Two spectra of Noetherian types

David Milovich milovich@math.wisc.edu

March 8, 2009 Spring Topology and Dynamics Conference Gainesville, FL

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An order-theoretic weight

Definition

- A base of a space X is a set B of open subsets of X such that for every open subset U of X and every p ∈ U, there exists B ∈ B such that p ∈ B ⊆ U.
- The weight w(X) of a space X is the least infinite κ such that X has a base of size at most κ.

Definition (Peregudov)

- A family of sets *F* is κ^{op}-like if every set in *F* has fewer than κ-many supersets in *F*.
- The Noetherian type Nt(X) of a space X is the least infinite κ such that X has a κ^{op}-like base.

Easy examples

Theorem $Nt(X) \le w(X)^+$ for every space X.

Easy examples

Theorem $Nt(X) \le w(X)^+$ for every space X.

Theorem $Nt(X) = \omega$ for every compact metric space X.

Proof.

For each $n < \omega$, let \mathcal{U}_n be a finite cover of X by balls of radius 2^{-n} . Then $\bigcup_{n < \omega} \mathcal{U}_n$ is an ω^{op} -like base of X.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Easy examples

Theorem $Nt(X) \le w(X)^+$ for every space X.

Theorem $Nt(X) = \omega$ for every compact metric space X.

Proof.

For each $n < \omega$, let \mathcal{U}_n be a finite cover of X by balls of radius 2^{-n} . Then $\bigcup_{n < \omega} \mathcal{U}_n$ is an ω^{op} -like base of X.

Theorem $Nt(2^{\kappa}) = \omega$ for every κ .

Proof.

For each $\sigma \in \operatorname{Fn}(\kappa, 2)$, set $U_{\sigma} = \{f \in 2^{\kappa} : \sigma \subseteq f\}$. Then $U_{\sigma} \supseteq U_{\tau}$ iff $\sigma \subseteq \tau$. Hence, $\{U_{\sigma} : \sigma \in \operatorname{Fn}(\kappa, 2)\}$ is an $\omega^{\operatorname{op}}$ -like base of 2^{κ} .

Products

Theorem If $X = \prod_{i \in I} X_i$ and each X_i has a nontrivial open subset, then $w(X) = \sum_{i \in I} w(X_i)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Peregudov) If $X = \prod_{i \in I} X_i$, then $Nt(X) \le \sup_{i \in I} Nt(X_i)$.

Products

Theorem If $X = \prod_{i \in I} X_i$ and each X_i has a nontrivial open subset, then $w(X) = \sum_{i \in I} w(X_i).$

Theorem (Peregudov)

If
$$X = \prod_{i \in I} X_i$$
, then $Nt(X) \leq \sup_{i \in I} Nt(X_i)$.

Theorem (Malykhin)

If $X = \prod_{i \in I} X_i$, $w(X) \le |I|$, and each X_i is a nontrivial union of two open sets, then $Nt(X) = \omega$.

Products

Theorem If $X = \prod_{i \in I} X_i$ and each X_i has a nontrivial open subset, then $w(X) = \sum_{i \in I} w(X_i).$

Theorem (Peregudov)

If
$$X = \prod_{i \in I} X_i$$
, then $Nt(X) \leq \sup_{i \in I} Nt(X_i)$.

Theorem (Malykhin)

If $X = \prod_{i \in I} X_i$, $w(X) \le |I|$, and each X_i is a nontrivial union of two open sets, then $Nt(X) = \omega$.

Question

Are there a spaces X, Y such that $Nt(X \times Y) < Nt(X)Nt(Y)$?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$\beta \mathbb{N} \setminus \mathbb{N}$

Theorem (M.)

Each of the following is consistent with ZFC.

•
$$Nt(\beta \mathbb{N} \setminus \mathbb{N}) = \omega_1 = 2^{\omega}$$
 (Malykhin)

•
$$\omega_1 < \mathsf{Nt}(\beta \mathbb{N} \setminus \mathbb{N}) = 2^{\omega}$$

•
$$Nt(\beta \mathbb{N} \setminus \mathbb{N}) = \omega_1 < 2^{\omega}$$

•
$$\omega_1 < \mathsf{Nt}(\beta \mathbb{N} \setminus \mathbb{N}) < 2^{\omega}$$

$$\blacktriangleright \ \omega_1 < 2^\omega < (2^\omega)^+ = \mathit{Nt}(\beta \mathbb{N} \setminus \mathbb{N})$$

Much more can be said in terms of \mathfrak{s} , \mathfrak{r} , \mathfrak{b} , \mathfrak{d} , \mathfrak{u} , \mathfrak{h} , \mathfrak{i} , and \mathfrak{p} . (*E.g.*, $Nt(\beta\mathbb{N}\setminus\mathbb{N}) \geq \mathfrak{s}$ and $Con(\mathfrak{b} < Nt(\beta\mathbb{N}\setminus\mathbb{N}) < \mathfrak{d})$.)

