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Convention

All spaces are T3 (regular and Hausdorff).
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Some order properties

Definition
» A preorder P is strongly x-Noetherian if every subset of size
k lacks a lower bound.

> A preorder P is strongly x-Artinian if every subset of size x
lacks an upper bound.

Convention
Assume sets are ordered by C unless stated otherwise.
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Examples

> A base B of a topological space is strongly x-Noetherian if
and only if, for every subset A of B of size k, ().A has empty
interior.

» The canonical base of 2)—the finitely supported boxes—is
strongly Rg-Noetherian because a finite function has only
finitely many subfunctions.
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and only if, for every subset A of B of size k, ().A has empty
interior.

» The canonical base of 2)—the finitely supported boxes—is
strongly Rg-Noetherian because a finite function has only
finitely many subfunctions.

» X5 is X with all Gs-sets declared open.

» The canonical base of 23\—the countably supported boxes—is
strongly (2N0)+-Noetherian (when ordered by C) because a
countable function has at most 2%°-many subfunctions.

» (Malykhin) If B is a base of a space X, then X!Bl has a
strongly Rp-Noetherian base.
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An incomplete analogy

Cellularity

» The cellularity ¢ (X) of X is the supremum of the sizes of
pairwise disjoint families of open subsets of X.

» (Juhész) If X is countably compact, then ¢ (X5) < 2¢(X).
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An incomplete analogy

Cellularity
» The cellularity ¢ (X) of X is the supremum of the sizes of
pairwise disjoint families of open subsets of X.
» (Juhész) If X is countably compact, then ¢ (X5) < 2¢(X).

Noetherian type

» The Noetherian type Nt (X) of X is the least infinite cardinal
K such that X has a strongly x-Noetherian base.

» Assume GCH. If X is countably compact and cf(ntX) is
uncountable, then Nt (X5) < 2Nt(X).

» What if we drop GCH? What if cf(Nt (X)) = w?

6
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If we drop GCH

We can get by with weaker versions of GCH.
» If X is countably compact, cf(Nt (X)) > w, and A% < Nt (X)
for all A < Nt (X), then Nt (X5) < 2Nt(X),

» Similarly, if X is countably compact, Nt (X) < &, and A\ < &
for all A < K, then Nt (X5) < k.
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We can get by with weaker versions of GCH.

» If X is countably compact, cf(Nt (X)) > w, and A% < Nt (X)
for all A < Nt (X), then Nt (X5) < 2Nt(X),

» Similarly, if X is countably compact, Nt (X) < k, and Ao <k
for all A < K, then Nt (X5) < k.

Some cardinal arithmetics lead to counterexamples.

» Let X be the one-point compactification of the discrete space
of size N,,.

> (Gitik-Magidor) 2% < 8N = 2Rw+1 =R .5 is consistent
relative to a measurable x with o(k) = kT,

» Assuming the above cardinal arithmetic, Nt (X) = 8,41 and
Nt (X5) = Ryp3 > 2NUX),
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If cf(Nt (X)) = w

» For simplicity, suppose X is of the form 2*, which implies
Nt (X) = No.
> 2?" has an Nj-strongly Noetherian base, for all n < w.

> Does 2?‘*’ have an Nj-strongly Noetherian base?
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Combinatorially speaking

» Nt (23) <« if and only if [\]™ has a strongly x-Artinian
cofinal subset.

» A subset F of [A\]Y is strongly s-Artinian if and only if
IUJA| > Ry for all A e [F]~.
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Nt (2()5‘) < & if and only if [\]"¢ has a strongly x-Artinian
cofinal subset.

A subset F of [A]¥ is strongly x-Artinian if and only if
IUJA| > Ry for all A e [F]~.

v

v

For each n < w, [R,]" has a strongly Xj-Artinian cofinal
subset.

What about [X,,]%?

v
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ZFC upper bounds on Nt (2(}5“)

» (Easy) Nt (2?“’) < (2N°)+.
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ZFC upper bounds on Nt (2?“)

» (Easy) Nt (2?“”) < (2N°)+.
> Nt (2) <N,

» The proof uses a (max-pcf) scale of [], ., X, modulo an ideal
on w, and club guessing on {a < w3 : cf(a) = w1 }.
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Conditional upper bounds

» S} ={i < \:cf(i) = K}
» The approachability ideal /[\] consists of the sets S C A for
which there is a club E C X and a sequence C such that

» C; is a cofinal subset of i for all i < A.
» C; has order type cf(i) for for all j € E.
» {Gnjij<iyC{G:j<i}forallie SNE.
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» C; is a cofinal subset of / for all i < A.
» C; has order type cf(i) for for all j € E.
» {Gnjij<iyC{G:j<i}forallie SNE.
> If A = cf ([N,]") and S} € /[A], then Nt (2§w) < k.

(Again, the proof uses a scale.)
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v
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Hence, if Oy, and cf ([R,]™) = Ry, then Nt (2(;’) = N.

v

v

v

v

(Sharon-Viale) MM implies Soe*! € I[Reyy1].
Therefore, MM implies Nt (2} ) < ..

v
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Lower bounds

» (Easy) Nt (2?“’) > Ny,
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(Easy) Nt (2?“) > Ny,
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(A, k) = (N, k") means every structure A with universe A and
countable signature has a substructure B of cardinality \’
such that [k N B| = K/

(Levinski-Magidor-Shelah) CCy_,, by which we mean
(Nwt1,Ry) = (R, Ng), is consistent with ZFC+GCH, relative
to a 2-huge cardinal.

(Soukup) CCy,, implies Nt (2;“) > Ny,
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Lower bounds

v

v

(Easy) Nt (2?“) > Ny,

(A, k) = (N, k") means every structure A with universe A and
countable signature has a substructure B of cardinality \’
such that [k N B| = K/

(Levinski-Magidor-Shelah) CCy_,, by which we mean
(N1, Ny) = (R1,Rp), is consistent with ZFC+GCH, relative
to a 2-huge cardinal.

(Soukup) CCy,, implies Nt (2?“) > Ny,
More generally, (R,41,8,) = (Rp—1,R,_2) implies
Nt (25) = 8.

We don't know if it is consistent to have n =3 or n = 4.
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m-bases

» 7Nt (X) is the least x such that X has a strongly
r-Noetherian 7-base.

» TNt (2?“’) < k if and only if there is a strongly k-Artinian
cofinal family of countable partial functions from N, to 2.
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» 7Nt (X) is the least x such that X has a strongly
r-Noetherian 7-base.

» TNt (2?“’) < k if and only if there is a strongly k-Artinian
cofinal family of countable partial functions from N, to 2.

> 1F 2% > R, then TNt (2)) =y,

» CCy, is consistent with 2% > N, because ccc forcings
preserve CCy,.

> CCy, and 2% < N, < 2<Re together imply 7Nt (zg‘w) > Ny,

» Is CCy, consistent with 2% < R, < 2<R«?
» Adding N,, or more Cohen subsets of w; destroys CCy_.

» What happens to 7Nt (2?“) in models of CCyx, + GCH?
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