On the order theory of local bases

David Milovich Texas A&M International University david.milovich@tamiu.edu

Feb. 12, 2010 Fields Institute Set Theory Seminar

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

A preorder P is κ-directed if every subset smaller than κ has an (upper) bound in P.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Directed means \aleph_0 -directed.

Definition

- A preorder P is κ-directed if every subset smaller than κ has an (upper) bound in P.
- ▶ **Directed** means ℵ₀-directed.

Conversely:

A preorder P is κ-short if every bounded subset is smaller than κ.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ Flat means ℵ₀-short.

Definition

- A preorder P is κ-directed if every subset smaller than κ has an (upper) bound in P.
- **Directed** means \aleph_0 -directed.

Conversely:

- A preorder P is κ-short if every bounded subset is smaller than κ.
- ▶ Flat means ℵ₀-short.

Definition

A preorder *P* is **almost** κ -short if it has a κ -short cofinal suborder.

Definition

- A preorder P is κ-directed if every subset smaller than κ has an (upper) bound in P.
- **Directed** means \aleph_0 -directed.

Conversely:

- A preorder P is κ-short if every bounded subset is smaller than κ.
- ▶ Flat means ℵ₀-short.

Definition

A preorder *P* is **almost** κ -short if it has a κ -short cofinal suborder.

Convention

Order sets like $[\lambda]^{\kappa}$ and $2^{<\kappa}$ by \subseteq .

Classifying preorders

Definition

Two preorders P and Q are **mutually cofinal** if they are isomorphic to cofinal suborders of a common third preorder R.

Lemma (M., 2005)

If P and Q are mutually cofinal and P is almost $\kappa\text{-short},$ then Q is almost $\kappa\text{-short}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Classifying preorders

Definition

Two preorders P and Q are **mutually cofinal** if they are isomorphic to cofinal suborders of a common third preorder R.

Lemma (M., 2005)

If P and Q are mutually cofinal and P is almost $\kappa\text{-short},$ then Q is almost $\kappa\text{-short}.$

Definition (Tukey, 1940)

▶ *P* is **Tukey-below** *Q*, or $P \leq_T Q$, if there exists $f : P \leq_T Q$, *i.e.*, $f : P \rightarrow Q$ sends unbounded sets to unbounded sets.

 $\blacktriangleright P \equiv_T Q \text{ means } P \leq_T Q \leq_T P.$

Classifying preorders

Definition

Two preorders P and Q are **mutually cofinal** if they are isomorphic to cofinal suborders of a common third preorder R.

Lemma (M., 2005)

If P and Q are mutually cofinal and P is almost $\kappa\text{-short},$ then Q is almost $\kappa\text{-short}.$

Definition (Tukey, 1940)

- ▶ *P* is **Tukey-below** *Q*, or $P \leq_T Q$, if there exists $f : P \leq_T Q$, *i.e.*, $f : P \rightarrow Q$ sends unbounded sets to unbounded sets.
- $P \equiv_T Q$ means $P \leq_T Q \leq_T P$.

Tukey types aren't cofinal types...

 $2^{<\omega_1} \equiv_{\mathcal{T}} [\mathfrak{c}]^1$ and $[\mathfrak{c}]^1$ is flat, but $2^{<\omega_1}$ is not almost flat.

... until we assume directedness

Theorem (Tukey, 1940).

If P and Q are directed and $P \equiv_T Q$, then P and Q are mutually cofinal.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

... until we assume directedness

Theorem (Tukey, 1940).

If P and Q are directed and $P \equiv_T Q$, then P and Q are mutually cofinal.

Definition

A (λ, κ) -blossom in a preorder P is a map $f : \lambda \to P$ such that f[I] is unbounded for all $I \in [\lambda]^{\kappa}$.

... until we assume directedness

Theorem (Tukey, 1940).

If P and Q are directed and $P \equiv_T Q$, then P and Q are mutually cofinal.

Definition

A (λ, κ) -blossom in a preorder P is a map $f : \lambda \to P$ such that f[I] is unbounded for all $I \in [\lambda]^{\kappa}$.

Theorem (M., 2007)

If P is directed and $cf(P) \ge \aleph_0$, then $(1) \Rightarrow (2) \Leftrightarrow (3)$:

- 1. $[cf(P)]^{<\kappa} \leq_T P$.
- 2. P has a $(cf(P), \kappa)$ -blossom.
- 3. *P* is almost κ -short.
- If also $\kappa = cf(\kappa)$ and $|[cf(P)]^{<\kappa}| = cf(P)$, then (1) \leftarrow (2).

- 1. $[cf(P)]^{<\kappa} \leq_T P$.
- 2. P has a $(cf(P), \kappa)$ -blossom.
- 3. *P* is almost κ -short.

If also $\kappa = cf(\kappa)$ and $|[cf(P)]^{<\kappa}| = cf(P)$, then $(1) \Leftarrow (2)$.

Proof

▶ (1) ⇒ (2): If
$$f : [cf(P)]^{<\kappa} \leq_T P$$
, then $\langle f(\{\alpha\}) \rangle_{\alpha < cf(P)}$ is a $(cf(P), \kappa)$ -blossom.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. $[cf(P)]^{<\kappa} \leq_T P$.
- 2. P has a $(cf(P), \kappa)$ -blossom.
- 3. *P* is almost κ -short.

If also $\kappa = cf(\kappa)$ and $|[cf(P)]^{<\kappa}| = cf(P)$, then $(1) \Leftarrow (2)$.

Proof

▶ (1) ⇒ (2): If $f : [cf(P)]^{<\kappa} \leq_T P$, then $\langle f(\{\alpha\}) \rangle_{\alpha < cf(P)}$ is a $(cf(P), \kappa)$ -blossom.

 (3) ⇒ (2): If g is an injection from cf(P) into a κ-short Q ⊆ P, then g is a (cf(P), κ)-blossom of P.

- 1. $[cf(P)]^{<\kappa} \leq_T P$.
- 2. P has a $(cf(P), \kappa)$ -blossom.
- 3. *P* is almost κ -short.

If also $\kappa = cf(\kappa)$ and $|[cf(P)]^{<\kappa}| = cf(P)$, then $(1) \Leftarrow (2)$.

Proof

- ► (1) ⇒ (2): If $f : [cf(P)]^{<\kappa} \leq_T P$, then $\langle f(\{\alpha\}) \rangle_{\alpha < cf(P)}$ is a $(cf(P), \kappa)$ -blossom.
- (3) ⇒ (2): If g is an injection from cf(P) into a κ-short Q ⊆ P, then g is a (cf(P), κ)-blossom of P.
- (2) ⇒ (3): Given a (cf(P), κ)-blossom b and c: cf(P) → P with cofinal range, let d(α) ≥ b(α), c(α) for all α; ran(d) is cofinal and κ-short.

- 1. $[cf(P)]^{<\kappa} \leq_T P$.
- 2. P has a $(cf(P), \kappa)$ -blossom.
- 3. *P* is almost κ -short.

If also $\kappa = cf(\kappa)$ and $|[cf(P)]^{<\kappa}| = cf(P)$, then $(1) \Leftarrow (2)$.

