times in this section. We only use the full strength of
the lemma in Section 3.

Lemma 2.1 is a modification of a theorem of [16] which states that if
f, p,X, Y are as in the lemma, A is a local base at p, and B is a local base
at f(p), then there is a Tukey map from 〈B,⊇〉 to 〈A,⊇〉, where a map
between preorders is Tukey [23] if every subset of the domain without an
upper bound in the domain is mapped to a set without an upper bound
in the codomain. (A particularly useful special case occurs when f is the
identity map on X, that is, when A and B are local bases at the same point.)
[15, Lemma 5.8] says that a point p in a space X is flat if and only if there is
a Tukey map from 〈[χ(p,X)]<ω,⊆〉 to 〈A,⊇〉 for some (equivalently, every)
local base A at p. Moreover, it is a standard (easy) result that if κ is an
infinite cardinal and P is a directed set, then there is a Tukey map from
[κ]<ω to P if and only if P has a subset S of size κ such that no infinite
subset of S is bounded. Hence, splitκ(p,X) = ω if and only if there is a
Tukey map from [κ]<ω to 〈A,⊇〉 for some (equivalently, every) local base A
at p. We will use Tukey maps in Example 2.11.

Lemma 2.2. If χ(p,X) < cf κ or p has a finite local base, then splitκ(p,X) =
κ+. If p has no finite local base and cf κ ≤ χ(p,X) < κ, then splitκ(p,X) ≥ κ
and splitκ(p,X) = κ if and only if splitcf κ(p,X) ≤ cf κ.

Proof. Let 〈Uβ〉β<κ be a sequence of neighborhoods of p. If p has a local
base F such that |F| < cf κ, then some H ∈ F is contained in Uα for
κ-many α. Therefore, we may assume that p does not have a finite local
base and that cf κ ≤ χ(p,X) < κ. Let 〈λα〉α<cf κ be an increasing sequence
of regular cardinals cofinal in κ such that χ(p,X) < λ0. For each α <
cf κ, choose Iα ∈ [λα]λα such that Vα = int

⋂
β∈Iα Uβ is nonempty. The

sequence 〈Iα〉α<cf κ witnesses that splitκ(p,X) ≥ κ. Moreover, if 〈Uβ〉β<κ
is κ-splitting, then 〈Vα〉α<cf κ is (cf κ)-splitting. Conversely, if 〈Wα〉α<cf κ is
(cf κ)-splitting and 〈κα〉α<cf κ is a continuously increasing sequence cofinal
in κ, then

⋃
α<cf κ〈Wα : β ∈ [κα, κα+1)〉 is κ-splitting. �

Definition 2.3.

• Given a sequence of spaces 〈Xi〉i∈I and an infinite cardinal κ, let∏(κ)
i∈I Xi denote the set

∏
i∈I Xi with the topology generated by the

sets of the form
∏

i∈I Ui where each Ui is open in Xi and |{i ∈ I :
Ui 6= Xi}| < κ.
• A point p in a space X is a Pκ-point if κ is an infinite cardinal and

every intersection of fewer than κ-many neighborhoods of p is itself
a neighborhood of p.

Remark.

•
∏(ω)

i∈I Xi is the product space
∏

i∈I Xi.

•
∏(κ)

i∈I Xi is the box product space �i∈IXi when κ > |I|.
• Pℵ1-points are also called P -points.
• Every isolated point is a Pκ-point for all κ.



POWER HOMOGENEOUS COMPACTA AND ORDER THEORY 7

Definition 2.4. Given a subset E of a product
∏

i∈I Xi and a subset J of

I, we say that E is supported on J , or supp (E) ⊆ J , if E = (πIJ)−1
[
πIJ [E]

]
.

If there is a least set J for which E is supported on J , then we may write
supp (E) = J .

Remark. We always have that supp (E) ⊆ A and supp (E) ⊆ B together
imply supp (E) ⊆ A ∩ B. If a subset E of a product space is itself a prod-
uct or is open, closed, or finitely supported, then there exists J such that
supp (E) = J , so we may unambiguously speak of supp (E).

Lemma 2.5. Suppose that κ and µ are infinite cardinals and cf κ 6= cf µ.
If ξα < µ for all α < κ, then there exists I ∈ [κ]κ such that supα∈I ξα < µ.

Proof. Let 〈µβ〉β<cf µ be a continuously increasing sequence cofinal in µ.
Define f : κ→ cf µ by ξα ∈ [µf(α), µf(α)+1). It suffices to prove that |f [I]| <
cf µ for some I ∈ [κ]κ. If cf κ > cf µ, then f is constant of a set of size κ. If
κ < cf µ, then |f [κ]| < cf µ. Therefore, we may assume cf κ ≤ cf µ < κ. Let
〈κγ〉γ<cf κ be an increasing sequence of regular cardinals cofinal in κ, with
κ0 > cf µ. For each γ < cf κ, choose Iγ ∈ [κγ]

κγ such that f is constant on
Iγ. Set I =

⋃
γ<cf κ Iγ, which has size κ. We then have |f [I]| ≤ cf κ < cf µ

as desired. �

Theorem 2.6. Let κ, λ, µ be infinite cardinals with µ ≤ λ+, let p ∈ X =∏(µ)
α<λXα, let each p(α) have a neighborhood in Xα other than Xα, and let

p(α) be a Pµ-point in Xα, for all α < λ. We then have:

κ < cf µ⇒ splitκ(p,X) = κ+;(2.1)

cf κ = cf µ ≤ κ < µ⇒ splitκ(p,X) = κ;(2.2)

cf κ 6= cf µ < κ < µ⇒ splitκ(p,X) = κ+;(2.3)

µ ≤ κ ≤ λ⇒ splitκ(p,X) = µ;(2.4)

λ+ ≤ κ ≤ χ(p,X)⇒ µ ≤ splitκ(p,X) ≤ χ(p,X);(2.5)

χ(p,X) < cf κ⇒ splitκ(p,X) = κ+.(2.6)

splitcf κ(p,X) ≤ cf(κ) ≤ χ(p,X) < κ⇒ splitκ(p,X) = κ.(2.7)

splitcf κ(p,X) > cf(κ) ≤ χ(p,X) < κ⇒ splitκ(p,X) = κ+.(2.8)

Proof. To prove (2.1), simply observe that every intersection of κ-many
neighborhoods of p is itself a neighborhood of p, for all κ < cf µ. This
observation also implies that if κ ≥ cf µ, splitκ(p,X) ≥ cf µ.

