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Quasiorders

• Definition. A quasiorder is a set with a transitive reflex-
ive relation (denoted by ≤ by default). A quasiorder Q is
κ-directed if every subset of size less than κ has an upper
bound. We abbreviate “ω-directed” with “directed.”

• Definition The product P × Q of two quasiorders P and Q
is defined by 〈p0, q0〉 ≤ 〈p1, q1〉 iff p0 ≤ p1 and q0 ≤ q1.

• Definition. A subset C of a quasiorder Q is cofinal if for all
q ∈ Q there exists c ∈ C such that q ≤ c. The cofinality of Q
(written cf(Q)), is defined as follows.

cf(Q) = min{|C| : C cofinal in Q}
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Tukey equivalence

• Definition. A directed set P is Tukey reducible to a directed

set Q (written P ≤T Q) if there is map from P to Q such

that the image of every unbounded set is unbounded. If

P ≤T Q ≤T P , then we say P and Q are Tukey equivalent

and write P ≡T Q.

• Theorem (Tukey, 1940). P ≡T Q iff P and Q order-embed

as cofinal subsets of a common third directed set.
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• P ≤T Q ⇒ cf(P ) ≤ cf(Q)

• ∀α, β ∈ On α ≤T β ⇔ cf(α) = cf(β)

• P ≤T P ×Q

• P ≤T R ≥T Q ⇒ P ×Q ≤T R.

• P × P ≡T P

• P ≤T 〈[cf(P )]<ω,⊆〉

• ∀A, B infinite 〈[A]<ω,⊆〉 ≤T 〈[B]<ω,⊆〉 ⇔ |A| ≤ |B|
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• Given finitely many ordinals α0, . . . , αm−1, β0, . . . , βn−1, we have
∏

i<m

αi ≤T

∏

i<n

βi ⇔ {cf(αi) : i < m} ⊆ {cf(βi) : i < n}.

• Every countable directed set is Tukey equivalent to 1 or ω.

• No two of 1, ω, ω1, ω × ω1, and 〈[ω1]
<ω,⊆〉 are Tukey equiv-

alent.

• (Todorčevic̀, 1985) PFA implies every ω1-sized directed set

is Tukey equivalent to one of the above five orders. This is

false under CH because there are at least 2ω1-many pairwise

Tukey inequivalent directed sets of size c.
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Ultrafilters on ω

• Definition. Given A, B ⊆ ω, we write A ⊇∗ B iff A almost
contains B, i.e., iff |B \A| < ω.

Definition. If A ⊆ [ω]ω, then we say A has the strong finite
intersection property (SFIP) iff |⋂ σ| = ω for all σ ∈ [A]<ω.
We say that B ∈ [ω]ω is a pseudointersection of A iff A ⊇∗ B
for all A ∈ A.

Definition. Denote by ω∗ the set of nonprincipal ultrafilters
on ω. Any A ⊆ [ω]ω with the SFIP can be extended to some
U ∈ ω∗.

• Which quasiorders Q are Tukey equivalent to 〈U ,⊇∗〉 for some
U ∈ ω∗?
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Theorem (Dow & Zhou, 1999). ∃U ∈ ω∗ 〈U ,⊇∗〉 ≡T 〈[c]<ω,⊆〉.

Proof (Milovich). A subset I of [ω]ω is said to be independent if
for all disjoint finite σ, τ ⊆ I we have

⋃
σ 6⊇∗ ⋂

τ . It is known that
there exists an independent A ⊆ [ω]ω of size c. Let B denote the
set of all complements of pseudointersections of infinite subsets
of A. Since A is independent, A ∪ B has the SFIP. Hence, we
may extend A ∪ B to some U ∈ ω∗.

We have 〈U ,⊇∗〉 ≤T 〈[c]<ω,⊆〉 simply because cf(〈U ,⊇∗〉) ≤ |U| =
c. Hence, it suffices to show that 〈[A]<ω,⊆〉 ≤T 〈U ,⊇∗〉. Given
σ ∈ [A]<ω, set f(σ) =

⋂
σ ∈ U. Suppose Ξ is an unbounded

subset of [A]<ω. Then
⋃

Ξ is infinite. If {f(σ) : σ ∈ Ξ} is
bounded with respect to ⊇∗ by some X ∈ [ω]ω, then X is a
pseudointersection of

⋃
Ξ; hence, ω \ X ∈ B; hence, X 6∈ U.

Hence, {f(σ) : σ ∈ Ξ} is unbounded in 〈U ,⊇∗〉. ¤
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• Question. Is it consistent (with ZFC) that

∀U ∈ ω∗ 〈U ,⊇∗〉 ≡T 〈[c]<ω,⊆〉?

• Theorem (Shelah, 1982). It is consistent that

∀U ∈ ω∗ 〈U ,⊇∗〉 is not ω1-directed.
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• Definition. Let the pseudointerection number, p, denote the

least κ for which there exists A ⊆ [ω]ω such that |A| = κ and

A has the SFIP but A has no pseudointersection.