Proof

- ▶ (1) ⇒ (2): If $f : [cf(P)]^{<\kappa} \leq_T P$, then $\langle f(\{\alpha\}) \rangle_{\alpha < cf(P)}$ is a $(cf(P), \kappa)$ -blossom.
- (3) ⇒ (2): If g is an injection from cf(P) into a κ-short Q ⊆ P, then g is a (cf(P), κ)-blossom of P.
- (2) ⇒ (3): Given a (cf(P), κ)-blossom b and c: cf(P) → P with cofinal range, let d(α) ≥ b(α), c(α) for all α; ran(d) is cofinal and κ-short.
- (2) ⇒ (1): Given a (cf(P), κ)-blossom b and an injective
 h: [cf(P)]^{<κ} → cf(P), we have b ∘ h: [cf(P)]^{<κ} ≤_T P.

Topological preliminaries

Convention

- All spaces are Tychonoff $(T_{3.5})$.
- Families of open sets are ordered by \supseteq .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Topological preliminaries

Convention

- All spaces are Tychonoff $(T_{3.5})$.
- Families of open sets are ordered by \supseteq .

Notation

- $\tau(X)$ is the set of open subsets of X.
- $\tau^+(X)$ is the set of nonempty open subsets of X
- $\tau(p, X)$ is the set of open neighborhoods of p in X.

Topological preliminaries

Convention

- All spaces are Tychonoff $(T_{3.5})$.
- Families of open sets are ordered by \supseteq .

Notation

- $\tau(X)$ is the set of open subsets of X.
- $\tau^+(X)$ is the set of nonempty open subsets of X
- $\tau(p, X)$ is the set of open neighborhoods of p in X.

Definition

- A local base at p is a cofinal subset of $\tau(p, X)$.
- A π -base is a cofinal subset of $\tau^+(X)$.
- A base is a subset B of τ(X) that includes a local base at every point.

The weight	The Noetherian type	
w(X) of X is	Nt(X) of X is	
the least $\kappa \geq leph_0$ such that	the least $\kappa \geq leph_0$ such that	
X has a base that is	X has a base that is	
of size $\leq \kappa$.	κ -short.	
The π -weight	The Noetherian π -type	
$\pi(X)$ of X is	$\pi \operatorname{Nt}(X)$ of X is	
the least $\kappa \geq leph_0$ such that	the least $\kappa \geq leph_0$ such that	
X has a π -base that is	X has a π -base that is	
of size $\leq \kappa$.	κ -short.	
The character	The local Noetherian type	
$\chi(p, X)$ of p in X is	$\chi \operatorname{Nt}(p, X)$ of p in X is	
the least $\kappa \geq leph_0$ such that	the least $\kappa \geq leph_0$ such that	
p has a local base that is	p has a local base that is	
of size $\leq \kappa$.	κ -short.	
$\chi(X) = \sup_{p \in X} \chi(p, X)$	$\chi \operatorname{Nt}(X) = \sup_{p \in X} \chi \operatorname{Nt}(p, X)$	

History

- Malykhin, Peregudov, and Šapirovskii studied the properties Nt (X) ≤ ℵ₁, πNt (X) ≤ ℵ₁, Nt (X) = ℵ₀, and πNt (X) = ℵ₀ in the 1970s and 1980s.
- Peregudov introduced Noetherian type and Noetherian π-type in 1997.

► Milovich introduced local Noetherian type in 2005.

History

- Malykhin, Peregudov, and Šapirovskii studied the properties Nt (X) ≤ ℵ₁, πNt (X) ≤ ℵ₁, Nt (X) = ℵ₀, and πNt (X) = ℵ₀ in the 1970s and 1980s.
- Peregudov introduced Noetherian type and Noetherian π-type in 1997.
- Milovich introduced local Noetherian type in 2005.

Ord	er-theo	retic d	lefinit	tions
	01 01100			

$\pi(X)$ is	$\pi \operatorname{Nt}(X)$ is
the least $\kappa \geq leph_0$ such that	the least $\kappa \geq \aleph_0$ such that
$cf(\tau^+(X)) \leq \kappa.$	$ au^+(X)$ is almost κ -short.
$\chi(p,X)$ is	$\chi \operatorname{Nt}(\boldsymbol{p}, \boldsymbol{X})$ is
the least $\kappa \geq leph_0$ such that	the least $\kappa \geq leph_0$ such that
$cf(\tau(p, X)) \leq \kappa.$	$\tau(p, X)$ is almost κ -short.

Easy upper bounds

Lemma

Every preorder P is almost cf(P)-short.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Corollary

For all spaces X,

- $\chi \operatorname{Nt}(p, X) \leq \chi(p, X);$
- $\chi \operatorname{Nt}(X) \leq \chi(X);$
- $\pi \operatorname{Nt}(X) \leq \pi(X)$.

Easy upper bounds

Lemma

Every preorder P is almost cf(P)-short.

Corollary

For all spaces X,

- $\chi \operatorname{Nt}(p, X) \leq \chi(p, X);$
- $\chi \operatorname{Nt}(X) \leq \chi(X);$
- $\pi \operatorname{Nt}(X) \leq \pi(X)$.

Even easier: Every P is $|P|^+$ -short, so $Nt(X) \le w(X)^+$.

Easy upper bounds

Lemma

Every preorder P is almost cf(P)-short.

Corollary

For all spaces X,

- $\chi \operatorname{Nt}(\boldsymbol{p}, \boldsymbol{X}) \leq \chi(\boldsymbol{p}, \boldsymbol{X});$
- $\chi \operatorname{Nt}(X) \leq \chi(X);$
- $\pi \operatorname{Nt}(X) \leq \pi(X)$.

Even easier: Every P is $|P|^+$ -short, so $Nt(X) \le w(X)^+$.

Example Nt $(\beta \mathbb{N}) = w(\beta \mathbb{N})^+ = \mathfrak{c}^+$ because $\pi(\beta \mathbb{N}) = \aleph_0 < cf(w(\beta \mathbb{N}))$.

Passing to subsets

Applying mutual cofinality

- If B is a π-base of X, then B includes a πNt (X)-short π-base of X.
- If B is a local base at p in X, then B includes a χNt (X)-short local base at p in X.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Passing to subsets

Applying mutual cofinality

- If B is a π-base of X, then B includes a πNt (X)-short π-base of X.
- If B is a local base at p in X, then B includes a χNt (X)-short local base at p in X.

Theorem (M., 2007)

Every metrizable space has a flat base.

Proof: For each $n < \omega$, pick a locally finite open cover refining the balls of radius 2^{-n} . Take the union.

Passing to subsets

Applying mutual cofinality

- If B is a π-base of X, then B includes a πNt (X)-short π-base of X.
- If B is a local base at p in X, then B includes a XNt (X)-short local base at p in X.

Theorem (M., 2007)

Every metrizable space has a flat base.

Proof: For each $n < \omega$, pick a locally finite open cover refining the balls of radius 2^{-n} . Take the union.

Example (M., 2009)

Set $X = \mathbb{Z}^{\omega}$. Let \mathcal{B} be the set of all sets of the form $U_{s,n}$ where $s \in \mathbb{Z}^{<\omega}$, $n < \omega$, and $U_{s,n}$ is the set of all $f \in X$ such that $s^{\frown} i \subseteq f$ for some $i \in [-n, n]$. \mathcal{B} a base of X, but \mathcal{B} has no flat subcover.

