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Definition

» A preorder P is k-directed if every subset smaller than x has
an (upper) bound in P.

» Directed means Ny-directed.

Conversely:

» A preorder P is k-short if every bounded subset is smaller
than k.

» Flat means Ng-short.
Definition
A preorder P is almost k-short if it has a k-short cofinal suborder.

Convention
Order sets like [A\]* and 2<% by C.
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Classifying preorders

Definition
Two preorders P and @ are mutually cofinal if they are
isomorphic to cofinal suborders of a common third preorder R.

Lemma (M., 2005)

If P and @ are mutually cofinal and P is almost k-short, then @ is
almost k-short.

Definition (Tukey, 1940)

» P is Tukey-below Q, or P <7 Q, if there exists f: P <71 Q,
ie., f: P — Q sends unbounded sets to unbounded sets.

» P=1 Q@ means P <+ Q <t P.

Tukey types aren't cofinal types. ..
2<@1t =1 [¢]! and [¢]! is flat, but 2<% is not almost flat.
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.until we assume directedness

Theorem (Tukey, 1940).

If P and Q are directed and P =1 Q, then P and Q are mutually
cofinal.

Definition
A (), k)-blossom in a preorder P is a map f: A — P such that
f[/] is unbounded for all I € [A]~.

Theorem (M., 2007)

If P is directed and cf(P) > 8o, then (1) = (2) < (3):
1. [ef(P)]<" <1 P.
2. P has a (cf(P), k)-blossom.

3. P is almost k-short.
If also k = cf(x) and [[cf(P)]<"| = cf(P), then (1) <= (2).
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If P is directed and cf(P) > Ng, then (1) = (2) & (3):
1. [ef(P)]~" <t P.
2. P has a (cf(P), k)-blossom.

3. P is almost x-short.

If also k = cf(k) and |[cf(P)]<"| = cf(P), then (1) < (2).
Proof

> (1) = (2): If f: [cf(P)]<" <7 P, then (f({a}))a<cr(p) is a
(cf(P), k)-blossom.

> (3) = (2): If g is an injection from cf(P) into a k-short
Q@ C P, then g is a (cf(P), k)-blossom of P.

» (2) = (3): Given a (cf(P), k)-blossom b and c¢: cf(P) — P
with cofinal range, let d(a) > b(«a), c(«) for all a; ran(d) is
cofinal and k-short.

> (2) = (1): Given a (cf(P), x)-blossom b and an injective
h: [cf(P)]<" — cf(P), we have bo h: [cf(P)]<" <t P.
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Topological preliminaries
Convention

» All spaces are Tychonoff (T35).

» Families of open sets are ordered by D.

Notation

» 7(X) is the set of open subsets of X.
» 71(X) is the set of nonempty open subsets of X
» 7(p, X) is the set of open neighborhoods of p in X.

Definition
» A local base at p is a cofinal subset of 7(p, X).

» A m-base is a cofinal subset of 71 (X).

» A base is a subset B of 7(X) that includes a local base at
every point.



The weight

w(X) of X is

the least K > N such that
X has a base that is

of size < k.

The Noetherian type

Nt (X) of X is

the least K > N such that
X has a base that is
k-short.

The m-weight

7(X) of X is

the least ¥ > Ng such that
X has a m-base that is

of size < k.

The Noetherian 7-type
7Nt (X) of X is

the least K > N such that
X has a m-base that is
k-short.

The character

x(p, X) of piin X is

the least K > Ng such that
p has a local base that is
of size < k.

The local Noetherian type
xNt (p, X) of pin X is

the least k > Ng such that
p has a local base that is
K-short.

X(X) = sup,ex x(p, X)

| XNt (X) = sup,ex XNt (p, X) |




History

» Malykhin, Peregudov, and Sapirovskii studied the properties
Nt (X) < N, 7Nt (X) < Ry, Nt (X) = Rg, and 7Nt (X) = No
in the 1970s and 1980s.

» Peregudov introduced Noetherian type and Noetherian m-type
in 1997.

» Milovich introduced local Noetherian type in 2005.
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» Malykhin, Peregudov, and Sapirovskii studied the properties
Nt (X) < N, 7Nt (X) < Ry, Nt (X) = Rg, and 7Nt (X) = No
in the 1970s and 1980s.

» Peregudov introduced Noetherian type and Noetherian m-type
in 1997.

