A locally finite characterization of AE(0) and related classes of compacta

David Milovich Texas A&M International University david.milovich@tamiu.edu http://www.tamiu.edu/~dmilovich/

March 13, 2014 Spring Topology and Dynamics Conference University of Richmond

Stone duality notation

- A *compactum* is a compact Hausdorff space.
- A *boolean space* is a compactum with a clopen base.
- Clop is the contravarient functor from boolean spaces and continuous maps to boolean algebras and homomorphisms.
 - $\operatorname{Clop}(X)$ is $(\{K \subseteq X : K \text{ clopen}\}, \cap, \cup, K \mapsto X \setminus K\}).$

•
$$Clop(f)(K) = f^{-1}[K].$$

Modulo isomorphism, the inverse of Clop is the functor Ult:

- ▶ Ult(A) is $\{U \subseteq A : U \text{ ultrafilter}\}$ with clopen base $\{\{U \in \text{Ult}(A) : a \in U\} : a \in A\};\$
- $Ult(\phi)(U) = \phi^{-1}[U].$

Open is dual to relatively complete.

- A boolean subalgebra A of B is called *relatively complete* if every b ∈ B has a least upper bound in A.
 - Let $A \leq_{rc} B$ abbreviate "A is relatively complete in B."
- A boolean homomorphism φ: A → B is called relatively complete if φ[A] ≤_{rc} B.
- A boolean homomorphism φ is relatively complete iff Ult(φ) is open.

AE(0) spaces

Definition

A boolean space X is an absolute extensor of dimension zero, or AE(0) for short, if, for every continuous $f: Y \to X$ with $Y \subseteq Z$ boolean, f extends to a continuous $g: Z \to X$.

AE(0) spaces

Definition

A boolean space X is an absolute extensor of dimension zero, or AE(0) for short, if, for every continuous $f: Y \to X$ with $Y \subseteq Z$ boolean, f extends to a continuous $g: Z \to X$.

Given a boolean space X of weight $\leq \kappa$, the following are known to be equivalent:

- X is AE(0).
- X is Dugundji, *i.e.*, a retract of 2^{κ} .
- $X \times 2^{\kappa} \cong 2^{\kappa}$.
- ▶ There exists Y such that $X \cong Y \subseteq 2^{\kappa}$ and, for all $\alpha < \beta < \kappa$, the projection $\pi_{\alpha,\beta}$: $Y \upharpoonright \beta \to Y \upharpoonright \alpha$ is open.
- ▶ Clop(X) has an additive rc-skeleton, *i.e.*, if $n < \omega$, θ is a regular cardinal, and Clop(X) $\in N_i \prec H(\theta)$ for all i < n, then $\langle \operatorname{Clop}(X) \cap \bigcup_{i < n} N_i \rangle \leq_{\operatorname{rc}} \operatorname{Clop}(X)$.

Multicommutativity

- A *poset diagram* of boolean spaces is pair of sequences (\vec{X}, \vec{f}) with
 - dom (\vec{X}) a poset,
 - X_i a boolean space for all $i \in \operatorname{dom}(\vec{X})$,
 - $f_{j,i} \colon X_i \to X_j$ continuous for all j < i, and
 - $f_{k,i} = f_{k,j} \circ f_{j,i}$ for all k < j < i.
- Given a poset diagram (\vec{X}, \vec{f}) and $I \subseteq \operatorname{dom}(\vec{X})$, let

$$\lim(X_i:i\in I) = \left\{ p \in \prod_{i\in I} X_i: \forall \{j < i\} \subseteq I \ p(j) = f_{j,i}(p(i)) \right\}.$$

Call a poset diagram (X, f) multicommutative if, for all i ∈ dom(X), ∏_{j < i} f_{j,i} maps X_i onto lim(X_j : j < i).</p>

A new characterization of AE(0)

- ► A poset *P* is called *locally finite* if every lower cone is finite.
 - A poset diagram (\vec{X}, \vec{f}) is *locally finite* if dom (\vec{X}) is locally finite **and every** X_i is finite.
- A locally finite poset is a *lattice* iff every nonempty finite subset has a least upper bound.
 - A poset diagram (\vec{X}, \vec{f}) is called a *lattice diagram* if dom (\vec{X}) is a lattice.