$\beta \mathbb{N} \setminus \mathbb{N}$

Theorem (M.)

Each of the following is consistent with ZFC.

•
$$Nt(\beta \mathbb{N} \setminus \mathbb{N}) = \omega_1 = 2^{\omega}$$
 (Malykhin)

•
$$\omega_1 < \mathsf{Nt}(\beta \mathbb{N} \setminus \mathbb{N}) = 2^{\omega}$$

•
$$Nt(\beta \mathbb{N} \setminus \mathbb{N}) = \omega_1 < 2^{\omega}$$

$$\blacktriangleright \ \omega_1 < \textit{Nt}(\beta \mathbb{N} \setminus \mathbb{N}) < 2^{\omega}$$

$$\blacktriangleright \ \omega_1 < 2^\omega < (2^\omega)^+ = \mathit{Nt}(\beta \mathbb{N} \setminus \mathbb{N})$$

Much more can be said in terms of \mathfrak{s} , \mathfrak{r} , \mathfrak{b} , \mathfrak{d} , \mathfrak{u} , \mathfrak{h} , \mathfrak{i} , and \mathfrak{p} . (*E.g.*, $Nt(\beta\mathbb{N}\setminus\mathbb{N}) \geq \mathfrak{s}$ and $Con(\mathfrak{b} < Nt(\beta\mathbb{N}\setminus\mathbb{N}) < \mathfrak{d})$.)

Theorem (M.)

Suppose $|I| < 2^{\omega}$ and $w(X_i) \le 2^{\omega}$ for all $i \in I$. Then $\prod_{i \in I} (X_i \oplus (\beta \mathbb{N} \setminus \mathbb{N}))$ is not homeomorphic to a product of 2^{ω} -many non-singleton spaces.

Van Douwen's Problem

Definition

- A **compactum** is a compact Hausdorff space.
- A space is homogeneous is for every p, q ∈ X there is an homeomorphism h: X → X such that h(p) = q.
- The cellularity c(X) of a space X is the least infinite κ such that every pairwise disjoint open family is X has size at most κ.

Question (Van Douwen)

Is there a homogeneous compactum X such that $c(X) > 2^{\omega}$? After over 30 years, Van Douwen's Problem has not been solved in any model of ZFC.

The difficulty is structural

Fact

Every known example of a homogeneous compactum X is a continuous image of a product of compacta each with weight at most 2^{ω} . Hence, $c(X) \leq 2^{\omega}$. (The upper bound is attained.)

The difficulty is structural

Fact

Every known example of a homogeneous compactum X is a continuous image of a product of compacta each with weight at most 2^{ω} . Hence, $c(X) \leq 2^{\omega}$. (The upper bound is attained.)

Theorem A (M.)

If X is a homogeneous compactum and a continuous image of a product $\prod_{i \in I} X_i$ of compacta such that

$$\sup_{i\in I} w(X_i) = \kappa < \operatorname{cf} \lambda = \lambda \le w(X),$$

then $Nt(X) \leq \kappa$.

The difficulty is structural

Fact

Every known example of a homogeneous compactum X is a continuous image of a product of compacta each with weight at most 2^{ω} . Hence, $c(X) \leq 2^{\omega}$. (The upper bound is attained.)

Theorem A (M.)

If X is a homogeneous compactum and a continuous image of a product $\prod_{i \in I} X_i$ of compacta such that

$$\sup_{i\in I} w(X_i) = \kappa < \operatorname{cf} \lambda = \lambda \le w(X),$$

then $Nt(X) \leq \kappa$.

Corollary

Every known homogeneous compactum X satisfies $Nt(X) \le (2^{\omega})^+$. (The upper bound is attained.)