» Milovich introduced local Noetherian type in 2005.

Order-theoretic definitions

w(X) is
the least K > Ng such that
cf(77(X)) < k.

7Nt (X) is
the least K > Ng such that
77 (X) is almost k-short.

x(p, X) is
the least ¥ > Ng such that
cf(r(p, X)) < k.

XNt (p, X) is
the least k¥ > N such that
7(p, X) is almost k-short.
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Corollary

For all spaces X,
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> XNt (X) < X(X);
» Nt (X) < 7(X).
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Easy upper bounds

Lemma
Every preorder P is almost cf(P)-short.

Corollary

For all spaces X,
> XNt (p, X) < x(p, X);
> XNt (X) < X(X);
» Nt (X) < 7(X).

Even easier:
Every P is |P|"-short, so Nt (X) < w(X)*.

Example
Nt (ON) = w(BN)" = ¢t because 7(8N) = Xg < cf(w(SN)).
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Passing to subsets

Applying mutual cofinality
» If B is a m-base of X, then B includes a wNt (X)-short 7-base
of X.

> If B is a local base at p in X, then B includes a xNt (X)-short
local base at p in X.

Theorem (M., 2007)

Every metrizable space has a flat base.
Proof: For each n < w, pick a locally finite open cover refining the
balls of radius 27". Take the union.

Example (M., 2009)

Set X =7Z%. Let B be the set of all sets of the form Us , where
s€Z<Y, n<w, and Us, is the set of all f € X such that s/ C f
for some i € [—n, n]. B a base of X, but B has no flat subcover.



Blossoms and splitters

Applying directedness

If p € X is not isolated, then xNt (p, X) < & if and only if 7(p, X)
has a (x(p, X), %)-blossom, which is just a x(p, X)-sequence U of
neighborhoods of p such that p ¢ int(7),c; U, for all

I'€ [x(p, X)]".
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Blossoms and splitters

Applying directedness

If p € X is not isolated, then xNt (p, X) < & if and only if 7(p, X)
has a (x(p, X), %)-blossom, which is just a x(p, X)-sequence U of
neighborhoods of p such that p ¢ int(7),c; U, for all

I'€ [x(p, X)]".

Definition
A (), k)-splitter of X is a A-sequence F of finite open covers of X
such that int(,¢; Uy = @ for all I € [x(p, X)]" and

U € [Toes Fa-

Lemma
If X has a (w(X), k)-splitter, then Nt (X) < k.
Question (M., 2007)

Does Nt (fw \ w) < k imply fw \ w has a (¢, k)-splitter in ZFC?
(There can be no counterexamples if ¢ is regular.)



Easy applications of blossoms and splitters

Theorem
If X =J[qcr Xa and |X,| > 1 for all a < &, then

> 1> x(p,X) = xNt (p, X) = No;
> k> x(X) = xNt (X) = Ro;
> k> 7m(X) = 7Nt (X) = No;
> k> w(X) = Nt(X)=No.



Easy applications of blossoms and splitters

Theorem
If X =J[qcr Xa and |X,| > 1 for all a < &, then

> k> x(p, X) = xNt (p, X) = No;
> k> x(X) = xNt(X) = No;
> k> 7(X) = TNt (X) = Ny;
> k> w(X) = Nt (X)=Ro.

Proof (essentially (Malykhin, 1981))

First claim: For each a < x(p, X), choose a nontrivial open
neighborhood U, of p(«a). Since all open boxes in the product
topology have finite support, (75 [Us])a<x is a

(x(p, X), Ng)-blossom for 7(p, X).



Corollary

> Nt (X x 27(X)) = Rg. (Malykhin, 1981)



Corollary
> Nt (X x 27(X)) = Rg. (Malykhin, 1981)
> 7Nt (X x 27(X)) = Ry,
> XNt (X x 2X(X)) = Ry



Corollary

Nt (X x 2%(X)) = Ry. (Malykhin, 1981)
TNt (X x 27(X)) = .

XNt (X x 2X(X)) = Ry,

Nt (Xw(X)) = ,.

TNt (X™(X)) = R

ANt (XX()) =g,

vV vV v v v Vv



Passing to subsets again

Definition
A space X is homogeneous if for all p, g € X, there is a bijection
f: X — X with f(p) = g and f and f~1 continuous.