Blossoms and splitters

Applying directedness

If $p \in X$ is not isolated, then $\chi \operatorname{Nt}(p, X) \leq \kappa$ if and only if $\tau(p, X)$ has a $(\chi(p, X), \kappa)$ -blossom, which is just a $\chi(p, X)$ -sequence \vec{U} of neighborhoods of p such that $p \notin \operatorname{int} \bigcap_{\alpha \in I} U_{\alpha}$ for all $I \in [\chi(p, X)]^{\kappa}$.

Blossoms and splitters

Applying directedness

If $p \in X$ is not isolated, then $\chi \operatorname{Nt}(p, X) \leq \kappa$ if and only if $\tau(p, X)$ has a $(\chi(p, X), \kappa)$ -blossom, which is just a $\chi(p, X)$ -sequence \vec{U} of neighborhoods of p such that $p \notin \operatorname{int} \bigcap_{\alpha \in I} U_{\alpha}$ for all $I \in [\chi(p, X)]^{\kappa}$.

Definition

A (λ, κ) -splitter of X is a λ -sequence $\vec{\mathcal{F}}$ of finite open covers of X such that int $\bigcap_{\alpha \in I} U_{\alpha} = \emptyset$ for all $I \in [\chi(p, X)]^{\kappa}$ and $\vec{U} \in \prod_{\alpha \in I} \mathcal{F}_{\alpha}$.

Blossoms and splitters

Applying directedness

If $p \in X$ is not isolated, then $\chi \operatorname{Nt}(p, X) \leq \kappa$ if and only if $\tau(p, X)$ has a $(\chi(p, X), \kappa)$ -blossom, which is just a $\chi(p, X)$ -sequence \vec{U} of neighborhoods of p such that $p \notin \operatorname{int} \bigcap_{\alpha \in I} U_{\alpha}$ for all $I \in [\chi(p, X)]^{\kappa}$.

Definition

A (λ, κ) -splitter of X is a λ -sequence $\vec{\mathcal{F}}$ of finite open covers of X such that int $\bigcap_{\alpha \in I} U_{\alpha} = \emptyset$ for all $I \in [\chi(p, X)]^{\kappa}$ and $\vec{U} \in \prod_{\alpha \in I} \mathcal{F}_{\alpha}$.

Lemma

If X has a $(w(X), \kappa)$ -splitter, then $Nt(X) \leq \kappa$.

Question (M., 2007)

Does Nt $(\beta \omega \setminus \omega) \leq \kappa$ imply $\beta \omega \setminus \omega$ has a (\mathfrak{c}, κ) -splitter in ZFC? (There can be no counterexamples if \mathfrak{c} is regular.)

Easy applications of blossoms and splitters

Theorem If $X = \prod_{\alpha < \kappa} X_{\alpha}$ and $|X_{\alpha}| > 1$ for all $\alpha < \kappa$, then $\blacktriangleright \kappa \ge \chi(p, X) \Rightarrow \chi \operatorname{Nt}(p, X) = \aleph_0;$ $\flat \kappa \ge \chi(X) \Rightarrow \chi \operatorname{Nt}(X) = \aleph_0;$ $\flat \kappa \ge \pi(X) \Rightarrow \pi \operatorname{Nt}(X) = \aleph_0;$ $\flat \kappa \ge w(X) \Rightarrow \operatorname{Nt}(X) = \aleph_0.$

Easy applications of blossoms and splitters

Theorem If $X = \prod_{\alpha < \kappa} X_{\alpha}$ and $|X_{\alpha}| > 1$ for all $\alpha < \kappa$, then $\kappa \ge \chi(p, X) \Rightarrow \chi \operatorname{Nt}(p, X) = \aleph_0;$ $\kappa \ge \chi(X) \Rightarrow \chi \operatorname{Nt}(X) = \aleph_0;$ $\kappa \ge \pi(X) \Rightarrow \pi \operatorname{Nt}(X) = \aleph_0;$ $\kappa \ge w(X) \Rightarrow \operatorname{Nt}(X) = \aleph_0.$

Proof (essentially (Malykhin, 1981))

First claim: For each $\alpha < \chi(p, X)$, choose a nontrivial open neighborhood U_{α} of $p(\alpha)$. Since all open boxes in the product topology have finite support, $\langle \pi_{\alpha}^{-1}[U_{\alpha}] \rangle_{\alpha < \kappa}$ is a $(\chi(p, X), \aleph_0)$ -blossom for $\tau(p, X)$.

Corollary

•
$$\operatorname{Nt}(X \times 2^{w(X)}) = \aleph_0$$
. (Malykhin, 1981)

<□ > < @ > < E > < E > E のQ @

Corollary

Corollary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Passing to subsets again

Definition

A space X is **homogeneous** if for all $p, q \in X$, there is a bijection $f: X \to X$ with f(p) = q and f and f^{-1} continuous.

Theorem (M., 2009)

Let \mathcal{B} be a base of X. \mathcal{B} includes an Nt(X)-short base of X if

- X is metrizable and X is locally compact or σ -compact,
- X is compact and $\chi(p, X) = w(X)$ for all $p \in X$, or
- ➤ X is compact, homogeneous, and w(X) is regular or strong limit.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
Passing to subsets again

Definition

A space X is **homogeneous** if for all $p, q \in X$, there is a bijection $f: X \to X$ with f(p) = q and f and f^{-1} continuous.

Theorem (M., 2009)

Let \mathcal{B} be a base of X. \mathcal{B} includes an Nt(X)-short base of X if

- X is metrizable and X is locally compact or σ -compact,
- X is compact and $\chi(p,X) = w(X)$ for all $p \in X$, or
- ➤ X is compact, homogeneous, and w(X) is regular or strong limit.

About the proof

- For the second case, we build a (w(X), κ)-splitter consisting of subcovers of an arbitrary base.
- For the third case, we use Misčenko's Lemma to deduce that the second case holds or Nt (X) = w(X)⁺.

< ロ ト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Definition

The **cellularity** c(X) of X is the least infinite upper bound of the cardinalities of its **cellular families**, *i.e.*, pairwise disjoint open families.

(ロ)、(型)、(E)、(E)、 E) の(の)

Definition

The **cellularity** c(X) of X is the least infinite upper bound of the cardinalities of its **cellular families**, *i.e.*, pairwise disjoint open families.

Patterns

Every known compact homogeneous space (CHS) is a continuous image of a product of compacta with weight at most c.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

The **cellularity** c(X) of X is the least infinite upper bound of the cardinalities of its **cellular families**, *i.e.*, pairwise disjoint open families.

Patterns

- Every known compact homogeneous space (CHS) is a continuous image of a product of compacta with weight at most c.
- It follows that every known CHS has cellularity at most c. (Why? Easy: c⁺ is a caliber of any such space.)
- Van Douwen's Problem asks whether c (X) ≤ c for every CHS X. This is open after ~40 years, in all models of ZFC.

Definition

The **cellularity** c(X) of X is the least infinite upper bound of the cardinalities of its **cellular families**, *i.e.*, pairwise disjoint open families.

Patterns

- Every known compact homogeneous space (CHS) is a continuous image of a product of compacta with weight at most c.
- It follows that every known CHS has cellularity at most c. (Why? Easy: c⁺ is a caliber of any such space.)
- Van Douwen's Problem asks whether c (X) ≤ c for every CHS X. This is open after ~40 years, in all models of ZFC.
- It also follows that every known CHS has Noetherian type at most c⁺. (Why? Not as easy...)