Theorem

Given a boolean space X, the following are equivalent.

- ► X is AE(0).
- X is homeomorphic to the limit of a multicommutative locally finite poset diagram.
- X is homeomorphic to the limit of a multicommutative locally finite lattice diagram.

Long ω_1 -approximation sequences

• For every ordinal α , let

$$\blacktriangleright \ \lfloor \alpha \rfloor = \max \{ \beta \leq \alpha : \beta < \omega_1 \text{ or } \exists \gamma \ |\alpha| \cdot \gamma = \beta \};$$

 $\blacktriangleright \ \alpha = \lfloor \alpha \rfloor + [\alpha];$

Long ω_1 -approximation sequences

- For every ordinal α, let
 - $\blacktriangleright \ \lfloor \alpha \rfloor = \max \{ \beta \leq \alpha : \beta < \omega_1 \text{ or } \exists \gamma \ |\alpha| \cdot \gamma = \beta \};$
 - $\bullet \ \alpha = \lfloor \alpha \rfloor + [\alpha];$

$$\bullet \ [\alpha]_0 = \alpha;$$

$$[\alpha]_{n+1} = [[\alpha]_n];$$

$$\blacktriangleright \ \lfloor \alpha \rfloor_n = \sum_{i < n} \lfloor [\alpha]_i \rfloor;$$

Long ω_1 -approximation sequences

- For every ordinal α, let
 - $\blacktriangleright \ \lfloor \alpha \rfloor = \max\{\beta \le \alpha : \beta < \omega_1 \text{ or } \exists \gamma \ |\alpha| \cdot \gamma = \beta\};$
 - $\alpha = \lfloor \alpha \rfloor + [\alpha];$
 - $\bullet \ [\alpha]_0 = \alpha;$
 - $\bullet \ [\alpha]_{n+1} = [[\alpha]_n];$
 - $\lfloor \alpha \rfloor_n = \sum_{i < n} \lfloor [\alpha]_i \rfloor;$
 - $\neg (\alpha) = \min\{n < \omega : [\alpha]_n = 0\}.$
 - If $1 \le k < \omega$ and $\alpha \le \omega_k$, then $\exists (\alpha) \le k$.
- Given θ regular and uncountable, a long ω₁-approximation sequence is a transfinite sequence (M_α)_{α<η} of countable elementary substructures of H(θ) such that (M_β)_{β<α} ∈ M_α for all α < η.</p>
- (Milovich, 2008) If *M* is a long ω₁-approximation sequence and α, β ∈ dom(*M*), then
 - $M_{\beta} \in M_{\alpha} \Leftrightarrow \beta \in \alpha \cap M_{\alpha} \Leftrightarrow M_{\beta} \subsetneq M_{\alpha};$
 - ► for all $i < \exists (\alpha), M_{\alpha}^{i} = \bigcup \{M_{\gamma} : \lfloor \alpha \rfloor_{i} \leq \gamma < \lfloor \alpha \rfloor_{i+1}\}$ is a directed union; hence, $M_{\alpha}^{i} \prec H(\theta)$.

- ▶ Call a lattice diagram (\vec{X}, \vec{f}) *n-commutative* if, for all $i \in \text{dom}(\vec{X})$ and all $j_0, \ldots, j_{n-1} < i$, $\prod_{k \in K} f_{k,i}$ maps X_i onto $\lim(X_k : k \in K)$ where $K = \bigcup_{m < n} \{k : k \le j_m\}$.
- Call a boolean space *n*-commutative if it is homeomorphic to the limit of an n-commutative locally finite lattice diagram.

- Call a lattice diagram (X, f) n-commutative if, for all i ∈ dom(X) and all j₀,..., j_{n-1} < i, ∏_{k∈K} f_{k,i} maps X_i onto lim(X_k : k ∈ K) where K = ⋃_{m<n}{k : k ≤ j_m}.
- Call a boolean space *n*-commutative if it is homeomorphic to the limit of an n-commutative locally finite lattice diagram.
- The Stone dual of "2-commutative boolean space" has been studied under the name of "strong Freese-Nation property."
- ► There are 2-commutative boolean spaces of weight ℵ₂ that are known to not be AE(0), *e.g.*, the symmetric square of 2^{ω2}.