Theorem (M., 2009)
Let B be a base of X. B includes an Nt (X)-short base of X if
» X is metrizable and X is locally compact or o-compact,
» X is compact and x(p, X) = w(X) for all p € X, or
» X is compact, homogeneous, and w(X) is regular or strong
limit.



Passing to subsets again

Definition

A space X is homogeneous if for all p, g € X, there is a bijection

f: X — X with f(p) = g and f and f~1 continuous.

Theorem (M., 2009)

Let B be a base of X. B includes an Nt (X)-short base of X if
» X is metrizable and X is locally compact or o-compact,
» X is compact and x(p, X) = w(X) for all p € X, or
» X is compact, homogeneous, and w(X) is regular or strong

limit.
About the proof

» For the second case, we build a (w(X), k)-splitter consisting
of subcovers of an arbitrary base.

» For the third case, we use Mis€enko's Lemma to deduce that
the second case holds or Nt (X) = w(X)*.
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Van Douwen’s Problem

Definition
The cellularity ¢ (X) of X is the least infinite upper bound of the
cardinalities of its cellular families, i.e., pairwise disjoint open

families.

Patterns

» Every known compact homogeneous space (CHS) is a
continuous image of a product of compacta with weight at
most c.

» It follows that every known CHS has cellularity at most c.
(Why? Easy: ¢* is a caliber of any such space.)

» Van Douwen’s Problem asks whether ¢ (X) < ¢ for every CHS
X. This is open after ~40 years, in all models of ZFC.

» It also follows that every known CHS has Noetherian type at
most ¢*. (Why? Not as easy...)



Sharp bounds

Example (Maurice, 1964)

The lexicographically ordered space X = 21 is a CHS satisfying
c(X)=rc

Example (Peregudov, 1997)

The double-arrow space X is compact, homogeneous, and
Nt (X) =c¢*.



Light factors

Theorem (M., 2007)

If X is CHS and a continuous image of a product of compacta all
with weight at most A, then Nt (X) < A*. If also A = Ng (i.e., X
is dyadic), then Nt (X) = Ro.
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Light factors

Theorem (M., 2007)

If X is CHS and a continuous image of a product of compacta all
with weight at most A, then Nt (X) < A*. If also A = Ng (i.e., X
is dyadic), then Nt (X) = Ro.

Some ideas from the proof

» A long x-approximation sequence (for regular k) is an
e-chain M of elementary substructures of H(6) with
Myl CkN My €k €My and M| o€ M,.

» (A. Miller) Generalizing (Jackson, Mauldin, 2002), given M as
above, there exists & such that ¥, € [Ma]<M,
UZa=U(M | @), and N < Hy for all N € ¥,,.

» The quotient maps 7: X — X /M, are open.

» We can build a k-short base of X by taking the union of
pullbacks of well-chosen bases of these quotients.
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m-character is crucial.
Definition

» 7x(p, X) is the least kK > Ng such that 7(p, X) is dominated
by some S € [77(X)]=" (i.e., every neighborhood of X
includes a nonempty open set from S).

> mx(X) = suppex (P, X).

Theorems (M., 2007)

> If mx(p, X) < cf k =k < x(p, X) for some p € X, then
Nt (X) > k. (Essentially (Peregudov, 1997))

> If h: [[;c, Xi — X is a continuous surjection, X; is compact,
and w(X;) < cfk =r < w(X) (for all i € 1), then
mx(X) = w(X).
> If h: T];c; Xi — X is a continuous surjection,
mx(p, X) = w(X) for all p € X, X; is compact, and
w(X;) < A (for all i € 1), then Nt (X) < A.
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More light factors

Theorem (M., 2006)

If X is a continuous image of a product of compacta all with
weight at most A, then 7Nt (X) < A and yNt (X) < A\

About the proof

This time, we don't need long k-approximation sequences.
Continuous elementary chains work just fine.
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Does every CHS have a flat local base?

Another Pattern
Every known CHS X satisfies 7Nt (X) < ®; and xNt (X) = Rp.

Theorems (M., 2007)

> If X is a separable CHS and w(X) < p, then xNt (X) = No
» Assuming GCH, xNt (X) < ¢ (X) if X is a CHS.

Attacking Van Douwen’s Problem

» If we found a model of GCH with a CHS X with a local base
B such that B is not almost Nj-short, then ¢ (X) > ¢.

» E.g., wecould try for B=7w Xwpor B=7w X wy X ws.

