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Convention

All spaces are T3 (regular and Hausdorff).
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A motivating example

A space X is homogeneous if for all points p, q there is a
homeomorphism h : X 7→ X sending p to q.

(Maurice, 1964)

I Let X = 2ω
2

lex be the binary sequences of ordinal length ω2

ordered lexicographically.

I X is compact and homogeneous.
I X has a big family of pairwise disjoint open sets:

I For each g ∈ 2ω, let Ug = {f ∈ X : g000 . . . < f < g111 . . .}.
I More precisely, X has a cellular family of size 2ℵ0 .

I We can replace ω2 with ωα for any countable ordinal α.

I We cannot go further: compact homogeneous linear orders
cannot have increasing (or decreasing) uncountable sequences.
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Van Douwen’s Problem: open for over forty years

Let the cellularity of X , or c (X ), be the supremum of the
cardinalities of its pairwise disjoint open families.

Is there a compact homogeneous space X with c (X ) > 2ℵ0?

We don’t know the answer in any model of set theory.
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If we try adding structure to enforce homogeneity. . .

Adding first-order structure hasn’t solved Van Douwen’s Problem.

For example, every compact group has a (left or right) Haar
probability measure, and therefore has countable cellularity.

(Hart-Kunen, 1999) If we replace “group” with “quasigroup” or
various other first-order structures that enforce homogeneity, then
the resulting compacta still have countable cellularity.

5 / 20



If we try transfinite brute force. . .

Can we iteratively modify a space, adding autohomeomorphisms
until we’re done?

For first countable zero-dimensional spaces, homogeneity of the
space is equivalent to homogeneity of the clopen algebra (a
first-order structure).

Only in this setting has transfinite brute force built compact
homogeneous spaces.

(Arhangel′skĭı’s Theorem) First countable compact spaces cannot
have more than 2ℵ0 points.
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If we try large products. . .

Homogeneous factors

I The cellularity of a product is the supremum of the cellularity
of its finite subproducts.

I (M., 2006) All known examples of homogeneous compacta
(mostly compact groups and first countable homogeneous
compacta) are continuous images of products whose factors
all have bases of size ≤ 2ℵ0 .

I Therefore, products of known homogeneous compacta cannot
have cellularity > 2ℵ0 .
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If we try large products. . .

Inhomogeneous factors

I (Dow-Pearl, 1997) Infinite powers of first countable
zero-dimensional spaces are homogeneous.

I The hypothesis of first countability cannot be removed, e.g.,
no power of ω1 + 1 is homogeneous.

I (Many authors) Many theorems about the class of
homogeneous spaces (e.g., |X | ≤ 2πχ(X )c(X )) have been
proven true of the power homogeneous spaces (i.e., those
spaces X for which some Xκ is homogeneous).

I (Kunen, 1990) Products of infinite compact F-spaces (e.g.,
βω \ ω) are not homogeneous.

I (Arhangel′skĭı, 2005) A product of compact linear orders is
not homogeneous unless all factors are first countable.
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Enter order theory

Rectangular local bases imply large cellularity.

I Convention: Subsets of spaces are ordered by ⊇.

I If a point in a space has a local base B or order type
ω × ω1 × ω2, then that space has a cellular family of size ℵ2

(and CH implies ℵ2 > 2ℵ0).

I All points in X = 2ωlex × 2ω1
lex × 2ω2

lex have local bases of order
type ω × ω1 × ω2.

I X is compact but not, alas, homogeneous. (Some, but not all,
points have countable local π-bases.)

I However, we haven’t proved that no homogeneous compacta
can have a local base with order type ω × ω1 × ω2.

I Also, proving that would be very interesting in itself.
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Cofinal types vs. order types.

Two preorders P, Q are cofinally equivalent (written P ≡cf Q) if
there is a preorder R with cofinal subsets P ′, Q ′ order-isomorphic
to P, Q (respectively).

E.g., Q ≡cf {
√

n : n ∈ N} because both are cofinal in R.