To prove (2.3), let 〈Bα〉α<κ be a sequence of neighborhoods of p. Let us
show that 〈Bα〉α<κ is not κ-splitting at p. We may assume that each Bα

is an open box. By Lemma 2.5, there exist I ∈ [κ]κ and ν < µ such that
|supp (Bα)| ≤ ν for all α ∈ I. The box

⋂
α∈I Bα has support of size less than

µ; hence, 〈Bα〉α<κ is not κ-splitting at p; hence, splitκ(p,X) = κ+.
To prove (2.2), first consider the case κ = cf µ. We have splitcf µ(p,X) ≥

cf µ from (2.1). To see that splitcf µ(p,X) ≤ cf µ, observe that if 〈Aα〉α<cf µ

is a sequence of open boxes each containing p, and we have

sup
α<cf µ

|supp (Aα)| = µ,
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then 〈Aα〉α<cf µ is (cf µ)-splitting at p.
Now suppose that cf κ = cf µ < κ < µ. The cardinal κ must be a

limit cardinal, so splitκ(p,X) ≥ κ by (2.3). Let 〈κα〉α<cf κ be continuously
increasing and cofinal in κ; let 〈µα〉α<cf κ be increasing and cofinal in µ.
Since µ also must be a limit cardinal, each µα is less than λ. Hence, we may
choose a sequence 〈Cβ〉β<κ of neighborhoods of p such that, for all α < cf κ
and β ∈ [κα, κα+1), Cβ is a box with support of size µα. For all J ∈ [κ]κ, we
have |{α : J ∩ [κα, κα+1) 6= ∅}| = cf κ; hence, the support of

⋂
β∈J Cβ has

size µ. Therefore, 〈Cβ〉β<κ is κ-splitting. This completes the proof of (2.2).
Let us prove (2.4). Suppose µ ≤ κ ≤ λ. By (2.1) for regular µ and (2.3)

for singular µ, splitκ(p,X) ≥ µ. Moreover, using an idea of Malykhin [11],
we can choose a family of κ-many neighborhoods of p with pairwise disjoint
supports; any such family is µ-splitting at p.

Finally, (2.5) follows from (2.1) for regular µ and from (2.3) for singular
µ. (2.6), (2.7), and (2.8) are just instances of Lemma 2.2. �

Remark. Concerning (2.5) of Theorem 2.6, Kojman and Milovich have inde-

pendently shown in unpublished work that if X =
∏(ℵ1)

α<ℵω 2, then GCH+�ℵω
implies χNt(X) = Nt(X) = ℵ1. Soukup has shown that GCH and Chang’s
Conjecture at ℵω together imply χNt(X) = Nt(X) = ℵ2. [21]

Corollary 2.7 ([15, Theorem 2.33]). If p and X are as in the above theorem
and µ = ω (i.e., X is a product space), and λ ≥ χ(p,X), then χNt(p,X) =
ω. Hence, if λ ≥ χ(X), then χNt(X) = ω. In particular, χNt(Y χ(Y )) = ω
for all spaces Y .

Thus, large powers are flat, by which we mean that sufficiently large
powers of a space X collapse the local Noetherian type (and the κ-wide
splitting number for any fixed κ) to ω. We will find more complex behavior
at smaller powers of X.

Definition 2.8.

• Given I and p, let ∆I(p) denote the constant function 〈p〉i∈I .
• Let splitIκ(p,X) denote splitκ(∆I(p), X

I).
• Let χNtI(p,X) denote χNt(∆I(p), X

I).
• All our statements implicitly exclude the case of the product space

with no factors, e.g., X0.

Lemma 2.9. Suppose p is a point in a space X and n < ω. We then have
splitnκ(p,X) = splitκ(p,X) for all κ.

Proof. By Lemma 2.1, it suffices to show that splitnκ(p,X) ≥ splitκ(p,X).
Set λ = splitnκ(p,X) and let 〈Vα〉α<κ be a λ-splitting sequence of neigh-
borhoods of ∆n(p). Shrinking each Vα to a smaller neighborhood of ∆n(p)
cannot harm the λ-splitting property, so we may assume that each Vα is a
finite product

∏
i<n Vα,i of open sets. Set Uα =

⋂
i<n Vα,i for all α. Sup-

pose I ∈ [κ]λ. We then have ∆n(p) 6∈ int
⋂
α∈I Vα. If p ∈ int

⋂
α∈I Uα,

then ∆n(p) ∈
(
int
⋂
α∈I Uα

)n ⊆ int
⋂
α∈I Vα, which is absurd. Thus, p 6∈

int
⋂
α∈I Uα, so splitκ(p,X) ≤ λ. �
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Theorem 2.10. Suppose p is a point in a space X and n < ω. We then
have χNtn(p,X) = χNt(p,X). Hence, χNt(Xn) = χNt(X).

Proof. The first half of the theorem immediately follows from Lemma 2.9
with κ = χ(p,X) = χ(∆n(p), Xn). Moreover, the first half immediately
implies that χNt(X) ≤ χNt(Xn). To see that χNt(X) ≥ χNt(Xn), observe
that by Lemma 2.1, we have

∀q ∈ Xn χNt(q,Xn) = splitχ(q,Xn)(q,X
n)

≤ splitχ(q(i),X)(q(i), X) = χNt(q(i), X)

where i is chosen such that χ(q,Xn) = χ(q(i), X). �

The following example shows that the natural generalization of Theo-
rem 2.10 to arbitrary points in Xn, namely

χNt(p,Xn) = min
i<n

χNt(p(i), X),

fails in general.