- Call a lattice diagram (X, f) n-commutative if, for all i ∈ dom(X) and all j₀,..., j_{n-1} < i, ∏_{k∈K} f_{k,i} maps X_i onto lim(X_k : k ∈ K) where K = ⋃_{m≤n}{k : k ≤ j_m}.
- Call a boolean space *n*-commutative if it is homeomorphic to the limit of an n-commutative locally finite lattice diagram.
- The Stone dual of "2-commutative boolean space" has been studied under the name of "strong Freese-Nation property."
- ► There are 2-commutative boolean spaces of weight ℵ₂ that are known to not be AE(0), *e.g.*, the symmetric square of 2^{ω2}.
- ► (Milovich) Every locally finite lattice of size ℵ_{n-1} contains a cofinal suborder that is an *n*-ladder, *i.e.*, a locally finite lattice in which every element has at most *n* maximal strict lower bounds.

- Call a lattice diagram (X, f) n-commutative if, for all i ∈ dom(X) and all j₀,..., j_{n-1} < i, ∏_{k∈K} f_{k,i} maps X_i onto lim(X_k : k ∈ K) where K = ⋃_{m<n}{k : k ≤ j_m}.
- Call a boolean space *n*-commutative if it is homeomorphic to the limit of an n-commutative locally finite lattice diagram.
- The Stone dual of "2-commutative boolean space" has been studied under the name of "strong Freese-Nation property."
- ► There are 2-commutative boolean spaces of weight ℵ₂ that are known to not be AE(0), *e.g.*, the symmetric square of 2^{ω2}.
- ► (Milovich) Every locally finite lattice of size ℵ_{n-1} contains a cofinal suborder that is an *n*-ladder, *i.e.*, a locally finite lattice in which every element has at most *n* maximal strict lower bounds.
- ► Hence, a boolean space of weight ℵ_{n-1} is AE(0) iff it is n-commutative.
- ► Hence, there are 2-commutative boolean spaces of weight ℵ₂ that are not 3-commutative.

A boolean algebra A is said to have the *Freese-Nation* property, or FN, if A ∩ M ≤_{rc} A whenever A ∈ M ≺ H(θ).

- A boolean algebra A is said to have the *Freese-Nation* property, or FN, if A ∩ M ≤_{rc} A whenever A ∈ M ≺ H(θ).
- Heindorf and Shapiro introduced the strong Freese-Nation property, or SFN, and showed that it implied the FN, and asked if the implication was strict.

- A boolean algebra A is said to have the *Freese-Nation* property, or FN, if A ∩ M ≤_{rc} A whenever A ∈ M ≺ H(θ).
- Heindorf and Shapiro introduced the strong Freese-Nation property, or SFN, and showed that it implied the FN, and asked if the implication was strict.
- If A is a boolean algebra, (M_α)_{α<|A|} is a long ω₁-approximation sequence, and A ∈ M₀, then, for all α < |A|, i < ¬(α), and a ∈ A ∩ M_α \ ⋃_{β<α} M_β, set σ_i(a) = min{b ∈ A ∩ Mⁱ_α : b ≥ a} if it exists.

- A boolean algebra A is said to have the *Freese-Nation* property, or FN, if A ∩ M ≤_{rc} A whenever A ∈ M ≺ H(θ).
- Heindorf and Shapiro introduced the strong Freese-Nation property, or SFN, and showed that it implied the FN, and asked if the implication was strict.
- If A is a boolean algebra, (M_α)_{α<|A|} is a long ω₁-approximation sequence, and A ∈ M₀, then, for all α < |A|, i < ¬(α), and a ∈ A ∩ M_α \ ⋃_{β<α} M_β, set σ_i(a) = min{b ∈ A ∩ Mⁱ_α : b ≥ a} if it exists.
- (Milovich) A has the FN iff, for all M
 , α, i, a as above, σ_i(a) exists.
- (Milovich) A has the SFN iff, for all M as above,
 A' = (A, ∧, ∨, −, σ₀, σ₁, σ₂,...) is a locally finite partial algebra, *i.e.*, every finite subset of A is contained in a finite subalgebra of A'.
- ► (Milovich) There is a boolean algebra of size ℵ₂ that has the FN but not the SFN.