> X =20 x 2P x 22 is compact, and B =71 w x w1 X w; for
all local bases B, but X is not homogeneous.

» (Arhangel’skit, 2005) If a product of linear orders is a CHS,
then all factors are first countable, and hence have weight at
most c.
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m-character is crucial, again.

Assuming GCH, xNt (X) < ¢ (X) if X is a CHS.
Proof

>

Lemma (M. 2007). If X is compact and mx(p, X) > & for all
p € X, then 7(q, X) has (k, Ng)-blossom for some g € X.
Hence, if X is compact and 7mx(p, X) = x(X) for all p € X,
then X has a flat local base.

Therefore, given a CHS X, we have Nt (X) = Xg or

mx(X) < x(X).

(Arhangel’skit, Ismail) If Y is a CHS, then

2x(Y) < Y| < omx(Y)e(Y)

So, assuming GCH, mx(X) < x(X) implies

N (X) < X(X) < ¢ (X).
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More on m-character

Theorems
» (M., 2008) If X is compact and mx(p, X) = w(X) for all
p € X, then Nt (X) < w(X).

» (M., Spadaro, 2010) If X is compact and mx(p, X) < w(X)
for a dense set of points, then Nt (X) > w(X), and
Nt (X) = w(X)™ if w(X) is regular.

Examples
> (M., 2010) If X = Dy, U {00}, then mx(X) = Ny,
w(X) =R, and Nt (X) = R41.

> (M., 2010) If X =[], (Dx, U{oo}), then mx(X) = Ny,
w(X) =N, and Nt (X) = R,,.
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Power homogeneous compacta

Definition (Van Douwen)

A space X is power homogeneous if X% is homogeneous for
some a > 0.

» Many results about homogeneous compact spaces have been
generalized to power homogeneous compact (PHC) spaces.

» (Ridderbos, 2006) For example, 2X(X) < 2m™x(X)<(X) for j||
PHC X.

» However, it is unknown whether every PHC X satisfies
c(X) <«

» It is also unknown whether every PHC X has a flat local base.

» Perhaps an easier question: Does GCH imply
XNt (X) < ¢(X) for all PHC X7



A partial answer

Definition
d(X) is the least k > g such that some D € [X]=" is dense in X.

Perhaps an even easier question:
Does GCH imply xNt (X) < d(X) for all PHC X?

Theorem (M., Ridderbos, 2007)

Given GCH, X PHC, and maxpex x(p, X) = cf(x(X)) > d(X),
there is a nonempty open U C X such that xNt (p, X) = R for all
peU.



If we stop worrying about homogeneity. . .

Sometimes compactness doesn't matter.

(M., 2009) If p€ X and X = Y, eg., Y = 3X, then

XNt (p, X) = xNt (p, Y) and 7Nt (X) = 7Nt (Y). On the other
hand, Nt (N) = X and Nt (8N) = ¢*.
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If we stop worrying about homogeneity. . .

Sometimes compactness doesn't matter.
(M., 2009) If p€ X and X = Y, eg., Y = 3X, then
XNt (p, X) = xNt (p, Y) and 7Nt (X) = 7Nt (Y). On the other
hand, Nt (N) = X and Nt (8N) = ¢*.
Product spaces can surprise you.
» (Todor&evi¢, 1985) If cf(k) = k = k™, then there exist
directed P, Q with P, Q <7 P x Q =7 [k]<™.
» (M., 2010) Using these P and Q, we can build X, Y such
that xNt (X) = xNt (Y) =83 and yNt (X x Y) = No.
» (Sparado, 2010) X, Y can be modified to get Z, W such that
Nt (Z) = Nt (W) = Ry and Nt (Z x W) = Ry.
» (Spadaro, 2008) There are compact K, L with Nt (K) = Ry,
Nt (L) = N3, and Nt (K x L) = ;.
> Open: Is Nt (X?) # Nt (X) possible?
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» (M., 2010) We can also use the previous P and Q to build an
example of
XNt ((p, g), X?) = No <R3 = xNt (p, X) = xNt (g, X).



Powers

» (M., 2010) We can also use the previous P and Q to build an
example of
XNt ((p, q>,X2) = Ng < N3 = xNt (p, X) = xNt (g, X).

» (M., 2007) If f: X — Y is continuous and open at p, then
xNt (p, X) < xNt (f(p), Y) (and 7(p, X) =71 7(f(p), Y)).



