Reflecting cones on boolean algebras

David Milovich

May 13, 2006

- A poset P is is κ^{op} -like if $\forall x \in P ||\uparrow x| = |\{y \in P : y \ge x\}| < \kappa$.
- A base of a space X is a family ${\mathscr B}$ of open sets such that

 $\forall p \in X \ \forall U \text{ open } \ni p \ \exists V \in \mathscr{B} \ p \in V \subseteq U.$

- For our purposes, all bases are ordered by inclusion. Also, all spaces are Hausdorff.
- The weight w(X) of X is

 $\min\{\kappa \geq \omega : \exists \mathscr{B} \text{ base of } X \mid \mathscr{B} \mid \leq \kappa\}.$

The order weight ow(X) of X is

 $\min\{\kappa \geq \omega : \exists \mathscr{B} \text{ base of } X \quad \mathscr{B} \text{ is } \kappa^{\mathsf{op}}\text{-like}\}.$

Example. Suppose X is a compact metric space. For each $n < \omega$, let \mathscr{B}_n be a finite cover by balls of radius 2^{-n} . Then $\bigcup_{n < \omega} \mathscr{B}_n$ is an ω^{op} -like base of X; hence, $ow(X) = \omega$.

• The cellularity c(X) of X is

 $\sup(\{\omega\} \cup \{\kappa : X \text{ has } \kappa\text{-many disjoint open sets}\}).$

- van Douwen's Problem. $c(X) \leq 2^{\aleph_0}$ for all known homogeneous compact X. Is there a counterexample? (After well over twenty years, this is still open in all models of ZFC.)
- Similarly, $ow(X) \leq (2^{\aleph_0})^+$ for all known homogeneous compact X. Is there a counterexample? (After almost one year, this is still open in all models of ZFC.)
- Is there a connection between c(X) and ow(X)?

- A compact space X is *dyadic* if it is a continuous image of 2^{κ} for some κ .
- $c(X) = \omega$ for all compact dyadic X.
- ow(X) can be arbitrarily large for compact dyadic X, but $ow(X) \neq \omega_1$. If X is also homogeneous, then $ow(X) = \omega$.
- In particular, ow(G) = ω for every compact group G, for every compact group is homogeneous and dyadic (Kuzminov, 1959).

• A local π -base at a point p in a space X is a family \mathscr{B} of open sets such that

 $\forall U \text{ open } \ni p \quad \exists V \in \mathscr{B} \quad \emptyset \neq V \subseteq U.$

The π -character $\pi\chi(p,X)$ of p is

 $\min\{\kappa \geq \omega : \exists \mathscr{B} \text{ local } \pi\text{-base at } p \mid \mathscr{B} \mid \leq \kappa\}.$

- If X is homogeneous, compact, and dyadic, then $\pi\chi(p,X) = w(X)$ for all $p \in X$ (Gerlits, 1976).
- Theorem 1. $ow(X) \neq \omega_1$ for all compact dyadic X. Moreover, if $\pi\chi(p, X) = w(X)$ for all $p \in X$, then $ow(X) = \omega$ and every base of X contains an ω^{op} -like base.

Does Theorem 1 hold for any class of nondyadic compact spaces?

- A subset I of a boolean algebra is *independent* if, given any two disjoint finite subsets σ and τ of I, we have $\land \sigma \land \neg \lor \tau \neq 0$.
- A boolean algebra is *free* if it is generated by an independent subset.
- A boolean algebra is free iff it is isomorphic to the algebra Clop(2^κ) of clopen subsets of 2^κ for some κ. In particular, Clop(2^κ) is generated by the independent subset

$$\{\{f \in 2^{\kappa} : f(\alpha) = 1\} : \alpha < \kappa\}.$$

• A boolean algebra *B* reflects cones if, for all sufficiently large regular cardinals θ , there is a countable language \mathcal{L} and an \mathcal{L} -expansion $\langle H_{\theta}, \in, \ldots \rangle$ of $\langle H_{\theta}, \in \rangle$ such that

 $\forall M \prec_{\mathcal{L}} H_{\theta} \quad \forall p \in B \quad \exists \min(M \cap \uparrow p).$

- Every free boolean algebra reflects cones.
- Denote the Stone dual of a boolean algebra B (*i.e.*, the space of ultrafilters of B) by st(B).

Example: $st(Clop(2^{\kappa})) \cong 2^{\kappa}$.

- Theorem 2. Suppose *B* reflects cones and *X* is a continuous image of st(*B*). Then $ow(X) \neq \omega_1$. Moreover, if $\pi\chi(p, X) = w(X)$ for all $p \in X$, then $ow(X) = \omega$ and every base of *X* contains an ω^{op} -like base.
- Suppose A and B be boolean algebras. Then st(B) is a a continuous image of st(A) iff B is isomorphic to a subalgebra of A.
- Therefore, Theorem 2 is strictly stronger than Theorem 1 iff there exists a boolean algebra *B* such that
 - (*) B reflects cones but is not a subalgebra of a free boolean algebra.

- Is (*) ever satisfied? Not by boolean algebras of size $\leq \aleph_1$. For larger boolean algebras, we have only partial results.
 - A boolean algebra B *n*-reflects cones if, for all sufficiently large regular cardinals θ , there is a countable language \mathcal{L} such that given any $p \in B$ and \in -chain M_0, \ldots, M_{n-1} satisfying $M_i \prec_{\mathcal{L}} H_{\theta}$ for all i < n, there exists $\min(A \cap \uparrow p)$, where A is a subalgebra of B generated by $B \cap \bigcup_{i < n} M_i$.
 - Free boolean algebras *n*-reflect cones for all $n < \omega$.
 - If B *n*-reflects cones and $|B| \leq \aleph_n$, then B is a subalgebra of a free boolean algebra. If B *n*-reflects cones for all $n < \omega$, then B is a subalgebra of a free boolean algebra.

- In proving our results, the following lemma, which is based on a technique of Jackson and Mauldin, is heavily used.
- Lemma. Let \mathcal{L} be a countable language, β an ordinal, θ a sufficiently large regular cardinal, and $\langle H_{\theta}, \in, ... \rangle$ an \mathcal{L} -expansion of $\langle H_{\theta}, \in \rangle$. Let $\langle M_{\alpha} \rangle_{\alpha < \beta}$ satisfy

$$|M_{\alpha}| = \aleph_0$$
 and $\langle M_{\delta} \rangle_{\delta < \alpha} \in M_{\alpha} \prec_{\mathcal{L}} H_{\theta}$

for all $\alpha < \beta$. Then, for each $\alpha < \beta$, there is a finite \in -chain N_0, \ldots, N_{k-1} such that

$$\bigcup_{i < k} N_i = \bigcup_{\delta < \alpha} M_\delta \text{ and } \forall i < k \quad M_\alpha \ni N_i \prec_{\mathcal{L}} H_\theta.$$

Moreover, if $\beta \leq \omega_{n+1}$, then we can get $k \leq n+1$.

References

J. Gerlits, *On subspaces of dyadic compacta*, Studia Sci. Math. Hungar. **11** (1976), no. 1-2, 115–120.

S. Jackson and R. D. Mauldin, *On a lattice problem of H. Steinhaus*, J. Amer. Math. Soc. **15** (2002), no. 4, 817–856.

V. Kuzminov, *Alexandrov's hypothesis in the theory of topological groups*, Dokl. Akad. Nauk SSSR **125** (1959) 727–729.