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An order-theoretic weight

Definition

I A base of a space X is a set B of open subsets of X such that
for every open subset U of X and every p ∈ U, there exists
B ∈ B such that p ∈ B ⊆ U.

I The weight w(X ) of a space X is the least infinite κ such
that X has a base of size at most κ.

Definition (Peregudov)

I A family of sets F is κop-like if every set in F has fewer than
κ-many supersets in F .

I The Noetherian type Nt(X ) of a space X is the least infinite
κ such that X has a κop-like base.



Easy examples

Theorem
Nt(X ) ≤ w(X )+ for every space X .

Theorem
Nt(X ) = ω for every compact metric space X .

Proof.
For each n < ω, let Un be a finite cover of X by balls of radius
2−n. Then

⋃
n<ω Un is an ωop-like base of X .

Theorem
Nt(2κ) = ω for every κ.

Proof.
For each σ ∈ Fn(κ, 2), set Uσ = {f ∈ 2κ : σ ⊆ f }. Then Uσ ⊇ Uτ
iff σ ⊆ τ . Hence, {Uσ : σ ∈ Fn(κ, 2)} is an ωop-like base of
2κ.
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Products

Theorem
If X =

∏
i∈I Xi and each Xi has a nontrivial open subset, then

w(X ) =
∑

i∈I w(Xi ).

Theorem (Peregudov)

If X =
∏

i∈I Xi , then Nt(X ) ≤ supi∈I Nt(Xi ).

Theorem (Malykhin)

If X =
∏

i∈I Xi , w(X ) ≤ |I |, and each Xi is a nontrivial union of
two open sets, then Nt(X ) = ω.

Question
Are there a spaces X ,Y such that Nt(X × Y ) < Nt(X )Nt(Y )?
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βN \ N

Theorem (M.)

Each of the following is consistent with ZFC.

I Nt(βN \ N) = ω1 = 2ω (Malykhin)

I ω1 < Nt(βN \ N) = 2ω

I Nt(βN \ N) = ω1 < 2ω

I ω1 < Nt(βN \ N) < 2ω

I ω1 < 2ω < (2ω)+ = Nt(βN \ N)

Much more can be said in terms of s, r, b, d, u, h, i, and p. (E.g.,
Nt(βN \ N) ≥ s and Con(b < Nt(βN \ N) < d).)

Theorem (M.)

Suppose |I | < 2ω and w(Xi ) ≤ 2ω for all i ∈ I . Then∏
i∈I (Xi ⊕ (βN \ N)) is not homeomorphic to a product of

2ω-many non-singleton spaces.
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Van Douwen’s Problem

Definition

I A compactum is a compact Hausdorff space.

I A space is homogeneous is for every p, q ∈ X there is an
homeomorphism h : X → X such that h(p) = q.

I The cellularity c(X ) of a space X is the least infinite κ such
that every pairwise disjoint open family is X has size at most
κ.

Question (Van Douwen)

Is there a homogeneous compactum X such that c(X ) > 2ω?

After over 30 years, Van Douwen’s Problem has not been solved in
any model of ZFC.



The difficulty is structural

Fact
Every known example of a homogeneous compactum X is a
continuous image of a product of compacta each with weight at
most 2ω. Hence, c(X ) ≤ 2ω. (The upper bound is attained.)

Theorem A (M.)

If X is a homogeneous compactum and a continuous image of a
product

∏
i∈I Xi of compacta such that

sup
i∈I

w(Xi ) = κ < cf λ = λ ≤ w(X ),

then Nt(X ) ≤ κ.

Corollary

Every known homogeneous compactum X satisfies Nt(X ) ≤ (2ω)+.

(The upper bound is attained.)
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Dyadic compacta

Definition
A dyadic compactum is a Hausdorff space that is a continuous
image of 2κ for some κ.

Corollary

Nt(X ) = ω for every homogeneous dyadic compactum X .

Theorem (M.)

Let κ < λ be infinite cardinals and let X be the quotient of
2κ ⊕ 2λ obtained by identifying 〈0〉i<κ and 〈0〉i<λ. If κ < cf λ,
then Nt(X ) = λ+. If κ = cf λ, then Nt(X ) = λ.

Corollary

The class of Noetherian types of dyadic compacta includes all
infinite cardinals except possibly weak inaccessibles and successors
of cardinals with countable cofinality (like ω1 and ωω+1).
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Non-triviality

Theorem (M.)

The class of Noetherian types of compacta includes all infinite
cardinals.

Theorem B (M.)

The class of Noetherian types of dyadic compacta excludes ω1.

Question
Are ωω+1 and weak inaccessibles excluded too?
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Another spectrum

Perhaps things are easier with ordered compacta.

Theorem (M.)

With respect to the order topology, Nt(κ+ 1) = κ+ if κ is a regular
uncountable cardinal and Nt(κ+ 1) = κ if κ is a singular cardinal.

Proof.
By the Pressing Down Lemma. . .



Excluding ω1

Theorem C (M.)

If X is an ordered compactum and Nt(X ) ≤ κ and κ is regular and
uncountable, then X has a dense set of size less than κ.

Corollary

If X is an ordered compactum, then Nt(X ) 6= ω1.