Dyadic compacta

Definition

A **dyadic compactum** is a Hausdorff space that is a continuous image of 2^{κ} for some κ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Corollary

 $Nt(X) = \omega$ for every homogeneous dyadic compactum X.

Dyadic compacta

Definition

A **dyadic compactum** is a Hausdorff space that is a continuous image of 2^{κ} for some κ .

Corollary

 $Nt(X) = \omega$ for every homogeneous dyadic compactum X.

Theorem (M.)

Let $\kappa < \lambda$ be infinite cardinals and let X be the quotient of $2^{\kappa} \oplus 2^{\lambda}$ obtained by identifying $\langle 0 \rangle_{i < \kappa}$ and $\langle 0 \rangle_{i < \lambda}$. If $\kappa < \operatorname{cf} \lambda$, then $\operatorname{Nt}(X) = \lambda^+$. If $\kappa = \operatorname{cf} \lambda$, then $\operatorname{Nt}(X) = \lambda$.

Corollary

The class of Noetherian types of dyadic compacta includes all infinite cardinals except possibly weak inaccessibles and successors of cardinals with countable cofinality (like ω_1 and $\omega_{\omega+1}$).

Non-triviality

Theorem (M.)

The class of Noetherian types of compacta includes all infinite cardinals.

Theorem B (M.)

The class of Noetherian types of dyadic compacta excludes ω_1 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Non-triviality

Theorem (M.)

The class of Noetherian types of compacta includes all infinite cardinals.

Theorem B (M.)

The class of Noetherian types of dyadic compacta excludes ω_1 .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question

Are $\omega_{\omega+1}$ and weak inaccessibles excluded too?

Perhaps things are easier with ordered compacta.

Theorem (M.)

With respect to the order topology, $Nt(\kappa + 1) = \kappa^+$ if κ is a regular uncountable cardinal and $Nt(\kappa + 1) = \kappa$ if κ is a singular cardinal.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof.

By the Pressing Down Lemma...

Excluding ω_1

Theorem C (M.)

If X is an ordered compactum and $Nt(X) \leq \kappa$ and κ is regular and uncountable, then X has a dense set of size less than κ .

Corollary

If X is an ordered compactum, then $Nt(X) \neq \omega_1$.

Excluding ω_1

Theorem C (M.)

If X is an ordered compactum and $Nt(X) \leq \kappa$ and κ is regular and uncountable, then X has a dense set of size less than κ .

Corollary

If X is an ordered compactum, then $Nt(X) \neq \omega_1$.

Proof.

Suppose $Nt(X) = \omega_1$. Then X has a countable dense subset D. Also, X is not metrizable, so $w(X) \ge \omega_1$. Let \mathcal{B} be a base of X. Then for some $p, q \in D$ and $U \in \mathcal{B}$ we have $U \subseteq (p, q) \subseteq V$ for uncountably many $V \in \mathcal{B}$. Thus, $Nt(X) \ge \omega_2$.

Excluding weak inaccessibles

Corollary

If X is an ordered compactum, then Nt(X) is not a weak inaccessible.

Proof.

Suppose $\kappa = Nt(X)$ is weakly inaccessible. Then X has a dense subsets D of size less than κ . If $w(X) \ge \kappa$, then, arguing as before, $Nt(X) \ge \kappa^+$. If $w(X) < \kappa$, then $Nt(X) \le w(X)^+ < \kappa$.

Theorem D (M.)

For each singular cardinal κ , there is an ordered compactum X such that $Nt(X) = \kappa^+$.

Corollary

The class of Noetherian types of ordered compacta includes all infinite cardinals except ω_1 and the weak inaccessibles.

Questions

Question

Do the dyadic compacta have the same Noetherian spectrum as the ordered compacta?

Question

Is there an interesting example of a class of spaces with Noetherian spectrum excluding $\omega_2?$

Proving Theorems A and B

Theorem A

If X is a homogeneous compactum and a continuous image of a product $\prod_{i \in I} X_i$ of compacta such that

$$\sup_{i \in I} w(X_i) = \kappa < \operatorname{cf} \lambda = \lambda \le w(X),$$

then $Nt(X) \leq \kappa$.

Theorem B

The class of Noetherian types of dyadic compacta excludes ω_1 .