• It’s easy to show that p > ω. Suppose {An : n < ω} has the

SFIP. For each n < ω, set bn = min(
⋂

i<n Ai \ {bi}). Then

{bn : n < ω} is a pseudointersection of {An : n < ω}.

• CH ⇒ MA ⇒ p = c.
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Theorem (classical). p = c ⇒ ∃U ∈ ω∗ 〈U ,⊇∗〉 ≡T c.

Proof. Let 〈Xα〉α<c be a bijection from c to [ω]ω. Recursively

construct a strictly ⊇∗-increasing sequence 〈Yα〉α<c in [ω]ω as

follows. Suppose we have α < c and 〈Yβ〉β<α is ⊇∗-increasing.

Then {Yβ}β<α has the SFIP. Choose a pseudointersection Z of

{Yβ}β<α. Then choose W ∈ {Z ∩Xα, Z \Xα} such that |W | = ω.

Let Yα be an infinite and coinfinite subset of W .

Set U =
⋃

α<c{X ⊆ ω : Yα ⊆ X}. Then U is clearly a nonprincipal

filter. Moreover, U is an ultrafilter because Yα ⊆ Xα or Yα ⊆ ω\Xα

for all α < c. Finally c ≡T 〈U ,⊇∗〉 because 〈Yα〉α<c embeds c as a

cofinal subset of U (with respect to ⊇∗). ¤
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• Theorem. Suppose p = c. If ω ≤ cf(κ) = κ ≤ c, then
∃U ∈ ω∗ 〈U ,⊇∗〉 ≡T 〈[c]<κ,⊆〉.

• It is known that p = c ⇒ c = cf(c) ⇒ 〈[c]<c,⊆〉 ≡T c. There-
fore, this theorem generalizes the previous classical result.

• Question. Assuming p = c, does the above theorem enu-
merate all Tukey classes of elements of ω∗? I don’t know the
answer in any model of p = c.

• Theorem. If κ is an infinite cardinal less than p and Q is a
κ-directed set that is a union of at most κ-many κ+-directed
sets, then ∀U ∈ ω∗ 〈U ,⊇∗〉 6≡T κ × Q. 3/17/2008: I found
a bug in the proof for κ > ω; I currently only have a
correct proof for κ = ω.

10



• Corollary. ∀〈αi〉i<n ∈ On<ω ∀U ∈ ω∗ 〈U ,⊇∗〉 6≡T ω × ∏
i<n αi.

3/17/2008: See note about previous theorem.

Proof. We may assume cf(αi) = αi for all i < n. Set

σ = {i < n : αi ≤ ω}. Then
∏

i<n αi is a countable union of

ω1-directed sets because it equals the set

⋃

f∈∏
i∈σ αi

(
{f} ×

∏

i∈n\σ
αi

)
.

• Corollary. Suppose p = c. If 2 ≤ n < ω and 〈κi〉i<n is a

strictly increasing sequence of infinite regular cardinals, then

∀U ∈ ω∗ 〈U ,⊇∗〉 6≡T
∏

i<n κi. 3/17/2008: See note about

previous theorem.
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Proof. Suppose U ∈ ω∗ and 〈U ,⊇∗〉 ≡T
∏

i<n κi. Then

cf(〈U ,⊇∗〉) = cf
(∏

i<n κi

)
= κn−1. Since cf(〈U ,⊇∗〉) ≤ |U| = c,

we have κn−1 ≤ c; hence, κ0 < c = p.¤



Theorem. Given any two regular uncountable cardinals κ and
λ, it is consistent with ZFC that βω \ ω has a local base Tukey
equivalent to κ× λ.

Proof outline. We may assume κ < λ = c. We build a forcing
extension with a cofinal subset C of κ × λ and an embedding
〈Yα,β〉〈α,β〉∈C into 〈[ω]ω,⊇∗〉 such that U is an ultrafilter where
U =

⋃
〈α,β〉∈C{X ⊆ ω : Yα,β ⊆ X}. This will yield 〈U ,⊇∗〉 ≡T C ≡T

κ× λ.

We proceed via a finite support iteration of length λ ·κ. At stage
λ · α + β where α < κ and β < λ, we have already constructed
the restriction of our embedding to {〈γ, δ〉 ∈ κ × λ : λ · γ + δ <

λ · α + β} such that its range has the SFIP and a few other
technical properties. We also are have already chosen some
Xα,β ∈ [ω]ω.
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We then argue, heavily relying on κ < cf(λ) = λ, that there are

arbitrarily large ρ < λ for which there is a forcing extension in

which our embedding extends to one with 〈α, ρ〉 in its domain

and a subset of either Xα,β or ω \Xα,β in its range, such that the

new range still has the SFIP and our other technical properties.

(This forcing extension is not at all exotic. We just use the

Mathias forcing for the image of α× ρ by our given embedding.)

Using standard bookkeeping tricks, we ensure that every ele-

ment of [ω]ω in the final model appears as some Xα,β, thereby

guaranteeing that U ∈ ω∗. ¤
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