Example 2.11. Let κ be a regular uncountable cardinal satisfying κℵ0 =

κ. For example, κ could be
(
2ℵ0
)+

(in any model of ZFC), 2ℵ0 if 2ℵ0 is
regular, or ℵ1 if CH holds. Let S0, S1 ⊆ κ be stationary with nonstationary
intersection. For each i < 2, let Di denote the set of countable subsets of Si
that are compact as subspaces of κ with the order topology. Todorčević [22]
has shown that there are no Tukey maps from 〈[κ]<ω,⊆〉 to any 〈Di,⊆〉,
but there is a Tukey map from 〈[κ]<ω,⊆〉 to 〈D0 ×D1,⊆〉. For each i < 2,
let Xi be the set κ∪{∞} topologized such that κ is a discrete subspace and
Ai = {Xi \E : E ∈ Di} is a local base at ∞. Let X be the topological sum⋃
i<2({i}×Xi). Define p ∈ X2 by p(i) = 〈i,∞〉 for all i < 2. Since κℵ0 = κ,

χ(p(i), X) = κ for each i < 2. Therefore, there are no Tukey maps from
〈[χ(p(i), X)]<ω,⊆〉 to 〈Ai,⊇〉 for any i < 2, but there is a Tukey map from
〈[χ(p,X2)]<ω,⊆〉 to 〈A0 × A1,⊇〉. Hence, χNt(p(i), X) > ω for all i < 2,
yet χNt(p,X2) = ω. Moreover, for each i < 2, χNt(p(i), X) = ℵ1 because
〈{i} × (Xi \ {α})〉α<κ is ℵ1-splitting at p(i).

Remark. If, for each i < 2, we replace each isolated point in Xi with an
open subspace homeomorphic to 2κ, then χNt(X0) = χNt(X1) = ℵ1 and
χNt(X0 ×X1) = ℵ0.

Remark. PFA is relevant to the above example, for it implies that if P0 and
P1 are directed sets of cofinality at most ℵ1 and there is a Tukey map from
〈[ℵ1]

<ω,⊆〉 to P0 × P1, then there is also a Tukey map from 〈[ℵ1]
<ω,⊆〉 to

some Pi [22]. Hence, PFA (which contradicts CH) implies that if χ(p,Xn) ≤
ℵ1, then χNt(p,Xn) = mini<n χNt(p(i), X).

Lemma 2.12. Suppose p is a point in a space X, κ is an infinite cardinal,
and γ < cf κ. We then have

splitγκ(p,X) = splitκ(p,X).
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Proof. By Lemma 2.1, it suffices to show that splitγκ(p,X) ≥ splitκ(p,X).
Set λ = splitγκ(p,X) and let 〈Vα〉α<κ be a λ-splitting sequence of neighbor-
hoods of ∆γ(p). We may assume each Vα has finite support and therefore
choose σα ∈ Fn(γ, {U ⊆ X : U open}) such that Vα =

⋂
〈β,U〉∈σα π

−1
β U .

Since |[γ]<ω| < cf κ, we may assume there is some s ∈ [γ]<ω such that
domσα = s for all α < κ. But then 〈πγs [Vα]〉α<κ is λ-splitting at ∆s(p) in
Xs. Thus, splitγκ(p,X) ≥ splitsκ(p,X). Apply Lemma 2.9. �

The following corollary is immediate.

Corollary 2.13. If γ < cf(χ(p,X)), then χNt(p,X) = χNtγ(p,X).

The next example shows that the above corollary is not generally true
if we replace the local quantities χ(p,X), χNt(p,X), and χNtγ(p,X) with
their global counterparts χ(X), χNt(X), and χNt(Xγ).

Example 2.14. For every uncountable cardinal λ, there is a compactum X
such that λ < cf(χ(X)) and χNt(Xλ) = ω < λ = χNt(X). Choose µ such
that cf µ > λ and set X = (λ+1)⊕2µ, making χ(X) = µ. By Corollary 2.7,
χNt(2µ) = ω, so χNt(X) = χNt(λ+1) = λ (because every regular κ ∈ λ+1
is a Pκ-point). Set Y = Xλ. If p ∈ Y and p(α) ∈ 2µ for some α, then we
have

χNt(p, Y ) = splitµ(p, Y ) ≤ splitµ(p(α), X) = splitµ(p(α), 2µ) = ω

by Lemma 2.1 and Corollary 2.7. If p ∈ Y and p(α) ∈ λ + 1 for all α < λ,
then we have

χNt(p, Y ) = splitλ(p, Y ) = ω

by Corollary 2.7.

Lemma 2.15. Let p be a point in a space X and let κ, λ be infinite cardinals.
If split<κ(p,X) ≤ λ and splitcf κ(p,X) ≤ cf λ, then splitκ(p,X) ≤ λ.

Proof. Let 〈Uα : α < cf κ〉 be (cf λ)-splitting at p. Let 〈κα〉α<cf κ be a con-
tinuously increasing sequence cofinal in κ. For each α < cf κ, let 〈Vβ : κα ≤
β < κα+1〉 be λ-splitting at p. For each α < cf κ and β ∈ [κα, κα+1), set
Wβ = Uα ∩ Vβ. It suffices to show that 〈Wβ〉β<κ is λ-splitting at p.