Substructures and quotients

Definition

- $H(\theta)$ is the set of sets that are hereditarily smaller than θ .
- C(X) is the set of continuous maps from X to \mathbb{R} .
- Given X a compactum, θ a sufficiently large regular cardinal, and M an elementary substructure of $\langle H(\theta), \in, <, C(X) \rangle$, define a quotient map $\pi_M^X \colon X \to X/M$ by

 $\pi_M^X(p) \neq \pi_M^X(q)$ iff $f(p) \neq f(q)$ for some $f \in C(X) \cap M$.

For simplicity, assume X is a homogeneous dyadic compactum.

For simplicity, assume X is a homogeneous dyadic compactum.

► X/M is compact and metrizable if M is countable and X is a compactum.

For simplicity, assume X is a homogeneous dyadic compactum.

► X/M is compact and metrizable if M is countable and X is a compactum.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Compact metric spaces have very nice ω^{op} -like bases.

For simplicity, assume X is a homogeneous dyadic compactum.

► X/M is compact and metrizable if M is countable and X is a compactum.

- Compact metric spaces have very nice ω^{op} -like bases.
- ▶ We may choose a sequence $\langle M_{\alpha} \rangle_{\alpha < w(X)}$ of countable $M_{\alpha} \prec H(\theta)$ such that $\alpha \in M_{\alpha}$ for all $\alpha < w(X)$.

For simplicity, assume X is a homogeneous dyadic compactum.

- X/M is compact and metrizable if M is countable and X is a compactum.
- Compact metric spaces have very nice ω^{op} -like bases.
- ▶ We may choose a sequence $\langle M_{\alpha} \rangle_{\alpha < w(X)}$ of countable $M_{\alpha} \prec H(\theta)$ such that $\alpha \in M_{\alpha}$ for all $\alpha < w(X)$.
- Given a base \mathcal{B}_{α} of each X/M_{α} , $\mathcal{B} = \bigcup_{\alpha < w(X)} (\pi^{X}_{M_{\alpha}})^{-1} (\mathcal{B}_{\alpha})$ is a base of X.

For simplicity, assume X is a homogeneous dyadic compactum.

- X/M is compact and metrizable if M is countable and X is a compactum.
- Compact metric spaces have very nice ω^{op} -like bases.
- ▶ We may choose a sequence $\langle M_{\alpha} \rangle_{\alpha < w(X)}$ of countable $M_{\alpha} \prec H(\theta)$ such that $\alpha \in M_{\alpha}$ for all $\alpha < w(X)$.
- Given a base \mathcal{B}_{α} of each X/M_{α} , $\mathcal{B} = \bigcup_{\alpha < w(X)} (\pi^{X}_{M_{\alpha}})^{-1} (\mathcal{B}_{\alpha})$ is a base of X.
- If the substructures cohere sufficiently well, then we can use reflection arguments (and min_{p∈X} πχ(p, X) = w(X)) to carefully construct subsets A_α ⊆ B_α such that A = ⋃_{α<w(X)} (π^X_{Mα})⁻¹ (A_α) is an ω^{op}-like base of X.

It suffices to have $\langle M_{\beta} \rangle_{\beta < \alpha} \in M_{\alpha}$ for all $\alpha < w(X)$.

It suffices to have $\langle M_{\beta} \rangle_{\beta < \alpha} \in M_{\alpha}$ for all $\alpha < w(X)$.

Let Ω denote the class of finite, nonempty ordinal sequences $\langle \gamma_i \rangle_{i < n}$ for which $|\gamma_0| > |\gamma_1| > \cdots > |\gamma_{n-2}| \ge \omega_1 > |\gamma_{n-1}|$ if $n \ge 2$ and $\omega_1 > |\gamma_{n-1}|$ if n = 1.

It suffices to have $\langle M_{\beta} \rangle_{\beta < \alpha} \in M_{\alpha}$ for all $\alpha < w(X)$.

Let Ω denote the class of finite, nonempty ordinal sequences $\langle \gamma_i \rangle_{i < n}$ for which $|\gamma_0| > |\gamma_1| > \cdots > |\gamma_{n-2}| \ge \omega_1 > |\gamma_{n-1}|$ if $n \ge 2$ and $\omega_1 > |\gamma_{n-1}|$ if n = 1.

Let \sqsubseteq denote the lexicographic ordering of Ω . Since \sqsubseteq is a well-ordering, there is a unique isomorphism Υ from the ordinals to $\langle \Omega, \sqsubseteq \rangle$.