Sharp bounds

Example (Maurice, 1964)

The lexicographically ordered space $X = 2_{lex}^{\omega \cdot \omega}$ is a CHS satisfying $c(X) = \mathfrak{c}$.

Example (Peregudov, 1997)

The double-arrow space X is compact, homogeneous, and $Nt(X) = \mathfrak{c}^+$.

Theorem (M., 2007)

If X is CHS and a continuous image of a product of compacta all with weight at most λ , then $Nt(X) \leq \lambda^+$. If also $\lambda = \aleph_0$ (*i.e.*, X is **dyadic**), then $Nt(X) = \aleph_0$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (M., 2007)

If X is CHS and a continuous image of a product of compacta all with weight at most λ , then $Nt(X) \leq \lambda^+$. If also $\lambda = \aleph_0$ (*i.e.*, X is **dyadic**), then $Nt(X) = \aleph_0$.

Some ideas from the proof

▶ A long κ -approximation sequence (for regular κ) is an \in -chain \vec{M} of elementary substructures of $H(\theta)$ with $|M_{\alpha}| \subseteq \kappa \cap M_{\alpha} \in \kappa \in M_{\alpha}$ and $\vec{M} \upharpoonright \alpha \in M_{\alpha}$.

Theorem (M., 2007)

If X is CHS and a continuous image of a product of compacta all with weight at most λ , then $Nt(X) \leq \lambda^+$. If also $\lambda = \aleph_0$ (*i.e.*, X is **dyadic**), then $Nt(X) = \aleph_0$.

Some ideas from the proof

- A long κ -approximation sequence (for regular κ) is an \in -chain \vec{M} of elementary substructures of $H(\theta)$ with $|M_{\alpha}| \subseteq \kappa \cap M_{\alpha} \in \kappa \in M_{\alpha}$ and $\vec{M} \upharpoonright \alpha \in M_{\alpha}$.
- (A. Miller) Generalizing (Jackson, Mauldin, 2002), given \vec{M} as above, there exists $\vec{\Sigma}$ such that $\Sigma_{\alpha} \in [M_{\alpha}]^{<\aleph_0}$, $\bigcup \Sigma_{\alpha} = \bigcup (\vec{M} \upharpoonright \alpha)$, and $N \prec H_{\theta}$ for all $N \in \Sigma_{\alpha}$.

Theorem (M., 2007)

If X is CHS and a continuous image of a product of compacta all with weight at most λ , then $Nt(X) \leq \lambda^+$. If also $\lambda = \aleph_0$ (*i.e.*, X is **dyadic**), then $Nt(X) = \aleph_0$.

Some ideas from the proof

- A long κ -approximation sequence (for regular κ) is an \in -chain \vec{M} of elementary substructures of $H(\theta)$ with $|M_{\alpha}| \subseteq \kappa \cap M_{\alpha} \in \kappa \in M_{\alpha}$ and $\vec{M} \upharpoonright \alpha \in M_{\alpha}$.
- (A. Miller) Generalizing (Jackson, Mauldin, 2002), given \vec{M} as above, there exists $\vec{\Sigma}$ such that $\Sigma_{\alpha} \in [M_{\alpha}]^{<\aleph_0}$, $\bigcup \Sigma_{\alpha} = \bigcup (\vec{M} \upharpoonright \alpha)$, and $N \prec H_{\theta}$ for all $N \in \Sigma_{\alpha}$.

• The quotient maps $\pi: X \to X/M_{\alpha}$ are **open**.

Theorem (M., 2007)

If X is CHS and a continuous image of a product of compacta all with weight at most λ , then $Nt(X) \leq \lambda^+$. If also $\lambda = \aleph_0$ (*i.e.*, X is **dyadic**), then $Nt(X) = \aleph_0$.

Some ideas from the proof

- A long κ -approximation sequence (for regular κ) is an \in -chain \vec{M} of elementary substructures of $H(\theta)$ with $|M_{\alpha}| \subseteq \kappa \cap M_{\alpha} \in \kappa \in M_{\alpha}$ and $\vec{M} \upharpoonright \alpha \in M_{\alpha}$.
- (A. Miller) Generalizing (Jackson, Mauldin, 2002), given \vec{M} as above, there exists $\vec{\Sigma}$ such that $\Sigma_{\alpha} \in [M_{\alpha}]^{<\aleph_0}$, $\bigcup \Sigma_{\alpha} = \bigcup (\vec{M} \upharpoonright \alpha)$, and $N \prec H_{\theta}$ for all $N \in \Sigma_{\alpha}$.
- The quotient maps $\pi: X \to X/M_{\alpha}$ are **open**.
- We can build a κ-short base of X by taking the union of pullbacks of well-chosen bases of these quotients.

Definition

πχ(p, X) is the least κ ≥ ℵ₀ such that τ(p, X) is dominated by some S ∈ [τ⁺(X)]^{≤κ} (*i.e.*, every neighborhood of X includes a nonempty open set from S).

•
$$\pi \chi(X) = \sup_{p \in X} \pi \chi(p, X).$$

Definition

πχ(p, X) is the least κ ≥ ℵ₀ such that τ(p, X) is dominated by some S ∈ [τ⁺(X)]^{≤κ} (*i.e.*, every neighborhood of X includes a nonempty open set from S).

•
$$\pi \chi(X) = \sup_{p \in X} \pi \chi(p, X).$$

Theorems (M., 2007)

▶ If $\pi\chi(p, X) < \text{cf } \kappa = \kappa \leq \chi(p, X)$ for some $p \in X$, then $Nt(X) > \kappa$. (Essentially (Peregudov, 1997))

Definition

πχ(p, X) is the least κ ≥ ℵ₀ such that τ(p, X) is dominated by some S ∈ [τ⁺(X)]^{≤κ} (*i.e.*, every neighborhood of X includes a nonempty open set from S).

•
$$\pi \chi(X) = \sup_{p \in X} \pi \chi(p, X).$$

Theorems (M., 2007)

- ▶ If $\pi\chi(p, X) < \text{cf } \kappa = \kappa \leq \chi(p, X)$ for some $p \in X$, then $Nt(X) > \kappa$. (Essentially (Peregudov, 1997))
- ▶ If $h: \prod_{i \in I} X_i \to X$ is a continuous surjection, X_i is compact, and $w(X_i) < \operatorname{cf} \kappa = \kappa \le w(X)$ (for all $i \in I$), then $\pi \chi(X) = w(X)$.

(日) (同) (三) (三) (三) (○) (○)

Definition

πχ(p, X) is the least κ ≥ ℵ₀ such that τ(p, X) is dominated by some S ∈ [τ⁺(X)]^{≤κ} (*i.e.*, every neighborhood of X includes a nonempty open set from S).

•
$$\pi \chi(X) = \sup_{p \in X} \pi \chi(p, X).$$

Theorems (M., 2007)

- ▶ If $\pi\chi(p, X) < \text{cf } \kappa = \kappa \leq \chi(p, X)$ for some $p \in X$, then $Nt(X) > \kappa$. (Essentially (Peregudov, 1997))
- ▶ If $h: \prod_{i \in I} X_i \to X$ is a continuous surjection, X_i is compact, and $w(X_i) < \operatorname{cf} \kappa = \kappa \le w(X)$ (for all $i \in I$), then $\pi \chi(X) = w(X)$.
- ▶ If $h: \prod_{i \in I} X_i \to X$ is a continuous surjection, $\pi\chi(p, X) = w(X)$ for all $p \in X$, X_i is compact, and $w(X_i) \le \lambda$ (for all $i \in I$), then $Nt(X) \le \lambda$.

