Order-theoretic invariants in set-theoretic topology

David Milovich

May 12, 2009

Van Douwen's Problem

Convention All spaces are Hausdorff (T_2) .

Definition

- ► The cellularity c (X) of a space X is the least infinite upper bound of cardinalities of the pairwise disjoint family of open subsets of X.
- A space is homogeneous if for all p, q ∈ X, there is homeomorphism h: X → X such that h(p) = q.

Theorem (Maurice)

 $2_{lex}^{\omega \cdot \omega}$ is a compact homogeneous space (CHS). Moreover, it has cellularity \mathfrak{c} where $\mathfrak{c} = 2^{\aleph_0} = |\mathbb{R}|$.

Question (Van Douwen)

Is there a CHS with cellularity exceeding c?

How do you make a CHS?

Definition

- A family B of open neighborhoods of a point p ∈ X is a local base at p if for every neighborhood U of p some B ∈ B satisfies B ⊆ U.
- The character χ(p, X) of p is the least infinite κ such that there is a local base of size at most κ at p.

• X is first countable if $\chi(X) = \omega$.

There is a zoo of examples of first countable CHS's (e.g., $2_{lex}^{\omega \cdot \omega}$). The other major class of CHS's is the class of compact groups (and compact loops, etc.). Any product of CHS's is a CHS.

Is there any other way to make a CHS? Van Mill found a way (via resolutions) that works (if $\mathfrak{p} > \omega_1$). I found another way (via amalgams) that works (in ZFC).

Calibers > cellularity

Definition

- A family B of open subsets of X is a base of X if for all open U and p ∈ U, some B ∈ B satisfies p ∈ B ⊆ U.
- The weight w(X) of a space X is the least infinite κ such that X has a base of set of size at most κ.
- A regular uncountable cardinal κ is a **caliber** of a space X if for every sequence (U_α)_{α<κ} of open subsets of X, there is some I ∈ [κ]^κ such that ⋂_{α∈I} U_α ≠ Ø.

Basic facts

- If κ^+ is a caliber of X, then $c(X) \leq \kappa$.
- Calibers are preserved by products and continuous images.
- If $w(X) < \kappa$, then κ is a caliber of X.
- If X is compact, then $w(X) \leq |X|$.

Why is Van Douwen's Problem hard?

Theorem (Arhangel'skiĭ and Pospišil) If X is a CHS, then $|X| = 2^{\chi(X)}$.

Theorem (Kuz'minov)

Every compact group is **dyadic**, i.e., a continuous image of a power of 2.

(Kunen noticed that by a result of Uspenskii, this theorem generalizes to compact loops, etc.)

Van Mill's and my "exceptional" CHS's all have weight at most c.

Observation

Every known CHS is a continuous image of a product of compacta each with weight at most $\mathfrak{c}.$ Hence, \mathfrak{c}^+ is a caliber of every known CHS. Hence, every known CHS has cellularity at most $\mathfrak{c}.$

Exceptional homogeneous compacta

Definition

A CHS is **exceptional** if it is not homeomorphic to a product of first countable compacta and dyadic compacta.

Let T denote the unit circle. Van Mill's exceptional CHS is built using a clever topologization of $2^{\omega} \times T^{\omega_1}$. (Imagine each point in 2^{ω} being a tiny copy of T^{ω_1} ...) Whether this space is homogeneous is independent of ZFC.

My exceptional CHS is a quotient space of $T \times (2_{\mathsf{lex}}^{\omega \cdot \omega})^{\mathscr{S}}$.

- Let \mathscr{S} denote the set of all open semicircle subsets of T.
- $\blacktriangleright \ \text{Given} \ \langle p,f\rangle, \langle q,g\rangle \in \mathcal{T} \times (2^{\omega \cdot \omega}_{\mathsf{lex}})^{\mathscr{S}} \text{, declare} \ \langle p,f\rangle \sim \langle q,g\rangle \ \text{if}$
 - p = q and
 - for all $S \in \mathscr{S}$, if $p \in S$, then f(S) = g(S).

How many bosses do you have?

Convention

Families of subsets of a space are ordered by inclusion.

Definition

A preordered set is $\kappa^{\rm op}\text{-like}$ if no element has $\kappa\text{-many}$ greater elements.

For example, the range of a descending sequence of sets $\langle U_n \rangle_{n < \omega}$ is ω^{op} -like; the range of an ascending sequence of sets $\langle V_n \rangle_{n < \omega}$ is ω_1^{op} -like, but not ω^{op} -like.

