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Classifying known homogeneous compacta

• Definition. A compactum is dyadic if it is a continuous

image of a power of 2.

• All known examples of homogeneous compacta are products

of dyadic compacta, first-countable compacta, and/or two

“exceptional” kinds of homogenous compacta.

• For example, all compact groups are dyadic.
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• The first exception is a carefully chosen resolution topology

that is homogeneous assuming MA + ¬CH and inhomoge-

neous assuming CH (van Mill, 2003).This space has π-weight

ω and character ω1. Any product X of dyadic compacta and

first countable compacta satisfies χ(X) ≤ π(X).

• The second exception is a carefully chosen quotient of (R/Z)×
(2ω·ω

lex )c which is exceptional by a connectedness argument

(M., 2007).
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• That’s all we’ve got. So, what do these spaces have in

common?

• Van Douwen’s Problem. All known homogeneous com-

pacta have cellularity at most c (i.e., lack a pairwise disjoint

open family of size c+). It’s open (in all models of ZFC)

whether this is true of all homogeneous compacta.

• In analogy with this observed upper bound on cellularity, if

we consider certain cardinal functions derived from order-

theoretic base properties, then we find nontrivial upper bounds

for all known homogeneous compacta.
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Noetherian cardinal functions

• Definition. A family U of sets if κop-like if no element of U
has κ-many supersets in U.

• Definition (Peregudov, 1997). The Noetherian type Nt (X)
of a space X is the least κ such that X has a κop-like base.

• Definition (Peregudov, 1997). The Noetherian π-type πNt (X)
of a space X is the least κ such that X has a κop-like π-base.

• Definition. The local Noetherian type χNt (p, X) of a point
p in a space X is the least κ such that p has a κop-like local
base. Set χNt (X) = supp∈X χNt (p, X).

4



• Every known example of a homogeneous compactum X sat-
isfies

Nt (X) ≤ c+,

πNt (X) ≤ ω1, and

χNt (X) = ω.

• Question. Are any of these bounds true for all homogeneous
compacta?

• Are these bounds sharp? The double arrow space has Noethe-
rian type c+ and Suslin lines have Noetherian π-type ω1.

• Question. Is there a ZFC example of a homogeneous com-
pactum with uncountable Noetherian π-type?
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Products behave nicely.

• Theorem (Peregudov, 1997). Nt (
∏

i∈I Xi) ≤ supi∈I Nt (Xi).

Similarly,

πNt


∏

i∈I

Xi


 ≤ sup

i∈I
πNt (Xi) and

χNt


p,

∏

i∈I

Xi


 ≤ sup

i∈I
χNt (p(i), Xi) .

• Theorem (Malykhin, 1987). Assume Xi is T1 and |Xi| ≥ 2
for all i ∈ I. If |I| ≥ supi∈I w(Xi), then Nt (

∏
i∈I Xi) = ω. In

particular, Nt
(
Xw(X)

)
= ω for all T1 spaces X.
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First countable compacta

• Lemma. For all spaces X and all points p in X, we have

χNt (p, X) ≤ χ(p, X),

πNt (X) ≤ π(X), and

Nt (X) ≤ w(X)+.

• Lemma. For all compacta X, we have

πNt (X) ≤ t(X)+ ≤ χ(X)+.

• Theorem 1. Let X be a first countable compactum. Then

Nt (X) ≤ c+ and πNt (X) ≤ ω1 and χNt (X) = ω.
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Dyadic compacta

• Theorem 2. Let X be a dyadic compactum. Then

χNt (X) = πNt (X) = ω.

• Theorem 3. Suppose X is a dyadic compactum and πχ(p, X) =

w(X) for all p ∈ X. Then Nt (X) = ω.

• Corollary. Let X be a homogeneous dyadic compactum.

Then Nt (X) = ω.
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About the proofs of Theorems 2 and 3

• By Stone duality, a dyadic compactum is closely connected
to a free boolean algebra. Free boolean algebras have very
well-behaved elementary substructures.

• We construct the relevant ωop-like families of open sets iter-
atively, at each stage working with a quotient space X/ ≡M ,
where M is a sufficiently small elementary substructure of Hθ

and p ≡M q iff f(p) = f(q) for all continuous f : X → R in M .

• For Theorem 2, we use an elementary chain of substructures
of Hθ. For Theorem 3, we use a carefully arranged tree of
substructures of Hθ (Jackson and Mauldin, 2002).
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More about χNt (·)

• Theorem 4. Let X be a compactum. If πχ(p, X) = χ(X)

for all p ∈ X, then χNt (p, X) = ω for some p ∈ X.

• Corollary (GCH). For all homogeneous compacta X, we have

χNt (X) ≤ c(X).

• Theorem 5. Suppose X is a compactum, χ(X) = 2κ, and

u(κ), the space of uniform ultrafilters on κ, embeds into X.

Then χNt (p, X) = ω for some p ∈ X.
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