More light factors

Theorem (M., 2006)

If X is a continuous image of a product of compacta all with weight at most λ , then $\pi \operatorname{Nt}(X) \leq \lambda$ and $\chi \operatorname{Nt}(X) \leq \lambda$.

More light factors

Theorem (M., 2006)

If X is a continuous image of a product of compacta all with weight at most λ , then $\pi \operatorname{Nt}(X) \leq \lambda$ and $\chi \operatorname{Nt}(X) \leq \lambda$.

About the proof

This time, we don't need long κ -approximation sequences. Continuous elementary chains work just fine.

Another Pattern

Every known CHS X satisfies $\pi \operatorname{Nt}(X) \leq \aleph_1$ and $\chi \operatorname{Nt}(X) = \aleph_0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Another Pattern

Every known CHS X satisfies $\pi Nt(X) \leq \aleph_1$ and $\chi Nt(X) = \aleph_0$.

Theorems (M., 2007)

▶ If X is a separable CHS and $w(X) < \mathfrak{p}$, then $\chi \operatorname{Nt}(X) = \aleph_0$

Another Pattern

Every known CHS X satisfies $\pi Nt(X) \leq \aleph_1$ and $\chi Nt(X) = \aleph_0$.

Theorems (M., 2007)

▶ If X is a separable CHS and $w(X) < \mathfrak{p}$, then $\chi \operatorname{Nt}(X) = \aleph_0$

• Assuming GCH, $\chi Nt(X) \leq c(X)$ if X is a CHS.

Another Pattern

Every known CHS X satisfies $\pi \operatorname{Nt}(X) \leq \aleph_1$ and $\chi \operatorname{Nt}(X) = \aleph_0$.

Theorems (M., 2007)

- ▶ If X is a separable CHS and $w(X) < \mathfrak{p}$, then $\chi \operatorname{Nt}(X) = \aleph_0$
- Assuming GCH, $\chi Nt(X) \leq c(X)$ if X is a CHS.

Attacking Van Douwen's Problem

If we found a model of GCH with a CHS X with a local base B such that B is not almost ℵ₁-short, then c (X) > c.

• *E.g.*, we could try for $\mathcal{B} \equiv_T \omega \times \omega_2$ or $\mathcal{B} \equiv_T \omega \times \omega_1 \times \omega_2$.

Another Pattern

Every known CHS X satisfies $\pi \operatorname{Nt}(X) \leq \aleph_1$ and $\chi \operatorname{Nt}(X) = \aleph_0$.

Theorems (M., 2007)

- ▶ If X is a separable CHS and $w(X) < \mathfrak{p}$, then $\chi \operatorname{Nt}(X) = \aleph_0$
- Assuming GCH, $\chi Nt(X) \leq c(X)$ if X is a CHS.

Attacking Van Douwen's Problem

- If we found a model of GCH with a CHS X with a local base B such that B is not almost ℵ₁-short, then c (X) > c.
- *E.g.*, we could try for $\mathcal{B} \equiv_T \omega \times \omega_2$ or $\mathcal{B} \equiv_T \omega \times \omega_1 \times \omega_2$.
- $X = 2_{\text{lex}}^{\omega} \times 2_{\text{lex}}^{\omega_1} \times 2_{\text{lex}}^{\omega_2}$ is compact, and $\mathcal{B} \equiv_{\mathcal{T}} \omega \times \omega_1 \times \omega_2$ for all local bases B, but X is not homogeneous.

Another Pattern

Every known CHS X satisfies $\pi \operatorname{Nt}(X) \leq \aleph_1$ and $\chi \operatorname{Nt}(X) = \aleph_0$.

Theorems (M., 2007)

- ▶ If X is a separable CHS and $w(X) < \mathfrak{p}$, then $\chi \operatorname{Nt}(X) = \aleph_0$
- Assuming GCH, $\chi Nt(X) \leq c(X)$ if X is a CHS.

Attacking Van Douwen's Problem

- If we found a model of GCH with a CHS X with a local base B such that B is not almost ℵ₁-short, then c(X) > c.
- *E.g.*, we could try for $\mathcal{B} \equiv_T \omega \times \omega_2$ or $\mathcal{B} \equiv_T \omega \times \omega_1 \times \omega_2$.
- $X = 2_{\text{lex}}^{\omega} \times 2_{\text{lex}}^{\omega_1} \times 2_{\text{lex}}^{\omega_2}$ is compact, and $\mathcal{B} \equiv_{\mathcal{T}} \omega \times \omega_1 \times \omega_2$ for all local bases B, but X is not homogeneous.
- (Arhangel'skiĭ, 2005) If a product of linear orders is a CHS, then all factors are first countable, and hence have weight at most c.

Assuming GCH, $\chi Nt(X) \leq c(X)$ if X is a CHS.

Proof

Lemma (M. 2007). If X is compact and πχ(p, X) ≥ κ for all p ∈ X, then τ(q, X) has (κ, ℵ₀)-blossom for some q ∈ X.

Assuming GCH, $\chi Nt(X) \leq c(X)$ if X is a CHS.

Proof

- Lemma (M. 2007). If X is compact and πχ(p, X) ≥ κ for all p ∈ X, then τ(q, X) has (κ, ℵ₀)-blossom for some q ∈ X.
- ► Hence, if X is compact and πχ(p, X) = χ(X) for all p ∈ X, then X has a flat local base.

Assuming GCH, $\chi Nt(X) \leq c(X)$ if X is a CHS.

Proof

- Lemma (M. 2007). If X is compact and πχ(p, X) ≥ κ for all p ∈ X, then τ(q, X) has (κ, ℵ₀)-blossom for some q ∈ X.
- ► Hence, if X is compact and πχ(p, X) = χ(X) for all p ∈ X, then X has a flat local base.

• Therefore, given a CHS X, we have $\chi \operatorname{Nt} (X) = \aleph_0$ or $\pi \chi(X) < \chi(X)$.

Assuming GCH, $\chi Nt(X) \leq c(X)$ if X is a CHS.

Proof

- Lemma (M. 2007). If X is compact and πχ(p, X) ≥ κ for all p ∈ X, then τ(q, X) has (κ, ℵ₀)-blossom for some q ∈ X.
- Hence, if X is compact and πχ(p, X) = χ(X) for all p ∈ X, then X has a flat local base.

- Therefore, given a CHS X, we have $\chi \operatorname{Nt} (X) = \aleph_0$ or $\pi \chi(X) < \chi(X)$.
- (Arhangel'skiĭ, Ismail) If Y is a CHS, then $2^{\chi(Y)} \le |Y| \le 2^{\pi\chi(Y)c(Y)}$.

Assuming GCH, $\chi Nt(X) \leq c(X)$ if X is a CHS.

Proof

- Lemma (M. 2007). If X is compact and πχ(p, X) ≥ κ for all p ∈ X, then τ(q, X) has (κ, ℵ₀)-blossom for some q ∈ X.
- Hence, if X is compact and πχ(p, X) = χ(X) for all p ∈ X, then X has a flat local base.