Definition

- (Peregudov) The Noetherian type Nt (X) of a space X is the least infinite κ such that X has a κ^{op}-like base.
- The local Noetherian type χNt (p, X) of p ∈ X is the least infinite κ such that X has a κ^{op}-like local base at p.

The metric case

Theorem

If X is metric space, then $Nt(X) = \omega$.

Proof

It suffices to build an ω^{op} -like base of X. For each $n < \omega$, let \mathcal{U}_n be a locally finite refinement of the cover of X by all balls of radius 2^{-n} . Then $\bigcup_{n < \omega} \mathcal{U}_n$ is a ω^{op} -like base of X.

Question

Does ω^{ω} (which is $\cong \mathbb{R} \setminus \mathbb{Q}$) have a base that does not include an ω^{op} -like base? Does any space X have a base that does not include an $\mathrm{Nt}(X)^{\mathrm{op}}$ -like base?

Partial Answer 1

No, if X is a σ -compact metric space.

Noetherian types and Van Douwen's Problem

Theorem A

• $\chi \operatorname{Nt}(p, X) \leq \chi(p, X)$ and $\operatorname{Nt}(X) \leq w(X)^+$ always hold.

- If X is a continuous image of a product of compacta each with weight at most λ, then χNt (X) ≤ λ.
- If X is also homogeneous, then $Nt(X) \leq \lambda^+$.

Observation

Every known CHS X satisfies $\chi \operatorname{Nt} (X) = \omega$ and $\operatorname{Nt} (X) \leq \mathfrak{c}^+$. The double arrow space is a CHS with Noetherian type \mathfrak{c}^+ .

Noetherian types and Van Douwen's Problem

Theorem A

• $\chi \operatorname{Nt}(p, X) \leq \chi(p, X)$ and $\operatorname{Nt}(X) \leq w(X)^+$ always hold.

- If X is a continuous image of a product of compacta each with weight at most λ, then χNt (X) ≤ λ.
- If X is also homogeneous, then $Nt(X) \leq \lambda^+$.

Observation

Every known CHS X satisfies $\chi \operatorname{Nt} (X) = \omega$ and $\operatorname{Nt} (X) \leq \mathfrak{c}^+$. The double arrow space is a CHS with Noetherian type \mathfrak{c}^+ .

Theorem B (GCH)

Every CHS X satisfies $\chi Nt(X) \leq c(X)$.

Noetherian types and Van Douwen's Problem

Theorem A

• $\chi \operatorname{Nt}(p, X) \leq \chi(p, X)$ and $\operatorname{Nt}(X) \leq w(X)^+$ always hold.

- ▶ If X is a continuous image of a product of compacta each with weight at most λ , then $\chi \operatorname{Nt}(X) \leq \lambda$.
- If X is also homogeneous, then $Nt(X) < \lambda^+$.

Observation

Every known CHS X satisfies $\chi Nt(X) = \omega$ and $Nt(X) \leq \mathfrak{c}^+$. The double arrow space is a CHS with Noetherian type \mathfrak{c}^+ .

Theorem B (GCH)

Every CHS X satisfies $\chi \operatorname{Nt}(X) \leq c(X)$.

There is (in ZFC) an inhomogeneous compactum X satisfying $\chi \operatorname{Nt}(X) > c(X) = \omega.$

(Since every known CHS satisfies $\chi Nt(X) = \omega$, one wonders if GCH is necessary. This is an open problem.) くって 小山 くいく ふせく

The Power homogeneous case

Definition

- A space X is **power homogeneous** if X^λ is homogeneous for some λ.
- The density d(X) of a space X is the least infinite κ for which X has a dense set of size at most κ. Note that c(X) ≤ d(X).

Question

Is $\chi Nt(X) \leq c(X)$ true of every power homogeneous compactum X? $\chi Nt(X) \leq d(X)$? Does assuming GCH affect the answer?

Partial Answer (GCH) (joint with G. J. Ridderbos)

If X is a power homogeneous compactum and $\max_{p \in X} \chi(p, X) = \operatorname{cf} \chi(X) > d(X)$, then there is a nonempty open $U \subseteq X$ such that $\chi \operatorname{Nt}(p, X) = \omega$ for all $p \in U$.

