
Homogeneity and compactness: a mystery from
set-theoretic topology

David Milovich

May 21, 2009



Beyond metric spaces. . .

Metric spaces are compact iff every sequence has a limit point iff
every open cover has a finite subcover.

Topological spaces are compact iff every net has a limit point iff
every open cover has a finite subcover.

Nets, invented by Tukey, are the proper generalization of sequences
in topology.

Convention
All spaces are assumed to be Tychonoff (also known as T3.5), i.e.,
assume that points and closed sets can be separated by continuous
real-valued functions. If you don’t know what this means, then
forget I mentioned it.
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Infinite products

Given a set A we write X A for the set of all functions f : A→ X .
We topologize X A with the product topology, also known as the
topology of pointwise convergence.

It works like this. A net (fi )i∈I of functions in X A converges to a
function g in X A iff the net (f (a)i )i∈I converges to g(a) for all
a ∈ A.

Equivalently, the open sets of X A are unions of sets of the form⋂n
k=1 π

−1
ak

Uk where n ∈ N, each Uk is open in X , each ak is in A,

and π−1
ak

Uk = {f ∈ X A : f (ak) ∈ Uk}.

More generally, if we have a list (Xa)a∈A of spaces, we can form
the product space

∏
a∈A Xa whose elements are the maps f with

domain A such that f (a) ∈ Xa for all a ∈ A.



Compact products

Theorem (Tychonoff)

Products of compact spaces are compact.

Corollary

2A is always compact. (2 is the two-point space.)

2N is homeomorphic to the Cantor middle-thirds set.



Homogeneity

A map f : X → Y is continuous if f -preimages of open sets are
open (or, equivalently, if f maps convergent nets to convergent
nets).

A homeomorphism is a continuous bijection whose inverse is also
continuous.

Aut(X ) is the group of all autohomeomorphisms of X. (The
group operation is composition.)

A space X is homogeneous if for all p, q ∈ X there exists
h ∈ Aut(X ) such that h(p) = q. (In other words, Aut(X ) acts
transitively on X .) Informally, a homogeneous space looks the
same no matter which point you stand on.



Examples

Every (discrete) finite space F is homogeneous because Aut(F )
includes all permutations.

Every topological group G is homogeneous because Aut(G )
includes all translations.

Products of homogeneous spaces are homogeneous. In particular,
2A is always homogeneous and compact.



Cardinals

We say two sets A and B have the same size or cardinality if
there is a bijection from A to B.

The cardinals are the equivalence classes of equally sized sets. We
write |A| for the cardinal to which A belongs.

We write |A| ≤ |B| if there is a one-to-one map from A to B.
Otherwise, we write |B| < |A|.

Theorem (Schröder-Bernstein)

If |A| ≤ |B| ≤ |A|, then |A| = |B|.

Axiom of Choice
For all sets A and B, |A| ≤ |B| or |B| ≤ |A|.
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How high can you count?

We say A is countable if |A| ≤ |N|.

Theorem (Cantor)

|A| <
∣∣2A
∣∣.

Corollary

|2| < |Z| = |N| <
∣∣2N∣∣ = |R| <

∣∣2R∣∣.

Every set of cardinals has a minimum. (This follows from the
Axiom of Foundation.)

Let |A|+ denote the successor cardinal of A, which is the least
cardinal greatest than |A|.
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Cells

A cellular family of a space X is a set A of nonempty open
subsets of X such that every two U,V ∈ A are disjoint.

The cellularity c (X ) of a space X is least cardinal κ such that
every cellular family of X has size at most κ.



Fat cells

Surprisingly, c
(
2A
)

= |N| for all infinite A.

I Think of 2A as the probability space of A-lists of coin tosses.
Every nonempty open subset of 2A contains an open set that
has probability measure 2−n for some n ∈ N.

I Suppose we had an uncountable cellular family F . Then we
could shrink the cells to get an uncountable cellular family G
of sets each with measure 2−n for some n ∈ N.