It suffices to have $\langle M_{\beta} \rangle_{\beta < \alpha} \in M_{\alpha}$ for all $\alpha < w(X)$.

Let Ω denote the class of finite, nonempty ordinal sequences $\langle \gamma_i \rangle_{i < n}$ for which $|\gamma_0| > |\gamma_1| > \cdots > |\gamma_{n-2}| \ge \omega_1 > |\gamma_{n-1}|$ if $n \ge 2$ and $\omega_1 > |\gamma_{n-1}|$ if n = 1.

Let \sqsubseteq denote the lexicographic ordering of Ω . Since \sqsubseteq is a well-ordering, there is a unique isomorphism Υ from the ordinals to $\langle \Omega, \sqsubseteq \rangle$. For each $\Upsilon(\alpha) = \langle \gamma_i \rangle_{i < n}$ and k < n - 1, define:

$$N_{\alpha,k} = \bigcup \{ M_{\beta} : \langle \gamma_0, \ldots, \gamma_{k-1}, 0 \rangle \sqsubseteq \Upsilon(\beta) \sqsubset \langle \gamma_0, \ldots, \gamma_k, 0 \rangle \}$$

$$N_{\alpha,n-1} = \bigcup \{ M_{\beta} : \langle \gamma_0, \ldots, \gamma_{n-2}, 0 \rangle \sqsubseteq \Upsilon(\beta) \sqsubset \langle \gamma_0, \ldots, \gamma_{n-1} \rangle \}$$

Coherence as promised

Theorem

- $\bigcup_{i < n} N_{\alpha,i} = \bigcup_{\beta < \alpha} M_{\alpha}$ $N_{\alpha,i} \in M_{\alpha} \text{ for all } i < n.$
- $N_{\alpha,i} \prec H(\theta)$ for all i < n.

Coherence as promised

Theorem

► $\bigcup_{i < n} N_{\alpha,i} = \bigcup_{\beta < \alpha} M_{\alpha}$ ► $N_{\alpha,i} \in M_{\alpha}$ for all i < n. ► $N_{\alpha,i} \prec H(\theta)$ for all i < n.

Jackson and Mauldin first constructed a tree of substructures satisfying the above theorem. I just showed that one can build the tree from a mere sequence of M_{α} 's satisfying $\langle M_{\beta} \rangle_{\beta < \alpha} \in M_{\alpha}$.

Coherence as promised

Theorem

► $\bigcup_{i < n} N_{\alpha,i} = \bigcup_{\beta < \alpha} M_{\alpha}$ ► $N_{\alpha,i} \in M_{\alpha}$ for all i < n. ► $N_{\alpha,i} \prec H(\theta)$ for all i < n.

Jackson and Mauldin first constructed a tree of substructures satisfying the above theorem. I just showed that one can build the tree from a mere sequence of M_{α} 's satisfying $\langle M_{\beta} \rangle_{\beta < \alpha} \in M_{\alpha}$.

Remark

If $w(X) = \omega_1$, then we don't need such fancy machinery; a continuous elementary chain of countable submodels suffices.

Theorem C

If X is an ordered compactum and $Nt(X) \leq \kappa$ and κ is regular and uncountable, then X has a dense set of size less than κ .

Theorem C

If X is an ordered compactum and $Nt(X) \leq \kappa$ and κ is regular and uncountable, then X has a dense set of size less than κ .

Proof.

Let B be κ^{op}-like base of X. Let M ≺ ⟨H(θ), ∈, B⟩, |M| < κ, and M ∩ [H(θ)]^{<κ} ⊆ [M]^{<κ}.

Theorem C

If X is an ordered compactum and $Nt(X) \leq \kappa$ and κ is regular and uncountable, then X has a dense set of size less than κ .

Proof.

Let B be κ^{op}-like base of X. Let M ≺ ⟨H(θ), ∈, B⟩, |M| < κ, and M ∩ [H(θ)]^{<κ} ⊆ [M]^{<κ}.

▶ If $p, q \in X \cap M$ and $\emptyset \neq (p, q) \subseteq U \in \mathcal{B}$, then $U \in M$, so points like min{ $x \in X : q \leq x \notin U$ } are also in M.

Theorem C

If X is an ordered compactum and $Nt(X) \leq \kappa$ and κ is regular and uncountable, then X has a dense set of size less than κ .