Powers

» (M., 2010) We can also use the previous P and Q to build an
example of
XNt ((p, q>,X2) = Ng < N3 = xNt (p, X) = xNt (g, X).

» (M., 2007) If f: X — Y is continuous and open at p, then
xNt (p, X) < xNt (f(p), Y) (and 7(p, X) =71 7(f(p), Y)).

» Hence, 0 < a < 8 = xNt (p,Xﬁ) < xNt(p [ o, X¥).



Powers

» (M., 2010) We can also use the previous P and Q to build an
example of
XNt ((p, q>,X2) = Ng < N3 = xNt (p, X) = xNt (g, X).

» (M., 2007) If f: X — Y is continuous and open at p, then
xNt (p, X) < xNt (f(p), Y) (and 7(p, X) =71 7(f(p), Y)).

» Hence, 0 < a < 8 = xNt (p,Xﬁ) < xNt(p [ o, X¥).

» (M., 2009) If 0 < v < wy, then xNt (p7, X7) = xNt (p, X)
and xNt (X7) = xNt (X).



Powers

» (M., 2010) We can also use the previous P and Q to build an
example of
XNt ((p, q>,X2) = Ng < N3 = xNt (p, X) = xNt (g, X).

» (M., 2007) If f: X — Y is continuous and open at p, then
xNt (p, X) < xNt (f(p), Y) (and 7(p, X) =71 7(f(p), Y)).

» Hence, 0 < a < 8 = xNt (p,Xﬁ) < xNt(p [ o, X¥).

» (M., 2009) If 0 < v < wy, then xNt (p7, X7) = xNt (p, X)
and xNt (X7) = xNt (X).

» However, there are examples of YNt (X“1) < xNt (X) with
Ny < cf(x(X))-



Powers

» (M., 2010) We can also use the previous P and Q to build an
example of
XNt ((p, q>,X2) = Ng < N3 = xNt (p, X) = xNt (g, X).

» (M., 2007) If f: X — Y is continuous and open at p, then
xNt (p, X) < xNt (f(p), Y) (and 7(p, X) =71 7(f(p), Y)).

» Hence, 0 < a < 8 = xNt (p,Xﬁ) < xNt(p [ o, X¥).

» (M., 2009) If 0 < v < wy, then xNt (p7, X7) = xNt (p, X)
and xNt (X7) = xNt (X).

» However, there are examples of YNt (X“1) < xNt (X) with
N; < cf(x(X)).

> (Ridderbos, 2007) If 0 < v < cf(x(p, X)), then
XNt (p7, X7) = xNt (p, X).



Powers

» (M., 2010) We can also use the previous P and Q to build an
example of
XNt ((p, q>,X2) = Ng < N3 = xNt (p, X) = xNt (g, X).

» (M., 2007) If f: X — Y is continuous and open at p, then
xNt (p, X) < xNt (f(p), Y) (and 7(p, X) =71 7(f(p), Y)).

» Hence, 0 < a < 8 = xNt (p,Xﬁ) < xNt(p [ o, X¥).

» (M., 2009) If 0 < v < wy, then xNt (p7, X7) = xNt (p, X)
and xNt (X7) = xNt (X).

» However, there are examples of YNt (X“1) < xNt (X) with
N; < cf(x(X)).

> (Ridderbos, 2007) If 0 < v < cf(x(p, X)), then
XNt (p7, X7) = xNt (p, X).

> (M., 2009) If cf(x(p, X)) < v < x(p, X), then
XNt (p7, X7) < XNt (p, X) < xNt (p?, X7)*.



Powers

» (M., 2010) We can also use the previous P and Q to build an
example of
XNt ((p, q>,X2) = Ng < N3 = xNt (p, X) = xNt (g, X).

» (M., 2007) If f: X — Y is continuous and open at p, then
xNt (p, X) < xNt (f(p), Y) (and 7(p, X) =71 7(f(p), Y)).

» Hence, 0 < a < 8 = xNt (p,Xﬁ) < xNt(p [ o, X¥).

» (M., 2009) If 0 < v < wy, then xNt (p7, X7) = xNt (p, X)
and xNt (X7) = xNt (X).

» However, there are examples of YNt (X“1) < xNt (X) with
N; < cf(x(X)).