More bases

- A family B of nonempty open subsets of a space X is a π-base if for every nonempty open U ⊆ X, some B ∈ B satisfies B ⊆ U.
- The π-weight π(X) of X is the least infinite κ such that X has a π-base of size at most κ.
- The Noetherian π-type πNt (X) of X is the least infinite κ such that X has a κ^{op}-like π-base.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

More bases

- A family B of nonempty open subsets of a space X is a π-base if for every nonempty open U ⊆ X, some B ∈ B satisfies B ⊆ U.
- The π-weight π(X) of X is the least infinite κ such that X has a π-base of size at most κ.
- The Noetherian π-type πNt (X) of X is the least infinite κ such that X has a κ^{op}-like π-base.
- A family B of nonempty open sets is a local π-base at a point p ∈ X if for every neighborhood U of p, some B ∈ B satisfies B ⊆ U.
- The π-character πχ(p, X) of p is the least infinite κ such that there is a local π-base of size at most κ at p.
- The local Noetherian π-type πχNt (p, X) of a point p ∈ X is the least infinite κ such that there is a κ^{op}-like local π-base at p.

$$\pi \chi(X) = \sup_{p \in X} \pi \chi(p, X); \ \pi \chi \operatorname{Nt}(X) = \sup_{p \in X} \pi \chi \operatorname{Nt}(p, X)$$

More connections with Van Douwen's Problem

Theorem

If X is a continuous image of a product of compacta each with weight at most λ , then $\pi \operatorname{Nt}(X) \leq \lambda$.

Theorem

If X is compact, then $\pi \operatorname{Nt}(X) \leq \chi(X)^+$.

Observation

Every known CHS X satisfies $\pi Nt(X) \leq \omega_1$ and $\pi \chi Nt(X) = \omega$.

More connections with Van Douwen's Problem

Theorem

If X is a continuous image of a product of compacta each with weight at most λ , then $\pi \operatorname{Nt}(X) \leq \lambda$.

Theorem

If X is compact, then $\pi \operatorname{Nt}(X) \leq \chi(X)^+$.

Observation

Every known CHS X satisfies $\pi \operatorname{Nt}(X) \leq \omega_1$ and $\pi \chi \operatorname{Nt}(X) = \omega$.

- ◊ implies there is a Suslin line that is a CHS. Every Suslin line L satisfies πNt (L) = ω₁.
- ► It is not known if ZFC proves some CHS X satisfies $\pi \operatorname{Nt} (X) > \omega$.
- ► Worse, it is not known if any (Hausdorff) space X satisfies πχNt (X) > ω (in any model of ZFC).

Tukey classes

Definition (Tukey)

Given directed sets P and Q, $P \leq_T Q$ means the following equivalent conditions hold.

- For some f: P → Q, the images of unbounded sets are unbounded.
- For some f: P → Q, the preimages of bounded sets are bounded.
- For some $g: Q \rightarrow P$, the images of cofinal sets are cofinal.

Theorem

If \mathcal{A} is a local base at $p \in X$, $h: X \to Y$ is a homeomorphism, and \mathcal{B} is a local base at h(p), then $\langle \mathcal{A}, \supseteq \rangle \equiv_{\mathcal{T}} \langle \mathcal{B}, \supseteq \rangle$.

Theorem

If \mathcal{A} is a local base at a non-isolated point $p \in X$, then $\chi \operatorname{Nt}(p, X) \leq \lambda$ if and only if $\langle \mathcal{A}, \supseteq \rangle \geq_{\mathcal{T}} \langle [\chi(p, X)]^{<\lambda}, \subseteq \rangle$.

Tukey classes and Van Douwen's Problem

Theorem C

If X is compact and $\lambda = \min_{q \in X} \pi \chi(q, X)$, then some local base \mathcal{B} in X satisfies $\langle \mathcal{B}, \supseteq \rangle \geq_{\mathcal{T}} \langle [\lambda]^{<\omega}, \subseteq \rangle$.

Example

The space X = 2^ω × 2^{ω1}_{lex} × 2^{ω2}_{lex} is such that χ(p, X) = ω₂ for all points p, πχ(p, X) = ω for some points p, and

$$\langle \mathcal{B}, \supseteq \rangle \equiv_{\mathcal{T}} \omega \times \omega_1 \times \omega_2 \not\geq_{\mathcal{T}} \big\langle [\omega_2]^{<\omega_1}, \subseteq \big\rangle$$

for all local bases \mathcal{B} . Hence, $\chi Nt(p, X) = \omega_2$ for all $p \in X$.