Let I ∈ [κ]λ. Set J = {α < cf κ : I ∩ [κα, κα+1) 6= ∅}. If |J | ≥ cf λ, then
int
⋂
β∈IWβ ⊆ int

⋂
α∈J Uα = ∅. If |J | < cf λ, then we may choose α such

that |I ∩ [κα, κα+1)| = λ. In this case, int
⋂
β∈IWβ ⊆ int

⋂
β∈I∩[κα,κα+1)Wβ =

∅. Thus, 〈Wβ〉β<κ is λ-splitting at p. �

Theorem 2.16. Let p be a point in a space X, let p have a neighborhood
other than X, and let κ and λ be infinite cardinals. We then have

splitλκ(p,X) =

 splitκ(p,X) : λ < cf κ
split<κ(p,X) : cf κ ≤ λ < κ

ω : κ ≤ λ
.

Proof. The first case of the theorem is just Lemma 2.12. The third case is an
instance of Theorem 2.6 with µ = ω. Consider the second case. Suppose λ <
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cf µ = µ < κ. By Lemma 2.12, splitµ(p,X) = splitλµ(p,X) ≤ splitλκ(p,X).

Hence, split<κ(p,X) ≤ splitλκ(p,X). Hence, it suffices to show that

splitλκ(p,X) ≤ split<κ(p,X).

Since cf κ ≤ λ, we have splitλcf κ(p,X) = ω by the third case. Hence,

splitλcf κ(p,X) ≤ cf(split<κ(p,X)).

By Lemma 2.1, we also have splitλ<κ(p,X) ≤ split<κ(p,X). Hence,

splitλκ(p,X) ≤ split<κ(p,X)

by Lemma 2.15. �

Example 2.17. If p = ωω+1 and X = ωω+1 + 1 (with the order topology),
then p is a Pℵω+1-point in X, so splitωℵω(p,X) = split<ℵω(p,X) = ℵω and
splitℵω(p,X) = ℵω+1.

Given the above theorem, it is natural to investigate the relationship
between splitκ(p,X) and split<κ(p,X).

Theorem 2.18. If p be a point in a space X and κ is a singular cardinal,
then

splitκ(p,X) ∈ {split<κ(p,X), split<κ(p,X)+}.

Proof. Trivially, splitcf κ(p,X) ≤ split<κ(p,X). Hence, by Lemma 2.15 with
λ = split<κ(p,X)+, we have splitκ(p,X) ≤ split<κ(p,X)+. �

The following corollary is immediate.

Corollary 2.19. If cf(χ(p,X)) ≤ γ < χ(p,X), then

χNt(p,X) ∈ {χNtγ(p,X), χNtγ(p,X)+}.

Lemma 2.20. If κ = χ(p,X) and p has no finite local base, then

splitcf κ(p,X) ≤ cf κ.

Proof. Let
⋃
α<cf κAα be a local base at p such that |Aα| < κ for all α <

cf κ. For each α < cf κ, set Bα =
{
U ∈ Aα : ∀V ∈

⋃
β<αAβ V 6⊆ U

}
. Set

I = {α < cf κ : Bα 6= ∅}. Set B =
⋃
α∈I Bα, which is a local base at p. We

then have |B| = κ, so |I| = cf κ. For each α ∈ I, choose Uα ∈ Bα. It suffices
to show that 〈Uα〉α∈I is (cf κ)-splitting. Seeking a contradiction, suppose
J ∈ [I]cf κ and p ∈ int

⋂
α∈J Uα. Choose V ∈ B such that V ⊆

⋂
α∈J Uα.

Choose β < cf κ such that V ∈ Bβ. Choose α ∈ J such that β < α. We
then have Aβ 3 V ⊆ Uα ∈ Bα, which is absurd. �

Lemma 2.21. Let p be a point in a space X and let κ be a singular cardinal.
If any of the following conditions hold, then splitκ(p,X) = split<κ(p,X).

(1) splitκ(p,X) is a limit cardinal.
(2) splitcf κ(p,X) ≤ cf(split<κ(p,X)).
(3) split<κ(p,X) is regular.
(4) cf(split<κ(p,X)) > cf κ.
(5) κ = χ(p,X) and cf(split<κ(p,X)) ≥ cf κ.
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Proof. By Theorem 2.18, (1)⇒ splitκ(p,X) = split<κ(p,X). By Lemma 2.15
with λ = split<κ(p,X), (2) also implies that splitκ(p,X) = split<κ(p,X).
(3) implies that

splitcf κ(p,X) ≤ split<κ(p,X) = cf(split<κ(p,X));

(4) implies that splitcf κ(p,X) ≤ (cf κ)+ ≤ cf(split<κ(p,X)). Thus, (3) and
(4) each imply (2). Finally, by Lemma 2.20, (5) also implies (2). �

Theorem 2.22. Let p be a point in a space X. Given any two infinite
cardinals λ < κ, splitλκ(p,X) = ω if and only if splitκ(p,X) = ω. Hence, if
p is flat in X if and only if ∆I(p) is flat in XI for all I.

Proof. For κ regular, apply Lemma 2.12. For κ singular, apply Theorem 2.16
and case (1) of Lemma 2.21. For the second half of the corollary, first note
that we may assume that p is not isolated in X. Second, note that we
may assume I is infinite by Theorem 2.10. Finally, apply Corollary 2.7
if |I| ≥ χ(p,X), and otherwise apply the first half of this corollary with
κ = χ(p,X) and λ = |I|. �

The next example shows that splitκ(p,X) = split<κ(p,X) is possible
when condition (2) of Lemma 2.21 fails.

Example 2.23. Let p ∈ X =
∏(ℵω)

α<ℵω1
2. By Theorem 2.6, we have ℵω =

split<ℵω1
(p,X), splitℵ1(p,X) = ℵ2, and splitℵω1

(p,X) = ℵω.

Example 2.17 and the next example show that when condition (2) of
Lemma 2.21 fails, splitκ(p,X) = split<κ(p,X)+ is also possible.