> (Ridderbos, 2007) If 0 < v < cf(x(p, X)), then
XNt (p7, X7) = xNt (p, X).

> (M., 2009) If cf(x(p, X)) < v < x(p, X), then
XNt (p7, X7) < XNt (p, X) < xNt (p?, X7)*.

» (M., 2005) If x(p,X) <~ and |X]| > 1, then
xNt (p?, X7) = No.
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Measuring blossoms

Definition
The A-wide splitting number at p € X, or split, (p, X), is the
least x such that 7(p, X) has a (\, k)-blossom.

Facts (M., 2009)

> A < p = split, (p, X) < split, (p, X).

> splitx(px)(p,X) = xNt (p, X).

> x(p, X) < cf A = split, (p, X) = AT.

» For all singular cardinals A,
split, (p, X) < (supu<)\ splitu(p,X))

> If cf A <k < A, then splity (p”, X*) = sup,, . split,,(p, X).

_l’_
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What about regular limit cardinals?

Definition
Let Hfg), X; denote the set [];., X; with the topology generated by
products of open sets with support smaller than «.

Example (M., 2009)

> Ifpe X = H((;Z\<))\ 2% and A is strongly inaccessible, then
split,,(p, X) = No for all u < A, but
splity (p, X) = xNt (p, X) = A.

» The proof's essential ingredient runs short an
elementary-submodel proof of the Erdos-Rado Theorem.
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Singular character

Example (M., 2009)
> letpe X = H(Nl) Hgi“:)la 2.

a<wi
» We then have x(p, X) = 3.,
XNt (p, X) = splito, (p, X) = N7, and
XNt (p1, X¥1) = sup, .5, split,, (p, X) = R,

» The key lemma for the proof is that the set of countably
supported maps from w; to w (with the product ordering)
does not have an (w1, Rp)-blossom.

> Why? If F: w; — Fn(wi, w, 81), F € M < H(X2), and
M| = g, then we can use reflect properties of F(w; N M) to
find infinitely many F(«) € M all dominated by a single
g c Fn(wl, w, Nl)
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X(p, X) = m(X) = w(X) = XiF.
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Example (M., Spadaro, 2009)

|

Let pe X = foilgm 2. We then have
x(p, X) = 7(X) = w(X) = R,

N; < Nt (X) < ¢t. Moreover, ¢ < N1 = Nt (X) <Ny
Open: can we have Nt (X) > N, 417

If Oy, and Nﬁo = N, 1, then

Nt (X) = 7Nt (X) = xNt (p, X) = X1. (Why? We can use
Bernstein sets and a locally countable S C [R,]¥ of size R, 1
to build an Rj-short base. . .)

(Soukup)

(Nwt1, Ny) = (R, Rg) = Nt (X) > xNt (p, X) > Ry. (The
hypothesis is consistent relative (roughly) to a huge cardinal
(Levinski, Magidor, Shelah, 1990).)

Open: Can we have 7Nt (X) > N;? Equivalently, can
(Fn(N,, 2, X;), C) fail to be almost N;-short?



Noetherian spectra

Another application of Bernstein sets (M., 2009)

If ¢ > k and & is weakly inacessible, then there is a Lindelof linear
order with Noetherian type k..

Excluded Noetherian types (M., 2008)

» The compact linear orders attain all Noetherian types except
Ny and weak inaccessibles.



Noetherian spectra

Another application of Bernstein sets (M., 2009)
If ¢ > k and & is weakly inacessible, then there is a Lindelof linear
order with Noetherian type k..
Excluded Noetherian types (M., 2008)
» The compact linear orders attain all Noetherian types except
N1 and weak inaccessibles.

» The dyadic compacta do not attain Noetherian type Nj.



Noetherian spectra

Another application of Bernstein sets (M., 2009)

If ¢ > k and & is weakly inacessible, then there is a Lindelof linear
order with Noetherian type k..

Excluded Noetherian types (M., 2008)

» The compact linear orders attain all Noetherian types except
N; and weak inaccessibles.

» The dyadic compacta do not attain Noetherian type Nj.

» Open: do the dyadic compacta attain weakly inaccessible
Noetherian types?

» Open: do the dyadic compacta attain Noetherian type N, 17
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Local bases in fw \ w

Convention

» If U is an ultrafilter on w, then order U by D.
» Let U, denote U ordered by D* (containment modulo [w]<0).