- Therefore, given a CHS X, we have $\chi \operatorname{Nt} (X) = \aleph_0$ or $\pi \chi(X) < \chi(X)$.
- (Arhangel'skiĭ, Ismail) If Y is a CHS, then $2^{\chi(Y)} \leq |Y| \leq 2^{\pi\chi(Y)c(Y)}$.
- ► So, assuming GCH, $\pi \chi(X) < \chi(X)$ implies $\chi \operatorname{Nt}(X) \leq \chi(X) \leq c(X)$.

More on π -character

Theorems

(M., 2008) If X is compact and πχ(p, X) = w(X) for all p ∈ X, then Nt (X) ≤ w(X).

More on π -character

Theorems

- (M., 2008) If X is compact and $\pi \chi(p, X) = w(X)$ for all $p \in X$, then $Nt(X) \le w(X)$.
- (M., Spadaro, 2010) If X is compact and $\pi\chi(p, X) < w(X)$ for a dense set of points, then $Nt(X) \ge w(X)$, and $Nt(X) = w(X)^+$ if w(X) is regular.

More on π -character

Theorems

- (M., 2008) If X is compact and $\pi \chi(p, X) = w(X)$ for all $p \in X$, then $Nt(X) \le w(X)$.
- (M., Spadaro, 2010) If X is compact and $\pi\chi(p, X) < w(X)$ for a dense set of points, then $Nt(X) \ge w(X)$, and $Nt(X) = w(X)^+$ if w(X) is regular.

Examples

- ▶ (M., 2010) If $X = D_{\aleph_{\omega}} \cup \{\infty\}$, then $\pi\chi(X) = \aleph_0$, $w(X) = \aleph_{\omega}$, and Nt $(X) = \aleph_{\omega+1}$.
- ▶ (M., 2010) If $X = \prod_{n < \omega} (D_{\aleph_n} \cup \{\infty\})$, then $\pi \chi(X) = \aleph_0$, $w(X) = \aleph_\omega$, and $\operatorname{Nt} (X) = \aleph_\omega$.

Definition (Van Douwen)

A space X is **power homogeneous** if X^{α} is homogeneous for some $\alpha > 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition (Van Douwen)

A space X is **power homogeneous** if X^{α} is homogeneous for some $\alpha > 0$.

Many results about homogeneous compact spaces have been generalized to power homogeneous compact (PHC) spaces.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• (Ridderbos, 2006) For example, $2^{\chi(X)} \le 2^{\pi\chi(X)c(X)}$ for all PHC X.

Definition (Van Douwen)

A space X is **power homogeneous** if X^{α} is homogeneous for some $\alpha > 0$.

Many results about homogeneous compact spaces have been generalized to power homogeneous compact (PHC) spaces.

- (Ridderbos, 2006) For example, $2^{\chi(X)} \le 2^{\pi\chi(X)c(X)}$ for all PHC X.
- ► However, it is unknown whether every PHC X satisfies c(X) ≤ c.

Definition (Van Douwen)

A space X is **power homogeneous** if X^{α} is homogeneous for some $\alpha > 0$.

- Many results about homogeneous compact spaces have been generalized to power homogeneous compact (PHC) spaces.
- (Ridderbos, 2006) For example, $2^{\chi(X)} \le 2^{\pi\chi(X)c(X)}$ for all PHC X.
- ► However, it is unknown whether every PHC X satisfies c(X) ≤ c.
- ▶ It is also unknown whether every PHC X has a flat local base.

Definition (Van Douwen)

A space X is **power homogeneous** if X^{α} is homogeneous for some $\alpha > 0$.

- Many results about homogeneous compact spaces have been generalized to power homogeneous compact (PHC) spaces.
- (Ridderbos, 2006) For example, $2^{\chi(X)} \le 2^{\pi\chi(X)c(X)}$ for all PHC X.
- ► However, it is unknown whether every PHC X satisfies c(X) ≤ c.
- ▶ It is also unknown whether every PHC X has a flat local base.

▶ Perhaps an easier question: Does GCH imply χ Nt (X) ≤ c (X) for all PHC X?
Definition

d(X) is the least $\kappa \geq \aleph_0$ such that some $D \in [X]^{\leq \kappa}$ is dense in X.

Perhaps an even easier question:

Does GCH imply $\chi Nt(X) \leq d(X)$ for all PHC X?

Theorem (M., Ridderbos, 2007)

Given GCH, X PHC, and $\max_{p \in X} \chi(p, X) = cf(\chi(X)) > d(X)$, there is a nonempty open $U \subseteq X$ such that $\chi Nt(p, X) = \aleph_0$ for all $p \in U$.

Sometimes compactness doesn't matter.

(M., 2009) If $p \in X$ and $\overline{X} = Y$, e.g., $Y = \beta X$, then $\chi \operatorname{Nt}(p, X) = \chi \operatorname{Nt}(p, Y)$ and $\pi \operatorname{Nt}(X) = \pi \operatorname{Nt}(Y)$. On the other hand, $\operatorname{Nt}(\mathbb{N}) = \aleph_0$ and $\operatorname{Nt}(\beta \mathbb{N}) = \mathfrak{c}^+$.

Sometimes compactness doesn't matter.

(M., 2009) If $p \in X$ and $\overline{X} = Y$, e.g., $Y = \beta X$, then $\chi \operatorname{Nt}(p, X) = \chi \operatorname{Nt}(p, Y)$ and $\pi \operatorname{Nt}(X) = \pi \operatorname{Nt}(Y)$. On the other hand, $\operatorname{Nt}(\mathbb{N}) = \aleph_0$ and $\operatorname{Nt}(\beta \mathbb{N}) = \mathfrak{c}^+$.

Product spaces can surprise you.

- (Todorčević, 1985) If cf(κ) = κ = κ^{ℵ0}, then there exist directed P, Q with P, Q <_T P × Q ≡_T [κ]^{<ℵ0}.
- ▶ (M., 2010) Using these P and Q, we can build X, Y such that $\chi \operatorname{Nt} (X) = \chi \operatorname{Nt} (Y) = \aleph_1$ and $\chi \operatorname{Nt} (X \times Y) = \aleph_0$.

Sometimes compactness doesn't matter.

(M., 2009) If $p \in X$ and $\overline{X} = Y$, e.g., $Y = \beta X$, then $\chi \operatorname{Nt}(p, X) = \chi \operatorname{Nt}(p, Y)$ and $\pi \operatorname{Nt}(X) = \pi \operatorname{Nt}(Y)$. On the other hand, $\operatorname{Nt}(\mathbb{N}) = \aleph_0$ and $\operatorname{Nt}(\beta \mathbb{N}) = \mathfrak{c}^+$.

Product spaces can surprise you.

- (Todorčević, 1985) If cf(κ) = κ = κ^{ℵ0}, then there exist directed P, Q with P, Q <_T P × Q ≡_T [κ]^{<ℵ0}.
- ▶ (M., 2010) Using these P and Q, we can build X, Y such that $\chi \operatorname{Nt} (X) = \chi \operatorname{Nt} (Y) = \aleph_1$ and $\chi \operatorname{Nt} (X \times Y) = \aleph_0$.
- ▶ (Sparado, 2010) X, Y can be modified to get Z, W such that $Nt(Z) = Nt(W) = \aleph_1$ and $Nt(Z \times W) = \aleph_0$.