Example 2.24. Let X = �n<ω(ωn+1 + 1) and p = 〈ωn+1〉n<ω. Since p
is a P -point in X, splitω(p,X) = ℵ1. For each n < ω, splitℵn+1

(p,X) ≤
ℵn+1 because {{q ∈ X : q(n) > α} : α < ωn+1} is ℵn+1-splitting at p.
Let us show that splitℵn+1

(p,X) actually equals ℵn+1. Let 〈Aα〉α<ωn+1 be

a sequence of neighborhoods of p. There then exist I ∈ [ωn+1]
ℵn and s ∈∏

i<n ωi+1 such that for each α ∈ I, there exists fα ∈
∏

i<ω ωi+1 such that∏
i<ω(fα(i), ωi+1] ⊆ Aα and s ⊆ fα. For each i < n, set g(i) = s(i). For each

i ∈ [n, ω), set g(i) = supα∈I fα(i). We then have p ∈
∏

i<ω(g(i), ωi+1] ⊆ Aα
for all α ∈ I, so 〈Aα〉α<ωn+1 is not ℵn-splitting, as desired.

It follows that split<ℵω(p,X) = ℵω. Notice that cf(split<ℵω(p,X)) <
splitω(p,X). Let us show that splitℵω(p,X) = ℵω+1. Let 〈Bα〉α<ℵω be a
sequence of neighborhoods of p in X. For each n < ω, we repeat an argument
from the previous paragraph to get an In ∈ [ℵω]ℵn and a gn ∈

∏
i<ω ωi+1

such that p ∈
∏

i<ω(gn(i), ωi+1] ⊆ Bα for all α ∈ In. Setting J =
⋃
n<ω In

and h(i) = supn<ω gn(i) for all i < ω, we have p ∈
∏

i<ω(h(i), ωi+1] ⊆ Bα

for all α ∈ J , so 〈Bα〉α<ωn+1 is not ℵω-splitting, as desired.
In contrast, it is easy to check that if X = �n<ω(ωn + 1), then we still

have split<ℵω(p,X) = ℵω, but splitω(p,X) = ω, so splitℵω(p,X) = ℵω.

Lemma 2.25. If p ∈ X =
∏

i∈I Xi, then

χNt(p,X) ≤ sup
i∈I

χNt(p(i), Xi).
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Hence, χNt(X) ≤ supi∈I χNt(Xi).

The Nt(X)-version of the above lemma is true and was first proved by
Peregudov [17]. The above version is from [15, Theorem 2.2], but both ver-
sions are proved in the same way.

Theorem 2.26. For all spaces X, χNt(Xω) = χNt(X). Moreover,

χNt(p,X) = χNtω(p,X)

for all p ∈ X.

Proof. By Lemma 2.25, χNt(X) ≥ χNt(Xω); let us show that χNt(X) ≤
χNt(Xω). Fix p ∈ X and set κ = χ(p,X). If κ = ω, then

χNt(p,X) = ω = χNtω(p,X) ≤ χNt(Xω).

If cf κ > ω, then

χNt(p,X) = splitκ(p,X) = splitωκ(p,X) = χNtω(p,X) ≤ χNt(Xω)

by Lemma 2.12. If κ > cf κ = ω, then we have

χNt(p,X) = splitκ(p,X) = split<κ(p,X)

= splitωκ(p,X) = χNtω(p,X) ≤ χNt(Xω)

by case (5) of Lemma 2.21 and Theorem 2.16. Thus, χNt(Xω) = χNt(X)
and χNt(p,X) = χNtω(p,X) for all p ∈ X. �

Definition 2.27.

• Let H(θ) denote the set of all sets hereditarily of size less than θ,
where θ is a regular cardinal sufficiently large for the argument at
hand.
• Let M ≺ H(θ) mean that 〈M,∈〉 is an elementary substructure of
〈H(θ),∈〉.

To simplify closing-off arguments in this section and in Section 3, we will
use elementary substructures. A particularly useful closure property is that
if ν is a cardinal, M ≺ H(θ), and ν∩M ∈ ν+1, then [H(θ)]<ν∩M ⊆ [M ]<ν .

The next example shows that there are points p in spaces X and singular
cardinals κ such that κ = χ(p,X) and splitκ(p,X) = split<κ(p,X)+. In such

cases, χNt(p,X) = χNtcf κ(p,X)+ by Theorem 2.16. Observe that κ cannot
have countable cofinality by Theorem 2.26.

Example 2.28. Let p ∈ X =
∏(ℵ1)

α<τ

∏(ℵω)
β<iα 2 where τ is a regular uncount-

able cardinal such that τ is not strongly inaccessible and cf
(
[τ ]ℵ0

)
= τ .

For example, τ could be any regular uncountable cardinal of the form i+n
α

where n < ω and cf α 6= ω. For each α < τ , set Xα =
∏(ℵω)

β<iα 2 and let
πα : X → Xα be the natural coordinate projection. Because χ(p(α), Xα+1) =
cf
(
[iα+1]

<ℵω
)

= iα+1 for all α ∈ [ω, τ), and cf
(
[τ ]ℵ0

)
= τ , we have

χ(p,X) = iτ .
Set κ = iτ . First, let us show that split<κ(p,X) = ℵω. Fix ε < τ

such that iε ≥ τ . Suppose that ε ≤ α < τ and λ = i+
α . By Lemma 2.1

and Theorem 2.6, splitλ(p,X) ≤ splitλ(p,Xα+1) = ℵω. Let us show that
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splitλ(p,X) ≥ ℵω. Suppose that n < ω and 〈Aα〉α<λ is a sequence of neigh-
borhoods of p. We may assume that each Aα is a basic open set, by which
we mean a countably supported product of (<ℵω)-supported boxes. Since
cf λ > τ · i1, there exist I ∈ [λ]λ, s ∈ [τ ]ℵ0 , and f : s → ω such that for
each α ∈ I, supp (Aα) = s and, for each β ∈ s, |supp (πβ[Aα])| ≤ ℵf(β).