Tukey classes and Van Douwen's Problem

Theorem C

If X is compact and $\lambda = \min_{q \in X} \pi \chi(q, X)$, then some local base \mathcal{B} in X satisfies $\langle \mathcal{B}, \supseteq \rangle \geq_T \langle [\lambda]^{<\omega}, \subseteq \rangle$.

Example

► The space $X = 2^{\omega} \times 2^{\omega_1}_{\text{lex}} \times 2^{\omega_2}_{\text{lex}}$ is such that $\chi(p, X) = \omega_2$ for all points p, $\pi\chi(p, X) = \omega$ for some points p, and

$$\langle \mathcal{B}, \supseteq \rangle \equiv_{\mathcal{T}} \omega \times \omega_1 \times \omega_2 \not\geq_{\mathcal{T}} \big\langle [\omega_2]^{<\omega_1}, \subseteq \big\rangle$$

for all local bases \mathcal{B} . Hence, $\chi Nt(p, X) = \omega_2$ for all $p \in X$.

If some model of GCH has a CHS X with a local base B such that (B, ⊇) ≡_T ω × ω₁ × ω₂, then c (X) > c in this model.

Tukey classes and Van Douwen's Problem

Theorem C

If X is compact and $\lambda = \min_{q \in X} \pi \chi(q, X)$, then some local base \mathcal{B} in X satisfies $\langle \mathcal{B}, \supseteq \rangle \geq_T \langle [\lambda]^{<\omega}, \subseteq \rangle$.

Example

► The space $X = 2^{\omega} \times 2^{\omega_1}_{\text{lex}} \times 2^{\omega_2}_{\text{lex}}$ is such that $\chi(p, X) = \omega_2$ for all points p, $\pi\chi(p, X) = \omega$ for some points p, and

$$\langle \mathcal{B}, \supseteq \rangle \equiv_{\mathcal{T}} \omega \times \omega_1 \times \omega_2 \not\geq_{\mathcal{T}} \big\langle [\omega_2]^{<\omega_1}, \subseteq \big\rangle$$

for all local bases \mathcal{B} . Hence, $\chi Nt(p, X) = \omega_2$ for all $p \in X$.

- If some model of GCH has a CHS X with a local base B such that (B, ⊇) ≡_T ω × ω₁ × ω₂, then c (X) > c in this model.
- In every model of ZFC, we don't know if such a CHS exists, even if we replace ω × ω₁ × ω₂ with ω × ω₁ or ω × ω₂.

Subsets of bases

Question

Can a space X have a base that does not include an $Nt(X)^{op}$ -like base?

Partial Answers

- **1.** No, if X is a σ -compact metric space.
- **2.** No, if X is a dyadic CHS.
- **3.** No, if X is a CHS and w(X) is regular. ("w(X) is regular" can be dropped if $2^{\aleph_{\alpha}} < \aleph_{\alpha+\omega}$ for all α .)

Answers 2 and 3 follow from the two theorems below.

If X is compact and \(\chi(p, X) = w(X)\) for all p ∈ X, then every base of X contains an Nt (X)^{op}-like base of X.

If X is compact and πχ(p, X) < cf κ = κ ≤ w(X) for all p ∈ X, then Nt (X) > κ.

Noetherian types of ω^{\ast}

 ω^* is the space of nonprincipal ultrafilters on $\omega.$ It is compact and inhomogeneous.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Malykhin)

 $\mathsf{MA} \Rightarrow \pi \mathrm{Nt}(\omega^*) = \mathfrak{c} \text{ and } \mathsf{CH} \Rightarrow \mathrm{Nt}(\omega^*) = \mathfrak{c}.$

Noetherian types of ω^*

 ω^* is the space of nonprincipal ultrafilters on $\omega.$ It is compact and inhomogeneous.

Theorem (Malykhin)

$$\mathsf{MA} \Rightarrow \pi \mathrm{Nt}(\omega^*) = \mathfrak{c} \text{ and } \mathsf{CH} \Rightarrow \mathrm{Nt}(\omega^*) = \mathfrak{c}.$$

Definition

- Given $R, S \subseteq \omega$, we say S splits R if $|R \cap S| = |R \setminus S| = \omega$.
- The splitting number s is least size of a splitting family, which is a subset 𝒴 of [ω]^ω such that every R ∈ [ω]^ω is split by some S ∈ 𝒴.
- The reaping number τ is least size of a family R ⊆ [ω]^ω such that no single S ⊆ ω splits every R ∈ R.
- The distributivity number h is the least κ such that forcing with ([ω]^ω, ⊆*) adds a new subset of κ.