I By an infinite version of the pigeonhole principle, uncountably
many of the members of G have measure 2−n for the same n.

I Thus, the union of some finite subfamily of G has measure
greater than 1, which is absurd.
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Isolation

Informally, the product topology of 2A is very coarse. The open
sets are just too big for us to lay out more than countably many of
them side by side without overlap.

However, if we retopologize the set 2A to be discrete (i.e., all
points are isolated) then we get a space D such that c (D) =

∣∣2A
∣∣.

This space is homogeneous, but not compact unless A is finite.



A more structured environment

If f : X → Y is a continuous onto map, then c (X ) ≥ c (Y ).

Theorem (Kuz’minov)

Every compact topological group G is a continuous image of 2A for
some A.

Corollary

c (G ) ≤ |N|.

Every compact metric space M is a continuous image of 2N, so
c (M) ≤ |N| too.



The Problem

Van Douwen’s Problem, which is unsolved after over 30 years,
asks if there is a compact homogeneous space X such that
c (X ) > |R|.

In other words, every known compact homogeneous space X
satisfies c (X ) ≤ |R|, but we do not know if this is true in general.

Theorem (Maurice)

There is a compact homogeneous space X satisfying c (X ) = |R|.
Maurice’s spaces are higher order Cantor sets. One is

(
2N)N with

the lexicographic order topology.
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The brute-force approach. . .

It’s not hard to compactify a given space X . Just take any space
and “fill in the holes.” Essentially, if a net doesn’t have a limit
point, then add one.

More precisely, we can always find a copy of X in a sufficiently
large cube [0, 1]A. We fill in the holes by taking the closure of this
copy of X . This closure is compact because [0, 1]A is compact.

It’s even easier to “homogenize” a space. Given an infinite space
X , use the following subspace of X X .{

f ∈ X X : ∀q ∈ X |{p ∈ X : f (p) = q}| = |X |
}



The brute-force approach. . .

It’s not hard to compactify a given space X . Just take any space
and “fill in the holes.” Essentially, if a net doesn’t have a limit
point, then add one.

More precisely, we can always find a copy of X in a sufficiently
large cube [0, 1]A. We fill in the holes by taking the closure of this
copy of X . This closure is compact because [0, 1]A is compact.

It’s even easier to “homogenize” a space. Given an infinite space
X , use the following subspace of X X .{

f ∈ X X : ∀q ∈ X |{p ∈ X : f (p) = q}| = |X |
}



. . . looks promising. . .

The above methods of compactifying and homogenizing never
decrease cellularity.

Therefore, if we take a big discrete space like D satisfying
c (D) =

∣∣2R∣∣ > |R|, then we can get compact space C and a
homogeneous space H such that c (C ) > |R| and c (H) > |R|.



. . . but doesn’t work.

Unfortunately, compactifying by the above method generally
breaks homogeneity and homogenizing by the above method
always breaks compactness.

This is just the tip of the iceberg of why Van Douwen’s Problem is
hard.



Construction equipment

Given an arbitrary infinite list (Xa)a∈A of compact homogeneous
spaces, how can we combine them to produce a single compact
homogeneous space? We know only one way: taking products.
(Actually, I found a second way; we’ll come back to that.)

Unfortunately, given any product
∏

a∈A Xa of compact spaces, we
have c

(∏
a∈A Xa

)
> |R| iff c

(∏
a∈F Xa

)
> |R| for some finite

F ⊆ A. (Why? It involves a technical lemma about uncountable
families of finite sets. . . )

Thus, infinite products get us no further than finite products.
Moreover, all finite products P of known examples of homogeneous
compact spaces satisfy c (P) ≤ |R|.



A new tool

I A space Q is a quotient of a space X if there is a continuous
onto map f : X → Q such that non-open subsets of Q have
non-open preimages.

I A space X is path connected if for every p, q ∈ X there is a
continuous map f : [0, 1]→ X such that f (0) = p and
f (1) = q.

I T denotes the unit circle.