Therefore, for all J ∈ [I]ℵn , we have supp
(⋂

α∈J Aα
)

= s and, for all

β ∈ s,
∣∣supp

(
πβ
[⋂

α∈J Aα
])∣∣ ≤ ℵf(β) · ℵn. Hence,

⋂
α∈J Aα is open. Thus,

splitλ(p,X) = ℵω. Hence, split<κ(p,X) = ℵω.
Finally, let us show that splitκ(p,X) > ℵω. Suppose that 〈Bα〉α<κ is a

sequence of neighborhoods of p. As before, we may assume that each Bα is

a basic open set. For each α ∈ [ε, τ), choose Iα ∈ [[iα,i+
α )]

i+
α , sα ∈ [τ ]ℵ0 ,

and fα : sα → ω such that for each β ∈ Iα, supp (Bβ) = sα, and for each
γ ∈ sα, |supp (πγ[Bβ])| ≤ ℵfα(γ). For each α ∈ [ε, τ), set ζα = sup{β + 1 :
β ∈ sα}. Construct a sequence 〈ξα〉α<τ in [ε, τ) as follows. Given 〈ξβ〉β<α,
set ηα = supβ<α ζξβ ; choose ξα < τ such that ξα > ηα and ξα ≥ ε. For each

α < τ , we may then choose Jα ∈ [Iξα ]i
+
ξα and a basic open Wα such that

supp (πγ[Bj]) = supp (πγ[Wα]) for all γ < ηα and j ∈ Jα.
For each α < τ , let gα : τ → ω be an arbitrary extension of fξα ; let

tα : ω → sξα be a surjection. Let 〈〈gα, tα〉〉α<τ ∈ M ≺ H(θ) and let M be
countable. Set δ = sup(τ ∩M). Construct an increasing sequence 〈in〉n<ω
of ordinals in τ ∩M as follows. Given 〈im〉m<n, set Sn = {α < τ : ∀m, k <
n gα(tim(k)) = gδ(tim(k))}. Since δ ∈ Sn ∈ M , it follows by elementarity
that Sn ∩M is unbounded in δ. Hence, we may choose in ∈ Sn ∩M such
that in > im for all m < n. Thus, for each α ∈

⋃
n<ω ran(tin), gδ(α) ≥ gin(α)

for cofinitely many n < ω. Hence, there exists h :
⋃
n<ω ran(tin) → ω that

dominates gin � dom(h) for all n < ω.
For each n < ω, choose Kn ∈ [Jin ]ℵn . Set U =

⋂
n<ω

⋂
α∈Kn Bα. It suffices

to show that U is open. First, observe that U is a product of boxes and that
supp (U) = dom(h), which is countable. Fix n < ω and γ ∈ ran(tin); it
suffices to show that |supp (πγ[U ])| < ℵω. For all m ∈ (n, ω) and α ∈
Km, supp (πγ[Bα]) = supp (πγ[Wim ]), which has size at most ℵh(γ). For all
α ∈

⋃
m≤nKm, the set supp (πγ[Bα]) also has size at most ℵh(γ). Hence,

|supp (πγ[U ])| ≤ ℵh(γ) · ℵn. Thus, U is open; hence, splitκ(p,X) > ℵω.

Remark. We could easily replace ℵω with, say, iε+ω, in the above example,
thereby obtaining the additional inequality cf κ < χNt(p,X).

If κ is not singular, but rather strongly inaccessible, then it is possible,
as shown in the next example, that split<κ(p,X)+ < splitκ(p,X).

Example 2.29. There is a point p in a space X such that

split<κ(p,X) = ω < χNt(p,X) = splitκ(p,X) = κ = χ(p,X).

Let p ∈ X =
∏(κ)

α<κ 2α. Since κ is strongly inaccessible, χ(p,X) = κ. For all
infinite cardinals λ < κ, splitλ(p,X) ≤ splitλ(p(λ), 2λ) = ω by Lemma 2.1
and Theorem 2.6.

On the other hand, if 〈Aα〉α<κ is a sequence of open boxes containing
p, then either there exists A such that κ-many Aα equal A, in which case
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〈Aα〉α<κ is not κ-splitting, or, since κ is strongly inaccessible, we may thin
out the sequence such that 〈ζα〉α<κ, where ζα = sup(supp (Aα)), is an in-
creasing sequence. Assuming the latter holds, 〈Aα〉α<κ is κ-splitting. Let us
show that 〈Aα〉α<κ is not λ-splitting for any λ < κ. So, fix λ < κ. We may
assume that each Aα is a product of finitely supported boxes.

By taking the union of an appropriate elementary chain, construct M ≺
H(θ) such that 〈Aα〉α<κ ∈M , κ∩M ∈ κ, and cf(κ∩M) = λ+. Set δ = κ∩M .
For each α < δ, set

S(α) = {γ < κ : ∀β ≤ α supp (πβ[Aγ]) = supp (πβ[Aδ])}.
Since κ is a strong limit cardinal, we have P(x) ⊆M for all x ∈ [H(θ)]<κ ∩
M . Hence, S(α) ∈M for all α < δ. Moreover, S(α) 6⊆M because δ ∈ S(α);
hence, |S(α)| = κ. By elementarity, S(α)∩δ is cofinal in δ, and so is 〈ζα〉α<δ.

Let us construct an increasing sequence 〈γi〉i<λ+ in δ as follows. Given
i < λ+ and 〈γj〉j<i, set αi = supj<i ζγj , which is less than δ, and choose
γi ∈ S(αi) ∩M such that γi > γj for all j < i. Next, set U =

⋂
i<λ+ Aγi .

It suffices to show that U is open. Set η = sup(supp (U)) and observe that
η 6∈ supp (U). Since η ≤ δ < κ, it suffices to show that, for all β < η,
supp (πβ[U ]) is finite. Fix β < η and choose the least i < λ+ satisfying
β ≤ αi+1. We then have supp (πβ[U ]) = supp (πβ[Aγi ]) ∪ supp (πβ[Aδ]),
which is finite.