Exercise: $\mathfrak{c} \geq \mathfrak{r} \geq \mathfrak{h} \geq \omega_1 \leq \mathfrak{h} \leq \mathfrak{s} \leq \mathfrak{c}$.

A more precise theorem

ZFC proves each of the following statements.

$$\blacktriangleright \ \pi \mathrm{Nt} \left(\omega^* \right) = \mathfrak{h} \leq \mathfrak{s} \leq \mathrm{Nt} \left(\omega^* \right) \leq \mathfrak{c}^+.$$

•
$$\chi \operatorname{Nt}(\omega^*) \leq \min \{\operatorname{Nt}(\omega^*), \mathfrak{c}\}.$$

$$\blacktriangleright \pi \chi \mathrm{Nt} (\omega^*) = \omega.$$

•
$$MA \Rightarrow \pi \operatorname{Nt}(\omega^*) = \mathfrak{c} \Rightarrow \operatorname{Nt}(\omega^*) = \mathfrak{c}.$$

$$\mathbf{r} = \mathbf{c} \Rightarrow \operatorname{Nt}(\omega^*) \leq \mathbf{c}.$$

$$\blacktriangleright \ \mathfrak{r} < \mathfrak{c} \Rightarrow \operatorname{Nt}(\omega^*) \ge \mathfrak{c}.$$

•
$$\mathfrak{r} < \mathsf{cf}\,\mathfrak{c} \Rightarrow \mathrm{Nt}\,(\omega^*) = \mathfrak{c}^+.$$

Each of the following statements are consistent with ZFC.

A combinatorial version of Noetherian type

Definition

- The supersplitting number ss₂ is the least κ such that there is a sequence (S_α)_{α<c} of subsets of ω such that {S_α : α ∈ I} is a splitting family for all I ∈ [c]^κ.
- The (other) supersplitting number ss_ω is the least κ such that there is an n < ω and a sequence ⟨f_α⟩_{α<c} of maps from ω to n such that for all I ∈ [c]^κ and all R ∈ [ω]^ω, f_α ↾ R is not eventually constant for some α ∈ I.

Theorem

 $\operatorname{Nt}(\omega^*) \leq \mathfrak{ss}_\omega \leq \mathfrak{ss}_2 \leq \mathfrak{c}^+.$

Question

Is $Nt(\omega^*) < \mathfrak{ss}_2$ consistent? If \mathfrak{c} is regular, then $Nt(\omega^*) = \mathfrak{ss}_{\omega}$.

Isbell's Problem

Theorem (Isbell)

There is a nonprincipcal ultrafilter \mathcal{U} on ω such that $\langle \mathcal{U}, \supseteq^* \rangle \equiv_{\mathcal{T}} \langle \mathcal{U}, \supseteq \rangle \equiv_{\mathcal{T}} \langle [\mathfrak{c}]^{<\omega}, \subseteq \rangle.$

Question 1 (Isbell's Problem)

Does ZFC prove there is a nonprincipal ultrafilter \mathcal{U} on ω such that $\langle \mathcal{U}, \supseteq \rangle \not\equiv_{\mathcal{T}} \langle [\mathfrak{c}]^{<\omega}, \subseteq \rangle$?

Question 2

Does ZFC prove there is a nonprincipal ultrafilter \mathcal{U} on ω such that $\langle \mathcal{U}, \supseteq^* \rangle \not\equiv_T \langle [\mathfrak{c}]^{<\omega}, \subseteq \rangle$?

Question 3 Does ZFC prove $\chi Nt(\omega^*) > \omega$?

Theorem

 $\mathsf{Yes}_3 \Rightarrow \mathsf{Yes}_2 \Leftrightarrow \mathsf{Yes}_1.$

Noetherian type and products

Theorem

- (Peredudov) $\operatorname{Nt} \left(\prod_{i \in I} X_i\right) \leq \sup_{i \in I} \operatorname{Nt} (X_i).$
- (Peregudov) $\operatorname{Nt} (X^{w(X)}) = \omega$ for all spaces X.
- ▶ If $w(\prod_{i \in I} X_i) \le |I|$ and $|X_i| \ge 2$ for all $i \in I$, then $Nt(\prod_{i \in I} X_i) = \omega$.
- ► (Spadaro) There is a Tychonoff space Y such that Nt (ω₁ × Y) < Nt (ω₁) = ω₂.