Facts

> Given U € fw \w, T(U, fw \ w) is mutually cofinal with U,.
» Hence, U has a flat local base in fw \ w if and only if

Us > [x(U, Bw \ w)] <.
> Likewise, U has a flat local base in Sw if and only if

Uzt XU, b\ w)] <.

Isbell's Problem
ZFC proves there exists U € fw \ w such that U, =7 U =1 [¢]<M°.
Does ZFC prove there exists V € fw \ w such that V 7 [¢] <707
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U versus U,

» This seminar has already heard a lot about recent progress for
Tukey classes of the form U/ by Dobrinen, Raghavan, and
Todor&evié. | will focus on Tukey classes of the form U,.

> U, <7U <7 [N forall U € fw\ w.
> If U, is not Ni-directed, then V <1 U, for some V € fw \ w.
> If P is Ny-directed and x > Rg, then P %7 [k] <.

» Hence, Isbell's Problem is equivalent to asking if ZFC proves
there exists U € fw \ w such that U, Z7 [(]<°.



Ultrafilter Tukey classes for O*

» (M., 2008) Assuming p = ¢, for every regular x € [N, ¢], there
exists U, =7 [c]<F, which implies xNt (U, fw \ w) = k.



Ultrafilter Tukey classes for O*

> (M., 2008) Assuming p = ¢, for every regular x € [N, ¢], there
exists U, =7 [c]<F, which implies xNt (U, fw \ w) = k.

» (Aviles, Todor&evi¢, 2010) If n > 2, kK < My_p_jinked, and
Ao, ..., An C fw \ w are disjoint open F, sets, then there are
clopen By D Ay,...,B, D A, such that ﬂign B =o.

» (M., 2010) It follows that Uy #1 Kk x P for all U € fw \ w if
w < cf(k) = K < SUppy, My—n—linked @and P is the union of at
most k-many kT -directed sets. E.g., Uy #T w X w1, and
|\/|AN1 = U, ;7é'r w1 X wWa.
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» (Aviles, Todor&evi¢, 2010) If n > 2, kK < My_p_jinked, and
Ao, ..., An C fw \ w are disjoint open F, sets, then there are
clopen By D Ay,...,B, D A, such that ﬂign B =o.
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» (M., 2009) Assuming t = ¢ and O(Sf) (which are implied by
MA A ¢ = Xp), there exists W: 2° — fw \ w such that
W(f). £7 W(g) for all f # g.



Ultrafilter Tukey classes for O*

>

>

>

(M., 2008) Assuming p = ¢, for every regular x € [No, ¢], there
exists U, =7 [c]<F, which implies xNt (U, fw \ w) = k.
(Aviles, Todor&evi¢, 2010) If n > 2, K < My—_p_finked, and

Ao, ..., An C fw \ w are disjoint open F, sets, then there are
clopen By D Ay,...,B, D A, such that ﬂign B =o.

(M., 2010) It follows that U, #1 Kk x P for all U € fw \ w if
w < cf(k) = K < SUppy, My—n—linked @and P is the union of at
most k-many kT -directed sets. E.g., Uy #T w X w1, and
|\/|AN1 = U, ;7é'r w1 X wWa.

(M., 2009) Assuming t = ¢ and O(Sf) (which are implied by
MA A ¢ = Xp), there exists W: 2° — fw \ w such that
W(f). £7 W(g) for all f # g.

Open: Does CH imply there exist U,V € fw \ w such that
Z/[* ﬁT V* ﬁT Z/[*?



The (local) Noetherian (7-)type of fw \ w

ZFC proves each of the following statements.
> Nt (Bw \w)=h <5 <Nt (fw\w) < ct.
> xNt (Bw \ w) < min {Nt (Bw \ w), c}.
> MA = 7Nt (fw \w) =¢= Nt (fw\w) =rc.
> r=c= Nt(fw\w) <c
>t <c= Nt(fw\w) >c
> v < cfe= Nt(fw\w)=rc".
Each of the following statements is consistent with ZFC.
» w1 = 7Nt (fw \ w) = XNt (fw \ w) = Nt (fw \w) < c.
> w1 < TNt (Bw \ w) = xNt (fw \ w) = Nt (fw \ w) < c.
> wy =Nt (fw \w) < Nt (fw \w) <c.
> wy < TNt (Bw \ w) < xNt (fw \ w) = ¢ < Nt (fw \ w).