Sometimes compactness doesn't matter.

(M., 2009) If $p \in X$ and $\overline{X} = Y$, e.g., $Y = \beta X$, then $\chi \operatorname{Nt}(p, X) = \chi \operatorname{Nt}(p, Y)$ and $\pi \operatorname{Nt}(X) = \pi \operatorname{Nt}(Y)$. On the other hand, $\operatorname{Nt}(\mathbb{N}) = \aleph_0$ and $\operatorname{Nt}(\beta \mathbb{N}) = \mathfrak{c}^+$.

Product spaces can surprise you.

- (Todorčević, 1985) If cf(κ) = κ = κ^{ℵ0}, then there exist directed P, Q with P, Q <_T P × Q ≡_T [κ]^{<ℵ0}.
- (M., 2010) Using these P and Q, we can build X, Y such that $\chi \operatorname{Nt} (X) = \chi \operatorname{Nt} (Y) = \aleph_1$ and $\chi \operatorname{Nt} (X \times Y) = \aleph_0$.
- ▶ (Sparado, 2010) X, Y can be modified to get Z, W such that $Nt(Z) = Nt(W) = \aleph_1$ and $Nt(Z \times W) = \aleph_0$.
- (Spadaro, 2008) There are compact K, L with Nt (K) = ℵ₂, Nt (L) = ℵ₃, and Nt (K × L) = ℵ₁.

Sometimes compactness doesn't matter.

(M., 2009) If $p \in X$ and $\overline{X} = Y$, e.g., $Y = \beta X$, then $\chi \operatorname{Nt}(p, X) = \chi \operatorname{Nt}(p, Y)$ and $\pi \operatorname{Nt}(X) = \pi \operatorname{Nt}(Y)$. On the other hand, $\operatorname{Nt}(\mathbb{N}) = \aleph_0$ and $\operatorname{Nt}(\beta \mathbb{N}) = \mathfrak{c}^+$.

Product spaces can surprise you.

- (Todorčević, 1985) If cf(κ) = κ = κ^{ℵ0}, then there exist directed P, Q with P, Q <_T P × Q ≡_T [κ]^{<ℵ0}.
- (M., 2010) Using these P and Q, we can build X, Y such that $\chi \operatorname{Nt} (X) = \chi \operatorname{Nt} (Y) = \aleph_1$ and $\chi \operatorname{Nt} (X \times Y) = \aleph_0$.
- ▶ (Sparado, 2010) X, Y can be modified to get Z, W such that $Nt(Z) = Nt(W) = \aleph_1$ and $Nt(Z \times W) = \aleph_0$.
- ▶ (Spadaro, 2008) There are compact K, L with $Nt(K) = \aleph_2$, $Nt(L) = \aleph_3$, and $Nt(K \times L) = \aleph_1$.

• Open: Is $Nt(X^2) \neq Nt(X)$ possible?

 (M., 2010) We can also use the previous P and Q to build an example of

$$\chi \operatorname{Nt} \left(\langle p, q \rangle, X^2 \right) = \aleph_0 < \aleph_1 = \chi \operatorname{Nt} \left(p, X \right) = \chi \operatorname{Nt} \left(q, X \right).$$

 (M., 2010) We can also use the previous P and Q to build an example of

$$\chi \operatorname{Nt} \left(\langle p, q \rangle, X^2 \right) = \aleph_0 < \aleph_1 = \chi \operatorname{Nt} \left(p, X \right) = \chi \operatorname{Nt} \left(q, X \right).$$

▶ (M., 2007) If $f: X \to Y$ is continuous and open at p, then χ Nt $(p, X) \le \chi$ Nt (f(p), Y) (and $\tau(p, X) \ge_T \tau(f(p), Y)$).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► (M., 2010) We can also use the previous P and Q to build an example of

$$\chi \operatorname{Nt} \left(\langle p, q \rangle, X^2 \right) = \aleph_0 < \aleph_1 = \chi \operatorname{Nt} (p, X) = \chi \operatorname{Nt} (q, X).$$

▶ (M., 2007) If $f: X \to Y$ is continuous and open at p, then χ Nt $(p, X) \le \chi$ Nt (f(p), Y) (and $\tau(p, X) \ge_T \tau(f(p), Y)$).

► Hence, $0 < \alpha < \beta \Rightarrow \chi \operatorname{Nt}(p, X^{\beta}) \le \chi \operatorname{Nt}(p \upharpoonright \alpha, X^{\alpha}).$

 (M., 2010) We can also use the previous P and Q to build an example of

$$\chi \operatorname{Nt} \left(\langle p, q \rangle, X^2 \right) = \aleph_0 < \aleph_1 = \chi \operatorname{Nt} \left(p, X \right) = \chi \operatorname{Nt} \left(q, X \right).$$

- ▶ (M., 2007) If $f: X \to Y$ is continuous and open at p, then χ Nt $(p, X) \le \chi$ Nt (f(p), Y) (and $\tau(p, X) \ge_T \tau(f(p), Y)$).
- ► Hence, $0 < \alpha < \beta \Rightarrow \chi \operatorname{Nt}(p, X^{\beta}) \leq \chi \operatorname{Nt}(p \upharpoonright \alpha, X^{\alpha}).$
- (M., 2009) If $0 < \gamma < \omega_1$, then $\chi \operatorname{Nt}(p^{\gamma}, X^{\gamma}) = \chi \operatorname{Nt}(p, X)$ and $\chi \operatorname{Nt}(X^{\gamma}) = \chi \operatorname{Nt}(X)$.

 (M., 2010) We can also use the previous P and Q to build an example of

$$\chi \operatorname{Nt} \left(\langle p, q \rangle, X^2 \right) = \aleph_0 < \aleph_1 = \chi \operatorname{Nt} \left(p, X \right) = \chi \operatorname{Nt} \left(q, X \right).$$

- ▶ (M., 2007) If $f: X \to Y$ is continuous and open at p, then χ Nt $(p, X) \le \chi$ Nt (f(p), Y) (and $\tau(p, X) \ge_T \tau(f(p), Y)$).
- ► Hence, $0 < \alpha < \beta \Rightarrow \chi \operatorname{Nt}(p, X^{\beta}) \leq \chi \operatorname{Nt}(p \upharpoonright \alpha, X^{\alpha}).$
- (M., 2009) If $0 < \gamma < \omega_1$, then $\chi \operatorname{Nt}(p^{\gamma}, X^{\gamma}) = \chi \operatorname{Nt}(p, X)$ and $\chi \operatorname{Nt}(X^{\gamma}) = \chi \operatorname{Nt}(X)$.
- ► However, there are examples of \(\chi Nt(X^{\omega_1}) < \chi Nt(X)\) with \(\chi_1 < cf(\(\chi(X))).\)</p>

 (M., 2010) We can also use the previous P and Q to build an example of

$$\chi \operatorname{Nt} \left(\langle p, q \rangle, X^2 \right) = \aleph_0 < \aleph_1 = \chi \operatorname{Nt} \left(p, X \right) = \chi \operatorname{Nt} \left(q, X \right).$$

- ▶ (M., 2007) If $f: X \to Y$ is continuous and open at p, then χ Nt $(p, X) \le \chi$ Nt (f(p), Y) (and $\tau(p, X) \ge_T \tau(f(p), Y)$).
- ► Hence, $0 < \alpha < \beta \Rightarrow \chi \operatorname{Nt}(p, X^{\beta}) \leq \chi \operatorname{Nt}(p \upharpoonright \alpha, X^{\alpha}).$
- (M., 2009) If $0 < \gamma < \omega_1$, then $\chi \operatorname{Nt}(p^{\gamma}, X^{\gamma}) = \chi \operatorname{Nt}(p, X)$ and $\chi \operatorname{Nt}(X^{\gamma}) = \chi \operatorname{Nt}(X)$.
- ► However, there are examples of \(\chi Nt(X^{\omega_1}) < \chi Nt(X)\) with \(\chi_1 < cf(\(\chi(X))).\)</p>

► (Ridderbos, 2007) If $0 < \gamma < cf(\chi(\rho, X))$, then $\chi Nt(\rho^{\gamma}, X^{\gamma}) = \chi Nt(\rho, X)$.