Question 2.30. Can Example 2.29 be modified so as to obtain

split<κ(p,X) = ω < χNt(p,X) = splitκ(p,X) = κ = χ(p,X).

with κ merely weakly inaccesible?

Theorem 2.31. If p ∈ Y , Y is a dense subspace of a T3 space X, and κ is
an infinite cardinal, then splitκ(p,X) = splitκ(p, Y ).

Proof. Let λ be an infinite cardinal not exceeding κ, let I ∈ [κ]λ, let 〈Aα〉α<κ
be a sequence of regular open X-neighborhoods of p, and let 〈Bα〉α<κ be a
sequence of open Y -neighborhoods of p. If p ∈ U ⊆

⋂
α∈I intX clX Bα and

U is open in X, then p ∈ U ∩ Y ⊆
⋂
α∈I Bα. Therefore, splitκ(p,X) ≤

splitκ(p, Y ). If p ∈ V ⊆
⋂
α∈I(Aα ∩ Y ) and V is open in Y , then p ∈

intX clX V ⊆
⋂
α∈I Aα. Therefore, splitκ(p, Y ) ≤ splitκ(p,X). �

Corollary 2.32. If p ∈ Y and Y is a dense subspace of a T3 space X, then
χNt(p,X) = χNt(p, Y ).

Proof. Observe that χ(p,X) = χ(p, Y ) and apply Theorem 2.31. �

Remark. By the Theorem 2.31 and its above corollary, since all of our exam-
ple spaces in this section are T3.5, they can be compactified without chang-
ing any of the relevant splitting numbers, characters, and local Noetherian
types.

3. Applications to power homogeneous compacta

Definition 3.1. Let U be an open neighborhood of a set K in a product
space. We say that U is a simple neighborhood of K if, for every open V
satisfying K ⊆ V ⊆ U , we have supp (U) ⊆ supp (V ).
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Lemma 3.2. If K is a compact subset of a compact product space X =∏
i∈I Xi and U is an open neighborhood of K, then K has a finitely supported

simple neighborhood that is contained in U .

Proof. Set σ = supp (U). By the compactness of K, we may shrink U such
that σ is finite. Hence, we may further shrink U until it is minimal in the
sense that if V is open and K ⊆ V ⊆ U , then supp (V ) is not a proper
subset of σ. Suppose that V is open and K ⊆ V ⊆ U ; set τ = supp (V ). It
then suffices to show that σ ⊆ τ . Suppose that p ∈ K, q ∈ X, and πIσ∩τ (p) =
πIσ∩τ (q). Set r = (p � τ) ∪ q � (I \ τ). We then have πIτ (r) = πIτ (p), so r ∈
V ⊆ U . Moreover, πIσ(q) = πIσ(r), so q ∈ U . Thus, (πIσ∩τ )

−1
[
πIσ∩τ [K]

]
⊆ U .

By the Tube Lemma, there is an open W such that K ⊆ W ⊆ U and
supp (W ) ⊆ σ ∩ τ . By minimality of U , the set σ ∩ τ is not a proper subset
of σ; hence, σ ⊆ τ . �

Definition 3.3.

• Let Aut(X) denote the group of autohomeomorphisms of X.
• Let C(X) denote the algebra of real-valued continuous functions on
X.

Lemma 3.4. Suppose κ is a regular uncountable cardinal and I is a set
and X =

∏
i∈I Xi is a compactum and p ∈ X and h ∈ Aut(X) and

splitκ(p(i), Xi) ≥ ℵ1 for all i ∈ I. Further suppose {C(X), p, h} ⊆ M ≺
H(θ) and κ ∩M ∈ κ+ 1. We then have

supp
(
h
[
(πII∩M)−1

[{
πII∩M(p)

}]])
⊆M.

Proof. For each i ∈ I, let Ui denote the set of open neighborhoods of p(i).
For each U ∈ Ui, let V (U, i) be a finitely supported simple neighborhood
of h

[
π−1
i [{p(i)}]

]
that is contained in h

[
π−1
i [U ]

]
(using Lemma 3.2); set

σ(U, i) = supp (V (U, i)). By elementarity, we may assume that the map V
is in M , so σ ∈ M too. Let W (U, i) be an open neighborhood of p(i) such
that π−1

i [W (U, i)] ⊆ h−1 [V (U, i)].

Fix j ∈ I. Suppose
∣∣∣⋃U∈Uj σ(U, j)

∣∣∣ ≥ κ. There then exists 〈Uα〉α<κ ∈ Uκj
such that σ(Uα, j) 6⊆ σ(Uβ, j) for all β < α < κ. Fix E ∈ [κ]ω and an open
neighborhood H of h

[
π−1
j [{p(j)}]

]
with finite support τ . Choose α ∈ E such

that σ(Uα, j) 6⊆ τ . By simplicity, H 6⊆ V (Uα, j). Thus, h
[
π−1
j [{p(j)}]

]
6⊆

int
⋂
α∈E V (Uα, j); hence,

π−1
j [{p(j)}] 6⊆ int

⋂
α∈E

h−1 [V (Uα, j)] ⊇ int
⋂
α∈E

π−1
j [W (Uα, j)];

hence, p(j) 6∈ int
⋂
α∈EW (Uα, j). Since E was arbitrary, {W (Uα, j) : α < κ}

is ω-splitting at p(j), in contradiction with splitκ(p(j), Xj) ≥ ℵ1. Thus,∣∣∣∣∣ ⋃
U∈Uj

σ(U, j)

∣∣∣∣∣ < κ.
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Hence, for each i ∈ I ∩M , we have
⋃
U∈Ui σ(U, i) ∈ [I]<κ ∩M ⊆ P(M);

hence,

supp
(
h
[
(πII∩M)−1

[{
πII∩M(p)

}]])
⊆

⋃
i∈I∩M

⋃
U∈Ui

σ(U, i) ⊆M

as desired. �

The following theorem is a more precise version of Lemma 1.6.

