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Tukey equivalence

• Definition/Fact. A directed set P is Tukey reducible to a

directed set Q (written P ≤T Q) if and only if one of the

following equivalent statements holds.

– There is map from P to Q such that the image of every

unbounded set is unbounded.

– There is a map from P to Q such that the preimage of

every bounded set is bounded.

– There is a map from Q to P such that the image of every

cofinal subset is cofinal.
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• If P ≤T Q ≤T P , then we say P and Q are Tukey equivalent,
writing P ≡T Q.

• Theorem (Tukey, 1940). P ≡T Q iff P and Q order-embed
as cofinal subsets of a common third directed set.

• Every countable directed set is Tukey-equivalent to 1 (the
singleton order) or ω (an ascending sequence).

• The ω1-sized directed sets are Tukey equivalent to 1, ω, ω1,
ω × ω1 (with the product order), [ω1]

<ω (the finite subsets
of ω1 ordered by inclusion), or maybe something else. (E.g.,
PFA implies these five are exhaustive; CH implies there are
2ω1 more possibilities (Todorčević, 1985).)
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What’s this got to do with topology?

• Convention. Families of open sets are ordered by ⊇.

• Theorem. Suppose X and Y are spaces, p ∈ X, q ∈ Y , A is
a local base at p in X, B is a local base at q in Y , f : X → Y
is continuous and open (or just continuous at p and open at
p), and f(p) = q. Then B ≤T A.

• Proof. Choose H : A → B such that H(U) ⊆ f [U ] for all
U ∈ A. (Here we use that f is open.) Suppose C ⊆ A is
cofinal. For any U ∈ B, we may choose V ∈ A such that
f [V ] ⊆ U by continuity of f . Then choose W ∈ C such that
W ⊆ V . Hence, H(W ) ⊆ f [W ] ⊆ f [V ] ⊆ U . Thus, H[C] is
cofinal.
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• Corollary. In the above theorem, if f is a homeomorphism,

then every local base at p is Tukey-equivalent to every local

base at q.

• Thus, the Tukey class of a point’s local bases is a topological

invariant.
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For example, consider the ordered space X = ω1 + 1 + ω∗. It

has a point p that is the limit of an ascending ω1-sequence and

a descending ω-sequence. Every local base at p (when ordered

by by ⊇) is Tukey equivalent to the product order ω × ω1.

Next, consider Dω1 ∪ {∞}, the one-point compactification of the

ω1-sized discrete space. Glue X and Dω1 ∪ {∞} together into a

new space Y by a quotient map that identifies p and ∞. Think

of Y as X with a cloud of points attached to p. In Y , every local

base at p is Tukey equivalent to [ω1]
<ω (the finite subsets of ω1

ordered by inclusion), which is not Tukey equivalent to ω × ω1.

Thus, we can distinguish p in X from p in Y by their associated

Tukey classes, even though other topological properties, such as

character and π-character, have not changed.
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The spaces βω and βω \ ω

• By Stone duality, every ultrafilter U on ω is such that U
ordered by ⊇ is Tukey-equivalent to every local base of U in

βω.

• Likewise, U ordered by ⊇∗ (containment mod finite) is Tukey

equivalent to every local base of U in βω \ ω.

• Thus, the classification the Tukey classes of local bases in

βω and βω \ω reduces to a problem of infinite combinatorics.
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• Theorem (Isbell, 1965). There exists U ∈ βω \ ω such that

〈U ,⊇〉 ≡T 〈U ,⊇∗〉 ≡T [c]<ω (the finite sets of reals ordered by

inclusion).

• Every directed set Q of size at most c satisfies 1 ≤T Q ≤T

[c]<ω, so 1 and [c]<ω are the minimum and maximum Tukey

classes among ultrafilters on ω, whether ordered by ⊇ or ⊇∗.

• Every principal ultrafilter is trivially Tukey equivalent to 1.

• Question (Isbell, 1965). Is there a U ∈ βω such that

1 <T 〈U ,⊇〉 <T [c]<ω?
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Don’t take the easy way out.