Theorem

Suppose $\alpha < \mathfrak{c}$ and $\langle X_{\beta} \rangle_{\beta < \alpha}$ is a sequence of spaces each with weight at most \mathfrak{c} . Then $\prod_{\beta < \alpha} (\omega^* \oplus X_{\beta})$ is not homeomorphic to a product of \mathfrak{c} -many nonsingleton spaces.

Noetherian spectra

Theorem

- {Nt (X) : X compact} = {infinite cardinals}.
- {Nt (X) : X compact linear order} =
 {infinite cardinals} \ ({ω₁} ∪ {weak inaccessibles}).
- ▶ $\omega_1 \notin \{ \operatorname{Nt}(X) : X \text{ compact dyadic} \} \supseteq \\ \{ \omega \} \cup \{ \text{singular cardinals} \} \cup \{ \kappa^+ : \kappa = |\kappa| \text{ and } \operatorname{cf} \kappa > \omega \}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Noetherian spectra

Theorem

- {Nt (X) : X compact} = {infinite cardinals}.
- {Nt (X) : X compact linear order} = {infinite cardinals} \ ({ω₁} ∪ {weak inaccessibles}).
- ▶ $\omega_1 \notin \{ Nt(X) : X \text{ compact dyadic} \} \supseteq \\ \{ \omega \} \cup \{ \text{singular cardinals} \} \cup \{ \kappa^+ : \kappa = |\kappa| \text{ and } cf \kappa > \omega \}.$

• Nt
$$(\kappa + 1) = \kappa^+$$
 if $\kappa = \operatorname{cf} \kappa > \omega$.

- $Nt(\kappa + 1) = \kappa$ if κ is a singular cardinal.
- If X is a compact linear order and Nt (X) ≤ κ = cf κ > ω, then d(X) < κ.</p>
- Let X = (2^κ ⊕ 2^λ)/ ~ where κ and λ are infinite cardinals and ~ identifies (0)_{α<κ} and (0)_{α<λ}. If κ < cf λ, then Nt (X) = λ⁺; if cf λ ≤ κ < λ, then Nt (X) = λ.</p>

These are a few of my favorite proofs...

Special case of Theorem A If X is a dyadic CHS, then $Nt(X) = \omega$.

Proof ingredients

- ► Build an ω^{op}-like base B = U_{α<w(X)} B_α by transfinite recursion of length w(X).
- Compact metric spaces have especially nice ω^{op} -like bases.
- At stage α, carefully build a base A_α of the metrizable quotient X/M_α where points are distinguished iff they are separated by a continous real-valued function in M_α, where |M_α| = ω and M_α ≺ H_θ and θ is sufficiently large.

$$\blacktriangleright \mathcal{B}_{\alpha} = \{\bigcup A : A \in \mathcal{A}_{\alpha}\}.$$

More ingredients

- 1. Construct $\langle M_{\alpha} \rangle_{\alpha < w(X)}$ such that $\langle M_{\beta} \rangle_{\beta < \alpha} \in M_{\alpha}$ for all α .
- 2. Use homogeneity to prove $\min_{p \in X} \pi \chi(p, X) = w(X)$. $(\pi \chi(Y) = w(Y)$ is true of all dyadic compact Y.)
- 3. Use (1) and (2) to choose a \mathcal{B}_{α} that has no supersets of elements of $\bigcup_{\beta < \alpha} \mathcal{B}_{\beta}$.
- 4. Use (3) to show that for limit δ , $\bigcup_{\beta < \delta} \mathcal{B}_{\beta}$ is ω^{op} -like if $\bigcup_{\beta < \alpha} \mathcal{B}_{\beta}$ is for all $\alpha < \delta$.
- 5. Deduce from (1) for each α , there exists $\alpha = \beta_0 > \cdots > \beta_n = 0$ such that for each i < n, $N_i = \bigcup_{\beta_i > \gamma \ge \beta_{i+1}} M_{\gamma}$ satisfies $M_{\alpha} \ni N_i \prec H_{\theta}$.
- 6. Show that each quotient map from $2^{w(X)}$ to $2^{w(X)}/N_i$ is an open map.
- 7. Use (5) and (6) to show that $\bigcup_{\beta < \alpha + 1} \mathcal{B}_{\beta}$ is ω^{op} -like if $\bigcup_{\beta < \alpha} \mathcal{B}_{\beta}$ is.