Theorem (M.)

Given any compact homogeneous space X , there is quotient Q of
T× X T such that Q is compact, homogeneous, and path
connected and c (Q) ≥ c (X ).
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Want the details?

I For each p ∈ T, let Sp be the open semicircle with midpoint p.

I Given (p, f ), (q, g) ∈ T× X T, declare (p, f ) ∼ (q, g) if and
only if p = q and f (r) = g(r) for all r ∈ Sp.

I Let Q be the set of ∼-equivalence classes of T× X T.

I Give Q the unique topology that makes (p, f ) 7→ (p, f )/ ∼ a
quotient map.



What’s this good for?

If we could prove that there is no compact homogeneous path
connected space X with c (X ) > |R|, then we could immediately
conclude that Van Douwen’s Problem has a negative solution.

For the right choice of X (specifically, any of Maurice’s spaces), we
can prove that Q is a new example of a compact homogeneous
space, not constructable through any other known techniques.

Given an arbitrary list (Xa)a∈A of compact homogeneous spaces,
the above technique also yields compact homogeneous path

connected quotient spaces of T×
(∏

a∈A XA

)T
and similar spaces.

Quotients don’t increase cellularity, so the above technique won’t
produce a positive solution to van Douwen’s Problem.



Basic definitions

A local base at a point p in space X is a set B of open subsets of
X such that p ∈ B for all B ∈ B, and for every open subset U of
X , if p ∈ U, then there exists B ∈ B such that B ⊆ U.

A base of a space X is a set B of open subsets of X that includes
a local base at p for every p ∈ X .

A π-base of a space X is a set B of nonempty open subsets of X
such that for every nonempty open subset U of X , there exists
B ∈ B such that B ⊆ U.
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How many bosses do you have?

Definition (Peregudov)

Suppose A is a set of sets. Define the Noetherian type of A to
be the least cardinal κ such that for all U ∈ A, we have
|{V ∈ A : U ⊆ V }| < κ.

For example, given a descending sequence of sets (Un)n∈N, the set
{Un : n ∈ N} has Noetherian type |N|.

Given an ascending sequence of sets (Un)n∈N, the set {Un : n ∈ N}
has Noetherian type |N|+, the least cardinal greater than |N|.



Is that the best you can do?

Let the Noetherian type Nt (X ) denote the least of the
Noetherian types of the bases of X .

Let Noetherian π-type πNt (X ) denote the least of the
Noetherian types of the π-bases of X .

Let local Noetherian type χNt (p,X ) denote the least of the
Noetherian types of the local bases at p in X .

Let local Noetherian type χNt (X ) denote supp∈X χNt (p,X ).



Correlation. . .

Every known homogeneous compact space X satisfies c (X ) ≤ |R|.

Theorem (M.)

Every known compact homogeneous space X also satisfies
Nt (X ) ≤ |R|+, πNt (X ) ≤ |N|+, and χNt (X ) ≤ |N|.
Just as with cellularity, these upper bounds are broken if we allow
X to be inhomogeneous or not compact.

If X is a compact group or compact metric space, then
c (X ) ≤ |N|.

Theorem (M.)

If X is a compact group or compact metric space, then Nt (X ),
πNt (X ), and χNt (X ) are all at most |N|.
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. . . and causation

The Generalized Continuum Hypothesis (GCH) says that∣∣2A
∣∣ = |A|+ for all infinite A. Gödel and Cohen proved that if the

commonly accepted axioms of mathematics, ZFC, are consistent,
then both ZFC + GCH and ZFC + ¬GCH are consistent.

It is not known whether a postive solution to Van Douwen’s
Problem, a negative solution, or both are consistent with ZFC.

Theorem (M.)

Assuming GCH, every compact homogeneous space X satisfies
χNt (p,X ) ≤ c (X ) for all p ∈ X .