Less trivially, P = ω × ω1 (with the product order
x ≤ y ⇔ x0 ≤ y0 ∧ x1 ≤ y1) is cofinally equivalent to
Q = (ω × ω1,E) where x C y ⇔ x0 < y0 ∧ x1 < y1, even though
P has uncountable chains and no infinite antichains, while Q has
uncountable antichains and no uncountable chains.

(For directed sets (e.g., local bases), cofinal equivalence ⇔ Tukey
equivalence.)
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Advantages of cofinal types

In general, two local bases at the same point may have different
order types, but they always have the same cofinal type.

Instead of considering order types of particular local bases at
p ∈ X , we only consider the cofinal type of Nbhd(p,X ), the set of
all neighborhoods of p in X .

The cofinal type of Nbhd(p,X ) does not change if switch the
ordering from ⊇ to w where U A V means the interior of U
contains the closure of V .
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Rectangular cofinal types and cellularity
If Nbhd(p,X ) ≡cf ω × ω1 × ω2, then c (X ) ≥ ℵ2.

More generally:

I Definition: cf(P) is the least of the sizes of cofinal subsets of
P.

I If Nbhd(p,X ) ≡cf P × Q, cf(P) < κ, and all subsets of Q of
size < κ are bounded (above), then X has a cellular family of
size κ.

Questions

I Does any point p in any infinite homogeneous compactum X
satisfy. . .

I Nbhd(p,X ) ≡cf ω × ω1 × ω2?
I Nbhd(p,X ) ≡cf ω × ω1?
I Nbhd(p,X ) ≡cf ω × ω2?
I Nbhd(p,X ) ≡cf ω1 × ω2? No, because every countably infinite

A ⊆ X has a limit point in X .
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Skinny rectangles

Theorem (M., 2011)

Assume CH or PFA. If X is compact, then not all p ∈ X satisfy
Nbhd(p,X ) ≡cf ω × ω2.

Question

I Can the “CH or PFA” hypothesis be dropped?

I Probably. ZFC proves that not all p ∈ X can have a clopen
local base of order type ω × ω2.

A ZFC theorem that is weaker at ω × ω2, but more general:

If X is compact and κ is an infinite regular cardinal, then not all
y ∈ X satisfy

I Nbhd(y ,X ) ≡cf Py × Qy ,

I cf(Py ) < κ, and

I all subsets of Qy of size ≤ 2<κ are bounded.
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Skinny rectangles in ω∗ = βω \ ω
Not all neighborhood filters are rectangles.

Not all Nbhd(p, ω∗) are ≡cf some κ0 × · · · × κn.

In Shelah’s
no-P-points model, no Nbhd(p, ω∗) is ≡cf some κ0 × · · · × κn.

Can there be rectangles? How skinny can they be?

I ℵ1 ≤ mσ−2−linked ≤ mσ−3−linked ≤ . . . ≤ mσ−centered ≤ 2ℵ0 .

I MA⇒ MAσ−2−linked ⇔ mσ−2−linked = 2ℵ0 .

I It is consistent that sup2≤n<ω mσ−n−linked < mσ−centered.

I (M., 2007) For all regular uncountable κ, it is consistent with
ZFC that mσ−centered = κ� 2ℵ0 and some p ∈ ω∗ satisfies
Nbhd(p, ω∗) ≡cf κ× 2ℵ0 .

I (M., 2010) For all regular infinite κ < sup2≤n<ω mσ−n−linked,
no p ∈ ω∗ satisfies Nbhd(p, ω∗) ≡cf κ× 2ℵ0 .

I What happens between sup2≤n<ω mσ−n−linked and
mσ−centered?
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Skinny rectangles as gaps in a spectrum
ω × ω2 has unbounded increasing sequences of lengths ω and ω2,
but not of length ω1. Can such a gap appear in every Nbhd(p,X )?

Theorem (M., 2011)

I Let X be compact and λ be an infinite regular cardinal.

I Let Escape(p,X ) be the set of regular cardinals κ for which
there exists a κ-long sequence U0 ⊇ U1 ⊇ · · · ⊇ Uα ⊇ · · · in
Nbhd(p,X ) such that p is not in the interior of

⋂
α<κ Uα.

I Suppose that λ 6∈
⋃

p∈X Escape(p,X ).