Proof.

Let B be κ^{op}-like base of X. Let M ≺ ⟨H(θ), ∈, B⟩, |M| < κ, and M ∩ [H(θ)]^{<κ} ⊆ [M]^{<κ}.

- If p, q ∈ X ∩ M and Ø ≠ (p, q) ⊆ U ∈ B, then U ∈ M, so points like min{x ∈ X : q ≤ x ∉ U} are also in M.
- It follows that $X \cap M$ is dense in X.

Theorem D

For each singular cardinal κ , there is an ordered compactum X such that $Nt(X) = \kappa^+$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem D

For each singular cardinal κ , there is an ordered compactum X such that $Nt(X) = \kappa^+$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof.

• Let
$$\lambda = \operatorname{cf} \kappa$$
 and $Y = \lambda^+ + 1$.

Theorem D

For each singular cardinal κ , there is an ordered compactum X such that $Nt(X) = \kappa^+$.

Proof.

- Let $\lambda = \operatorname{cf} \kappa$ and $Y = \lambda^+ + 1$.
- ▶ Partition the limit ordinals less than λ^+ into stationary sets $\langle S_{\alpha} \rangle_{\alpha < \lambda}$.

Theorem D

For each singular cardinal κ , there is an ordered compactum X such that $Nt(X) = \kappa^+$.

Proof.

- Let $\lambda = \operatorname{cf} \kappa$ and $Y = \lambda^+ + 1$.
- ▶ Partition the limit ordinals less than λ^+ into stationary sets $\langle S_{\alpha} \rangle_{\alpha < \lambda}$.
- ▶ Let $\langle \kappa_{\alpha} \rangle_{\alpha < \lambda}$ be an increasing sequence of regular cardinals with supremum κ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem D

For each singular cardinal κ , there is an ordered compactum X such that $Nt(X) = \kappa^+$.

Proof.

- Let $\lambda = \operatorname{cf} \kappa$ and $Y = \lambda^+ + 1$.
- ▶ Partition the limit ordinals less than λ^+ into stationary sets $\langle S_{\alpha} \rangle_{\alpha < \lambda}$.
- ▶ Let $\langle \kappa_{\alpha} \rangle_{\alpha < \lambda}$ be an increasing sequence of regular cardinals with supremum κ .

• For each $\alpha < \lambda$ and $\beta \in S_{\alpha}$, set $Z_{\beta} = (\kappa_{\alpha} + 1)^{\text{op}}$.

Theorem D

For each singular cardinal κ , there is an ordered compactum X such that $Nt(X) = \kappa^+$.

Proof.

- Let $\lambda = \operatorname{cf} \kappa$ and $Y = \lambda^+ + 1$.
- ▶ Partition the limit ordinals less than λ^+ into stationary sets $\langle S_{\alpha} \rangle_{\alpha < \lambda}$.
- ▶ Let $\langle \kappa_{\alpha} \rangle_{\alpha < \lambda}$ be an increasing sequence of regular cardinals with supremum κ .

- For each $\alpha < \lambda$ and $\beta \in S_{\alpha}$, set $Z_{\beta} = (\kappa_{\alpha} + 1)^{\text{op}}$.
- ▶ For each $\beta \in Y \setminus \bigcup_{\alpha < \lambda} S_{\alpha}$, set $Z_{\beta} = 1$.

Theorem D

For each singular cardinal κ , there is an ordered compactum X such that $Nt(X) = \kappa^+$.

Proof.

- Let $\lambda = \operatorname{cf} \kappa$ and $Y = \lambda^+ + 1$.
- ▶ Partition the limit ordinals less than λ^+ into stationary sets $\langle S_{\alpha} \rangle_{\alpha < \lambda}$.
- ▶ Let $\langle \kappa_{\alpha} \rangle_{\alpha < \lambda}$ be an increasing sequence of regular cardinals with supremum κ .

- For each $\alpha < \lambda$ and $\beta \in S_{\alpha}$, set $Z_{\beta} = (\kappa_{\alpha} + 1)^{\text{op}}$.
- ▶ For each $\beta \in Y \setminus \bigcup_{\alpha < \lambda} S_{\alpha}$, set $Z_{\beta} = 1$.
- $\blacktriangleright X = \sum_{\beta \in Y} Z_{\beta}.$