• For all U ∈ βω \ω, we have 〈U ,⊇∗〉 ≤T 〈U ,⊇〉. (Proof: use the
identity map.)

• If u < c, that is, if some U ∈ βω \ ω has character κ < c, then
a trivial cardinality argument shows that

1 <T 〈U ,⊇∗〉 ≤T 〈U ,⊇〉 ≤T [κ]<ω <T [c]<ω.

• It’s easy to force u < c.

• To make things interesting, we’ll restrict our attention to
U ∈ βω \ ω with character c. We’ll call the Tukey classes of
〈U ,⊇〉 and 〈U ,⊇∗〉 for such U “big” Tukey classes.
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• Certain Tukey classes just can’t occur among local bases in
βω or βω \ω. Most of the ones below are ruled out by simple
cardinality arguments.

Theorem. Suppose U ∈ βω \ ω. Then 〈U ,⊇〉 is not Tukey
equivalent to 1, ω, ω1, ω × ω1, or to any countable union of
σ-directed sets. Moreover, 〈U ,⊇∗〉 is not Tukey equivalent to
any of 1, ω, ω×ω1, or ω×Q where Q is any countable union
of σ-directed sets.

• On the other hand, CH implies there exists U ∈ βω \ ω such
that ω1 ≡T 〈U ,⊇∗〉 <T 〈U ,⊇〉.

• Note that if U ∈ βω\ω, then by definition 〈U ,⊇∗〉 is σ-directed
if and only if U is a P-point in βω \ ω.
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• Main Theorem. Assuming ♦, there exists U ∈ βω \ ω such

that U has character c and 1 <T 〈U ,⊇∗〉 ≤T 〈U ,⊇〉 <T [c]<ω.

Thus, Isbell’s question consistently has a positive answer

even when restricted to big Tukey classes.

• ♦ can be weakened to MAσ-centered + ♦(Sc
ω) where

Sc
ω = {α < c : cf α = ω}.

• Question. Can ♦ be weakened to CH? Even a ZFC proof

has yet to be ruled out.
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About the proof

• For all U ∈ βω \ ω, 〈U ,⊇〉 <T [c]<ω is equivalent to a purely

combinatorial statement:

∀A ∈ [U]c ∃B ∈ [A]ω
⋂
B ∈ U .

(For the weaker 〈U ,⊇∗〉 <T [c]<ω, one only needs B to have a

pseudointersection in U.)

• Using ♦ to diagonalize against all c-sized subsets of U, we can

construct U ∈ βω \ ω such that U is not a P-point and U has

character c and we have that ∀A ∈ [U]c ∃B ∈ [A]ω
⋂B ∈ U.
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• Why bother to ensure U is not a P-point? Because it hasn’t

been done before. Any P-point V already satisfies 〈V,⊇∗〉 <T

[c]<ω. To have a non-P-point U satisfying 〈U ,⊇∗〉 <T [c]<ω is

new.

• More generally, forcing gives us relative freedom in construct-

ing P-points of various Tukey classes. For example, there

is a ccc order that forces c = ω42 and adds a P-point V
such that 〈V,⊇∗〉 ≡T ω1 × ω42 (Brendle and Shelah, 1999).

For non-P-points, equally powerful techniques are yet to be

found.
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Some questions

• ♦ implies there are at least three Tukey classes of local bases
in βω. Does it imply there are four? infinitely many?

• Is it consistent that there are only two Tukey classes of local
bases in βω?

• Is it consistent that there is only one Tukey class of local
bases in βω \ ω?

• More ambitiously, is there a model of ZFC with a nice char-
acterization of the Tukey classes of local bases in βω? in
βω \ ω?

13



References

J. Brendle and S. Shelah, Ultrafilters on ω—their ideals and their

cardinal characteristics, Trans. AMS 351 (1999), 2643–2674.

J. Isbell, The category of cofinal types. II, Trans. Amer. Math.

Soc. 116 (1965), 394–416.
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