Theorem 3.5 ([15, Theorem 5.2]). Let X be a compactum and κ an infinite
cardinal. Suppose πχ(p,X) ≥ κ for all p ∈ X. We then have splitκ(p,X) =
ω for some p ∈ X.

Corollary 3.6. Let X be a compactum and κ an infinite cardinal. Suppose
F is a closed subset of X and χ(F,X) < κ and πχ(p,X) ≥ κ for all p ∈ F .
We then have splitκ(p,X) = ω for some p ∈ F .

Proof. Since πχ(p,X) ≤ πχ(p, F )χ(F,X) for all p ∈ F , we have πχ(p, F ) ≥
κ for all p ∈ F . Apply Theorem 3.5 to F . �

The following theorem is an easy generalization of Ridderbos’ Lemma
2.2 in [20].

Theorem 3.7. Suppose X is a power homogeneous Hausdorff space, κ is
a regular uncountable cardinal, and D is a dense subset of X such that
πχ(d,X) < κ for all d ∈ D. We then have πχ(p,X) < κ for all p ∈ X.

Theorem 3.8. Let κ be a regular uncountable cardinal, X be a power ho-
mogeneous compactum, and D be a dense subset of X of size less than κ.
Suppose splitκ(d,X) ≥ ℵ1 for all d ∈ D. We then have splitκ(p,X) =
splitκ(q,X) for all p, q ∈ X. Moreover, πw(X) < κ.

Proof. Let us first show that splitκ(p,X) = splitκ(q,X) for all p, q ∈ X. Fix
p, q ∈ X such that splitκ(p,X) ≥ ℵ1 and splitκ(q,X) = minx∈X splitκ(x,X).
It then suffices to show that that splitκ(p,X) = splitκ(q,X). By Lemmas 2.1
and 2.12, it suffices to show that there exist A ∈ [I]<κ and f : XA → XA

such that f(∆A(p)) = ∆A(q) and f is continuous at ∆A(p) and open at
∆A(p). Choose I and h ∈ Aut(XI) such that h(∆I(p)) = h(∆I(q)). Fix
M ≺ H(θ) such that |M | < κ, κ ∩M ∈ κ, and {C(X), D, h, p} ⊆ M . Set
A = I ∩M and Y = XA × {p}I\A ∼= XA. Set f = πIA ◦ (h � Y ), which is
continuous. Since f(∆I(p)) = ∆A(q), it suffices to show that f is open at
∆I(p).

Fix a closed neighborhood C × {p}I\A of ∆I(p) in Y . By the Tube
Lemma and Lemma 3.4, there is an open neighborhood U of ∆A(q) in
XA such that (πIA)−1U ⊆ h

[
(πIA)−1[C]

]
. Hence, it suffices to show that

U ⊆ f
[
C × {p}I\A

]
. Set

E =
⋃{

Dσ × {p}I\σ : σ ∈ [I]<ω
}

and Z = πIA[E] × {p}I\A = E ∩M . We then have πIA[Z] is dense in XA.
Fix z ∈ πIA[Z]∩U . By Lemma 3.4 applied to h−1 and z ∪∆I\A(p), we have

supp
(
h−1

[
(πIA)−1[{z}]

])
⊆ A; hence, for all x ∈ πIA

[
h−1

[
(πIA)−1[{z}]

]]
⊆
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C, we have f(x ∪∆I\A(p)) = z. Thus, πIA[Z] ∩ U ⊆ f
[
C × {p}I\A

]
. Hence,

U ⊆ f [C × {p}I\A] = f
[
C × {p}I\A

]
.

Thus, splitκ(p,X) = splitκ(q,X) ≥ ℵ1 for all p, q ∈ X. By Corollary 3.6,
X has no closed Gδ subset K for which πχ(p,X) ≥ κ for all p ∈ K. Hence, X
has no open subset U for which πχ(p,X) ≥ κ for all p ∈ U . By Theorem 3.7,
πχ(p,X) < κ for all p ∈ X. Hence, πw(X) ≤

∑
d∈D πχ(d,X) < κ. �

Corollary 3.9. Let D be a dense subset of a power homogeneous compactum
X and let κ be a regular uncountable cardinal. Suppose maxp∈X χ(p,X) = κ,
|D| < κ, and χNt(d,X) ≥ ℵ1 for all d ∈ D. We then have πw(X) <
χ(p,X) = κ and χNt(p,X) = χNt(X) for all p ∈ X.

Proof. Each d ∈ D either has character κ, in which case splitκ(d,X) =
χNt(d,X) ≥ ℵ1, or it has character less than κ, in which case

splitκ(d,X) = κ+ ≥ ℵ1.

By Theorem 3.8, splitκ(p,X) = splitκ(q,X) for all p, q ∈ X and πw(X) < κ.
If splitκ(X) = κ+, then no point of X has character κ, which is absurd.
Hence, splitκ(X) ≤ κ; hence, every point of X has character at least κ;
hence, every point has character κ; hence, χNt(p,X) = splitκ(X) for all
p ∈ X. �

Corollary 3.10 (GCH). There do not exist X, D, and κ as in the previous
corollary. Hence, if X is a power homogeneous compactum and maxp∈X χ(p,X) =
cf χ(X) > d(X), then there is a nonempty open U ⊆ X such that χNt(p,X) =
ω for all p ∈ U .

Proof. Seeking a contradiction, suppose X, D, and κ are as in the previous
corollary. By Proposition 2.1 of [20], 2χ(Y ) ≤ 2πχ(Y )c(Y ) for every power ho-
mogeneous compactum Y . Hence, by GCH, κ ≤ πχ(X)c(X). Since πχ(X) ≤
πw(X) < κ, it follows that κ ≤ c(X). Hence, κ ≤ c(X) ≤ πw(X) < κ, which
is absurd. �
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[1] A. V. Arhangel′skĭı, Homogeneity of powers of spaces and the character, Proc. Amer.
Math. Soc., 133 (2005), no. 7, 2165–2172.
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