Thus, assuming GCH, finding a compact homogeneous space X
satisfying χNt (p,X ) > |R| would positively solve Van Douwen’s
Problem.
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Other directions

My published research also investigates:

I connectifying spaces,

I Nt (X ) for various classes of (generally inhomogeneous)
compacta,

I a more finely grained order-theoretic topological invariant, the
Tukey class of a local base,

I Nt (βN \ N), πNt (βN \ N), χNt (βN \ N), and

I Tukey classes of local bases in βN \ N.



The deciders

Definition
A set U of subsets of N is a nonprincipal ultrafilter on N if:

I Every A ∈ U is infinite.

I For all A,B ∈ U , we have A ∩ B ∈ U .

I For all A ⊆ N, either A ∈ U or N \ A ∈ U .

For every ultrafilter U and sequence (xn)n∈N on [0, 1], there is a
unique L ∈ [0, 1] such that for every ε > 0, the set
{n ∈ N : |xn − L| < ε} is in U . We call L the U-limit of (xn)n∈N
and write L = limn→U xn.

(More generally, U-limits always exist in compact spaces.)
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It’s all about the combinatorics

I Topologize the space of nonprincipal ultrafilters on N by
declaring every open set to be a union of sets of the form
{U : A ∈ U} where A ⊆ N.

I Equivalently, a net (Vi )i∈I converges to U if and only if for
every A ∈ U , there is some i ∈ I such that A ∈ Vj for all j ≥ i .

I This space of ultrafilters is homeomorphic to βN \ N, so, for
the purposes of topology, it is βN \ N.

Questions about βN \ N boil down to combinatorial questions
about sets of subsets of N.



What is βN \ N like?

I βN \ N is compact.

I (Frolik) βN \ N is not homogeneous.

I |βN \ N| =
∣∣2R∣∣.

I c (βN \ N) = |R|.
I βN \ N has convergent nets, but no nontrivial convergent

sequences. (In particular, βN \ N is not metrizable.)



Increasing precision

Theorem (Malykhin)

I |N|+ ≤ πNt (βN \ N) ≤ Nt (βN \ N).

I |R| = |N|+ ⇒ πNt (βN \ N) = Nt (βN \ N) = |R|.

Theorem (M.)

I πNt (βN \ N) ≤ |R| and Nt (βN \ N) ≤ |R|+.

I χNt (βN \ N) ≤ min {Nt (βN \ N) , |R|}.
I πNt (βN \ N) = |R| ⇒ Nt (βN \ N) = |R|.

Moreover, ZFC is consistent with each of the following.

I |N|+ = πNt (βN \ N) = χNt (βN \ N) = Nt (βN \ N) < |R|.
I |N|+ < πNt (βN \ N) = χNt (βN \ N) = Nt (βN \ N) < |R|.
I |N|+ = πNt (βN \ N) < Nt (βN \ N) < |R|.
I |N|+ < πNt (βN \ N) < χNt (βN \ N) = |R| < Nt (βN \ N).
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What is βN \ N, really?

Defintion
A compact space Y is a compactification of a space X if a dense
subspace of Y is homeomorphic to X .

I Every space X has a unique compactification βX that is
maximal in the sense that for every compactification γX of X ,
there is a continuous surjection f : βX → γX such that f
restricted to X is the identity map.

I To build βX , let F be the set of all continuous maps from X
to [0, 1]. This makes X homeomorphic to the subspace
X̃ = {(f (p))f ∈F : p ∈ X} of [0, 1]F . The closure of X̃ in
[0, 1]F is βX .

I We abuse notation and equate N and Ñ. Thus, βN \ N is just
βN \ Ñ.



What happened to the ultrafilters?

There is a natural homeomorphism h from the space of
nonprincipal ultrafilters on N to the space βN \ N.

I For each ultrafilter U , define h(U) by h(U)(f ) = limn→U f (n)
for all f : N→ [0, 1].

There is a natural description of h−1.

I For each x ∈ βN \ N, h−1(x) is the set of all sets of the form
{n : (f (n))f ∈F ∈ V } where V is a neighborhood of x .