I It follows that X has no λ-long free sequence; hence, some
q ∈ X has a local base of size at most 2µ, for some µ < λ.

Corollary

Assume GCH. For all infinite compact homogeneous X and all
p ∈ X , Escape(p,X ) is an initial segment of the class of infinite
regular cardinals and closed at inaccessibles.
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Strongly unbounded sets

I A subset S of a preorder P is strongly unbounded if S is
infinite and every infinite subset of S is unbounded (from
above).

I Finite products of ordinals (e.g., ω × ω1) never have
uncountable strongly unbounded subsets.

(M., 2006) Applications to compact homogeneous X :

I If some local base (ordered by ⊇) lacks a strongly unbounded
set of size log |X |, then c (X ) ≥ log |X |.

I In every known example of X , every local base has a cofinal
strongly unbounded subset (of size χ(X ) ≥ log |X |).

I πχ(X ) ≥ κ⇒ every local base has a strongly unbounded
subset of size κ.

I πχ(X ) = χ(X )⇒ every local base has a cofinal strongly
unbounded subset.
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κ-strongly unbounded bases

I A preorder P is κ-strongly unbounded (in itself) if P has
size ≥ κ and every subset of P of size κ is unbounded.

I (M., 2006) Every known homogeneous compactum has a(
2ℵ0
)+

-strongly unbounded base or a base of size ≤ 2ℵ0 .

An incomplete analogy

I Xδ is X with all Gδ-sets declared open.

I (Juhász, 1972) If X is compact, then c (Xδ) ≤ 2c(X ).

I (Spadaro, 2009) Assume GCH. If X is compact, cf(κ) is
uncountable, and X has a κ-strongly unbounded base, then
Xδ has a 2κ-strongly unbounded base. What if κ = ℵ0?

I Every infinite power of 2 has an ℵ0-strongly unbounded base.

I 2ℵn
δ has an ℵ1-strongly unbounded base, for all n < ω.

I Does 2ℵω
δ have an ℵ1-strongly unbounded base?
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Enter large cardinals

Theorem (M., 2009)

I 2ℵω
δ has a

(
2ℵ0
)+

-strongly unbounded base.

I It is consistent, relative to ZFC, that 2ℵω
δ has an ℵ1-strongly

unbounded base. (We can directly add the base by forcing.)

Theorem (Levinski-Magidor-Shelah, 1990)

CCℵω , the Chang conjecture variant (ℵω+1,ℵω)� (ℵ1,ℵ0), is
consistent with ZFC+GCH, relative to a 2-huge cardinal.

Theorem (Soukup, 2009)

If CCℵω , then 2ℵω
δ does not have an ℵ1-strongly unbounded local

base.

Corollary

2ℵω
δ can consistenly lack a 2ℵ0-strongly unbounded base.
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Enter the approachability ideal I [λ]

Theorem (Kojman-M.-Spadaro, 2010)

1. 2ℵω
δ has an ℵ4-strongly unbounded base.

2. MM implies that 2ℵω
δ has an ℵ2-strongly unbounded base.

3. �ℵω and ℵω+1 = cf([ℵω]ℵ0 ,⊆) together imply that 2ℵω
δ has an

ℵ1-strongly unbounded base.

Regarding the proof: For (1), we use the main idea of Shelah’s
proof that there is a stationary set in I [λ] � Sλκ for all regular λ and
κ with λ ≥ κ+3. (2) and (3) are instances of 2ℵω

δ having a

κ-strongly unbounded base if S
cf([ℵω]ℵ0 ,⊆)
κ ∈ I

[
cf([ℵω]ℵ0 ,⊆)

]
.

Questions

I Does MM imply that 2ℵω
δ lacks an ℵ1-strongly unbounded

base?

I Is it consistent with ZFC that 2ℵω
δ lacks an ℵ2-strongly

unbounded base?
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π-bases

(M., 2006) Every known homogeneous compactum has an
ℵ1-strongly unbounded π-base or a countable π-base.

Question
We know CCℵω prohibits ℵ1-strongly unbounded local bases of
2ℵω
δ , but does it prohibit ℵ1-strongly unbounded π-bases? (Assume

the consistency of a 2-huge cardinal.)
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