A forcing construction

Theorem

Let $\omega_1 \leq cf \ \kappa = \kappa \leq \lambda = \lambda^{<\kappa}$. Then there is a ccc forcing extension in which

$$\pi \mathrm{Nt}\left(\omega^*
ight) = \chi \mathrm{Nt}\left(\omega^*
ight) = \mathrm{Nt}\left(\omega^*
ight) = \mathfrak{ss}_2 = \kappa \leq \lambda = \mathfrak{c}.$$

Proof ingredients

- Construct a κ-like, κ-directed, well-founded poset Ξ with cofinality and cardinality λ.
- ► Construct a (generalized) forcing iteration along Ξ; let G be a generic filter.
- At each stage σ ∈ Ξ, add a Cohen real C_σ, which will be Cohen generic over V[G ↾ (Ξ \ ↑σ)].
- Since \equiv is κ -like, $\langle C_{\sigma} \rangle_{\sigma \in \Xi}$ witnesses $\mathfrak{ss}_2 \leq \kappa$ in V[G].
- ► Since $|\Xi| = \lambda = \lambda^{\omega}$, $\langle C_{\sigma} \rangle_{\sigma \in \Xi}$ witnesses $\mathfrak{c} = \lambda$ in V[G].

More ingredients

- Using cf(Ξ) = λ = λ^{<κ}, κ-directedness of Ξ, and some bookkeeping, ensure that for each σ ∈ Ξ, every filter base in V[G ↾ (↓σ)] that has size less than κ has a pseudointersection in V[G].
- Deduce that every filter base in V[G] of size less than κ has a pseudointersection.
- Deduce that $\pi \operatorname{Nt}(\omega^*) \geq \kappa$ in V[G].
- Extend the partial ordering of Ξ to a well ordering ⊑.
- ▶ Use \sqsubseteq to construct an ultrafilter \mathcal{U} in V[G] such that every $\mathcal{V} \in [\mathcal{U}]^{<\kappa}$ has a pseudointersection in \mathcal{U} .

• Deduce that $\chi \operatorname{Nt}(\omega^*) \geq \kappa$ in V[G].

How did GCH get in there?

Theorem B (GCH) Every CHS X satisfies $\chi Nt(X) \le c(X)$.

Proof ingedients

• (Arhangel'skiĭ and Pospišil) $|Y| = 2^{\chi(Y)}$ for every CHS Y.

- (Arhangel'skii) $|Y| \leq 2^{\pi \chi(Y)c(Y)}$ for every CHS Y.
- (GCH) $\chi(X) \leq \pi \chi(X) c(X)$
- $\chi \operatorname{Nt}(Z) \pi \chi(Z) \leq \chi(Z)$ for every space Z.
- If $\pi \chi(X) < \chi(X)$, then $\chi \operatorname{Nt}(X) \leq \chi(X) \leq c(X)$.
- So, assume $\pi \chi(X) = \chi(X)$.
- The hard part is deducing $\chi Nt(X) = \omega$.

The hard part

- By homogeneity, we only need to show that χNt (p, X) = ω for some p ∈ X.
- This is equivalent to showing that ⟨B,⊇⟩ ≥_T ⟨[χ(p, X)]^{<ω}, ⊆⟩ for some local base B at some p ∈ X.

▶ By homogeneity, $\pi\chi(p, X) = \chi(p, X) = \chi(X)$ for all $p \in X$.

Theorem C. If K is compact and $\lambda = \min_{q \in K} \pi \chi(q, K)$, then some local base \mathcal{B} in K satisfies $\langle \mathcal{B}, \supseteq \rangle \geq_T \langle [\lambda]^{<\omega}, \subseteq \rangle$.

The hard part

- By homogeneity, we only need to show that χNt (p, X) = ω for some p ∈ X.
- This is equivalent to showing that ⟨B,⊇⟩ ≥_T ⟨[χ(p, X)]^{<ω}, ⊆⟩ for some local base B at some p ∈ X.
- ▶ By homogeneity, $\pi\chi(p, X) = \chi(p, X) = \chi(X)$ for all $p \in X$.