Proof.
Suppose Nt(X ) = ω1. Then X has a countable dense subset D.
Also, X is not metrizable, so w(X ) ≥ ω1. Let B be a base of X .
Then for some p, q ∈ D and U ∈ B we have U ⊆ (p, q) ⊆ V for
uncountably many V ∈ B. Thus, Nt(X ) ≥ ω2.
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Excluding weak inaccessibles

Corollary

If X is an ordered compactum, then Nt(X ) is not a weak
inaccessible.

Proof.
Suppose κ = Nt(X ) is weakly inaccessible. Then X has a dense
subsets D of size less than κ. If w(X ) ≥ κ, then, arguing as before,
Nt(X ) ≥ κ+. If w(X ) < κ, then Nt(X ) ≤ w(X )+ < κ.



A spectrum characterized

Theorem D (M.)

For each singular cardinal κ, there is an ordered compactum X
such that Nt(X ) = κ+.

Corollary

The class of Noetherian types of ordered compacta includes all
infinite cardinals except ω1 and the weak inaccessibles.



Questions

Question
Do the dyadic compacta have the same Noetherian spectrum as
the ordered compacta?

Question
Is there an interesting example of a class of spaces with Noetherian
spectrum excluding ω2?



Proving Theorems A and B

Theorem A
If X is a homogeneous compactum and a continuous image of a
product

∏
i∈I Xi of compacta such that

sup
i∈I

w(Xi ) = κ < cf λ = λ ≤ w(X ),

then Nt(X ) ≤ κ.

Theorem B
The class of Noetherian types of dyadic compacta excludes ω1.



Substructures and quotients

Definition

I H(θ) is the set of sets that are hereditarily smaller than θ.

I C (X ) is the set of continuous maps from X to R.

I Given X a compactum, θ a sufficiently large regular cardinal,
and M an elementary substructure of 〈H(θ),∈, <,C (X )〉,
define a quotient map πX

M : X → X/M by

πX
M(p) 6= πX

M(q) iff f (p) 6= f (q) for some f ∈ C (X ) ∩M.



Strategy

For simplicity, assume X is a homogeneous dyadic compactum.

I X/M is compact and metrizable if M is countable and X is a
compactum.

I Compact metric spaces have very nice ωop-like bases.

I We may choose a sequence 〈Mα〉α<w(X ) of countable
Mα ≺ H(θ) such that α ∈ Mα for all α < w(X ).

I Given a base Bα of each X/Mα, B =
⋃
α<w(X )

(
πX

Mα

)−1
(Bα)

is a base of X .

I If the substructures cohere sufficiently well, then we can use
reflection arguments (and minp∈X πχ(p,X ) = w(X )) to
carefully construct subsets Aα ⊆ Bα such that

A =
⋃
α<w(X )

(
πX

Mα

)−1
(Aα) is an ωop-like base of X .
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To cohere sufficiently well. . .

It suffices to have 〈Mβ〉β<α ∈ Mα for all α < w(X ).

Let Ω denote the class of finite, nonempty ordinal sequences
〈γi 〉i<n for which |γ0| > |γ1| > · · · > |γn−2| ≥ ω1 > |γn−1| if n ≥ 2
and ω1 > |γn−1| if n = 1.

Let v denote the lexicographic ordering of Ω. Since v is a
well-ordering, there is a unique isomorphism Υ from the ordinals to
〈Ω,v〉. For each Υ(α) = 〈γi 〉i<n and k < n − 1, define:

Nα,k =
⋃
{Mβ : 〈γ0, . . . , γk−1, 0〉 v Υ(β) @ 〈γ0, . . . , γk , 0〉}

Nα,n−1 =
⋃
{Mβ : 〈γ0, . . . , γn−2, 0〉 v Υ(β) @ 〈γ0, . . . , γn−1〉}
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Coherence as promised

Theorem

I
⋃

i<n Nα,i =
⋃
β<α Mα

I Nα,i ∈ Mα for all i < n.

I Nα,i ≺ H(θ) for all i < n.

Jackson and Mauldin first constructed a tree of substructures
satisfying the above theorem. I just showed that one can build the
tree from a mere sequence of Mα’s satisfying 〈Mβ〉β<α ∈ Mα.

Remark
If w(X ) = ω1, then we don’t need such fancy machinery; a
continuous elementary chain of countable submodels suffices.
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Proving Theorem C

Theorem C
If X is an ordered compactum and Nt(X ) ≤ κ and κ is regular and
uncountable, then X has a dense set of size less than κ.

Proof.

I Let B be κop-like base of X . Let M ≺ 〈H(θ),∈,B〉, |M| < κ,
and M ∩ [H(θ)]<κ ⊆ [M]<κ.

I If p, q ∈ X ∩M and ∅ 6= (p, q) ⊆ U ∈ B, then U ∈ M, so
points like min{x ∈ X : q ≤ x 6∈ U} are also in M.

I It follows that X ∩M is dense in X .
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Proving Theorem D

Theorem D
For each singular cardinal κ, there is an ordered compactum X
such that Nt(X ) = κ+.

Proof.

I Let λ = cf κ and Y = λ+ + 1.

I Partition the limit ordinals less than λ+ into stationary sets
〈Sα〉α<λ.

I Let 〈κα〉α<λ be an increasing sequence of regular cardinals
with supremum κ.

I For each α < λ and β ∈ Sα, set Zβ = (κα + 1)op.

I For each β ∈ Y \
⋃
α<λ Sα, set Zβ = 1.

I X =
∑

β∈Y Zβ.
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