Theorem C. If K is compact and $\lambda = \min_{q \in K} \pi \chi(q, K)$, then some local base \mathcal{B} in K satisfies $\langle \mathcal{B}, \supseteq \rangle \ge_T \langle [\lambda]^{<\omega}, \subseteq \rangle$. **Proof ingredients.**

- It suffices to find a point p and a sequence (V_α)_{α<λ} of neighborhoods of p such that p ∉ int ∩_{α∈I} V_α for all I ∈ [λ]^ω.
- Call a sequence $\langle \langle U_{\alpha}, V_{\alpha} \rangle \rangle_{\alpha < \zeta}$ of subsets of K flat if ...
- Every flat sequence of length less than λ extends to flat a sequence of length λ.
- If $\langle \langle U_{\alpha}, V_{\alpha} \rangle \rangle_{\alpha < \lambda}$ is flat, then some $p \in \bigcap_{\alpha < \lambda} \overline{U}_{\alpha}$ works.

Call a sequence $\langle \langle U_{\alpha}, V_{\alpha} \rangle \rangle_{\alpha < \zeta}$ of subsets of K flat if:

1. $\overline{U}_{\alpha} \subseteq V_{\alpha}$ and U_{α} and V_{α} are regular open $(\forall \alpha < \zeta)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Call a sequence $\langle \langle U_{\alpha}, V_{\alpha} \rangle \rangle_{\alpha < \zeta}$ of subsets of K flat if:

1. $\overline{U}_{\alpha} \subseteq V_{\alpha}$ and U_{α} and V_{α} are regular open ($\forall \alpha < \zeta$).

2. $\forall \alpha < \zeta \ \forall \sigma, \tau \in [\alpha]^{<\omega} \quad \bigcap_{\beta \in \sigma} U_{\beta} \setminus \overline{\bigcup_{\gamma \in \tau} V_{\gamma}} \text{ is empty or } \not\subseteq V_{\alpha}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Call a sequence $\langle \langle U_{\alpha}, V_{\alpha} \rangle \rangle_{\alpha < \zeta}$ of subsets of K flat if:

- 1. $\overline{U}_{\alpha} \subseteq V_{\alpha}$ and U_{α} and V_{α} are regular open ($\forall \alpha < \zeta$).
- 2. $\forall \alpha < \zeta \ \forall \sigma, \tau \in [\alpha]^{<\omega} \quad \bigcap_{\beta \in \sigma} U_{\beta} \setminus \overline{\bigcup_{\gamma \in \tau} V_{\gamma}} \text{ is empty or } \not\subseteq V_{\alpha}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3. $\forall \sigma \in [\zeta]^{<\omega} \forall \langle \Gamma_i \rangle_{i < n} \in ([\zeta]^{\omega})^{<\omega} \exists \langle \gamma_i \rangle_{i < n} \in \prod_{i < n} \Gamma_i \cap_{\alpha \in \sigma} U_{\alpha} \not\subseteq \bigcup_{i < n} \overline{V}_{\gamma_i}.$

Call a sequence $\langle \langle U_{\alpha}, V_{\alpha} \rangle \rangle_{\alpha < \zeta}$ of subsets of K flat if:

- 1. $\overline{U}_{\alpha} \subseteq V_{\alpha}$ and U_{α} and V_{α} are regular open ($\forall \alpha < \zeta$).
- 2. $\forall \alpha < \zeta \ \forall \sigma, \tau \in [\alpha]^{<\omega} \quad \bigcap_{\beta \in \sigma} U_{\beta} \setminus \overline{\bigcup_{\gamma \in \tau} V_{\gamma}} \text{ is empty or } \not\subseteq V_{\alpha}.$
- 3. $\forall \sigma \in [\zeta]^{<\omega} \forall \langle \Gamma_i \rangle_{i < n} \in ([\zeta]^{\omega})^{<\omega} \exists \langle \gamma_i \rangle_{i < n} \in \prod_{i < n} \Gamma_i$ $\bigcap_{\alpha \in \sigma} U_{\alpha} \not\subseteq \bigcup_{i < n} \overline{V}_{\gamma_i}.$
 - Conditions (1) and (3) imply that ⋃_{α<ζ}{U_α, V_α} is centered and ω^{op}-like.
 - For any finite open cover W of K, we can choose U_ζ ∈ W that preserves (3). (Any V_ζ will preserve (3).)
 - Therefore, there is a finite open cover that witnesses that some p ∈ ∩_{α<λ} U_α works.
 - If ζ < λ, then min_{q∈K} πχ(q, K) ≥ λ guarantees we can find W such that for any choice of U_ζ ∈ W, there is a V_ζ such that (2) is preserved.
 - ► (2) guarantees that (3) is preserved at limit stages.