 (M., 2010) We can also use the previous P and Q to build an example of

$$\chi \operatorname{Nt} \left(\langle p, q \rangle, X^2 \right) = \aleph_0 < \aleph_1 = \chi \operatorname{Nt} \left(p, X \right) = \chi \operatorname{Nt} \left(q, X \right).$$

- (M., 2007) If $f: X \to Y$ is continuous and open at p, then $\chi \operatorname{Nt}(p, X) \leq \chi \operatorname{Nt}(f(p), Y)$ (and $\tau(p, X) \geq_T \tau(f(p), Y)$).
- ► Hence, $0 < \alpha < \beta \Rightarrow \chi \operatorname{Nt}(p, X^{\beta}) \leq \chi \operatorname{Nt}(p \upharpoonright \alpha, X^{\alpha}).$
- (M., 2009) If $0 < \gamma < \omega_1$, then $\chi \operatorname{Nt}(p^{\gamma}, X^{\gamma}) = \chi \operatorname{Nt}(p, X)$ and $\chi \operatorname{Nt}(X^{\gamma}) = \chi \operatorname{Nt}(X)$.
- ► However, there are examples of \(\chi Nt(X^{\omega_1}) < \chi Nt(X)\) with \(\chi_1 < cf(\(\chi(X))).\)</p>

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► (Ridderbos, 2007) If $0 < \gamma < cf(\chi(\rho, X))$, then $\chi Nt(\rho^{\gamma}, X^{\gamma}) = \chi Nt(\rho, X)$.
- ► (M., 2009) If $cf(\chi(p, X)) \le \gamma < \chi(p, X)$, then $\chi Nt(p^{\gamma}, X^{\gamma}) \le \chi Nt(p, X) \le \chi Nt(p^{\gamma}, X^{\gamma})^+$.

 (M., 2010) We can also use the previous P and Q to build an example of

$$\chi \operatorname{Nt} \left(\langle p, q \rangle, X^2 \right) = \aleph_0 < \aleph_1 = \chi \operatorname{Nt} \left(p, X \right) = \chi \operatorname{Nt} \left(q, X \right).$$

- ▶ (M., 2007) If $f: X \to Y$ is continuous and open at p, then χ Nt $(p, X) \le \chi$ Nt (f(p), Y) (and $\tau(p, X) \ge_T \tau(f(p), Y)$).
- ► Hence, $0 < \alpha < \beta \Rightarrow \chi \operatorname{Nt}(p, X^{\beta}) \leq \chi \operatorname{Nt}(p \upharpoonright \alpha, X^{\alpha}).$
- (M., 2009) If $0 < \gamma < \omega_1$, then $\chi \operatorname{Nt}(p^{\gamma}, X^{\gamma}) = \chi \operatorname{Nt}(p, X)$ and $\chi \operatorname{Nt}(X^{\gamma}) = \chi \operatorname{Nt}(X)$.
- ► However, there are examples of \(\chi Nt(X^{\omega_1}) < \chi Nt(X)\) with \(\chi_1 < cf(\(\chi(X))).\)</p>
- ► (Ridderbos, 2007) If $0 < \gamma < cf(\chi(p, X))$, then $\chi Nt(p^{\gamma}, X^{\gamma}) = \chi Nt(p, X)$.
- (M., 2009) If $cf(\chi(p, X)) \leq \gamma < \chi(p, X)$, then $\chi Nt(p^{\gamma}, X^{\gamma}) \leq \chi Nt(p, X) \leq \chi Nt(p^{\gamma}, X^{\gamma})^+$.
- (M., 2005) If $\chi(p, X) \leq \gamma$ and |X| > 1, then $\chi \operatorname{Nt}(p^{\gamma}, X^{\gamma}) = \aleph_0.$

Definition

The λ -wide splitting number at $p \in X$, or $\operatorname{split}_{\lambda}(p, X)$, is the least κ such that $\tau(p, X)$ has a (λ, κ) -blossom.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

The λ -wide splitting number at $p \in X$, or $\operatorname{split}_{\lambda}(p, X)$, is the least κ such that $\tau(p, X)$ has a (λ, κ) -blossom.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Facts (M., 2009)

•
$$\lambda \leq \mu \Rightarrow \operatorname{split}_{\lambda}(\rho, X) \leq \operatorname{split}_{\mu}(\rho, X).$$

Definition

The λ -wide splitting number at $p \in X$, or $\operatorname{split}_{\lambda}(p, X)$, is the least κ such that $\tau(p, X)$ has a (λ, κ) -blossom.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Facts (M., 2009)

•
$$\operatorname{split}_{\chi(p,X)}(p,X) = \chi \operatorname{Nt}(p,X).$$

Definition

The λ -wide splitting number at $p \in X$, or $\operatorname{split}_{\lambda}(p, X)$, is the least κ such that $\tau(p, X)$ has a (λ, κ) -blossom.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Facts (M., 2009)

$$\lambda \leq \mu \Rightarrow \operatorname{split}_{\lambda}(\rho, X) \leq \operatorname{split}_{\mu}(\rho, X).$$

•
$$\operatorname{split}_{\chi(p,X)}(p,X) = \chi \operatorname{Nt}(p,X).$$

•
$$\chi(p, X) < \operatorname{cf} \lambda \Rightarrow \operatorname{split}_{\lambda}(p, X) = \lambda^+.$$

Definition

The λ -wide splitting number at $p \in X$, or $\operatorname{split}_{\lambda}(p, X)$, is the least κ such that $\tau(p, X)$ has a (λ, κ) -blossom.

Facts (M., 2009)

 $\lambda \leq \mu \Rightarrow \operatorname{split}_{\lambda}(\rho, X) \leq \operatorname{split}_{\mu}(\rho, X).$

•
$$\operatorname{split}_{\chi(\rho,X)}(\rho,X) = \chi \operatorname{Nt}(\rho,X).$$

- $\chi(\boldsymbol{p}, \boldsymbol{X}) < \operatorname{cf} \lambda \Rightarrow \operatorname{split}_{\lambda}(\boldsymbol{p}, \boldsymbol{X}) = \lambda^+.$
- ► For all singular cardinals λ , split_{λ}(p, X) \leq $(sup_{\mu < \lambda} split_{\mu}(p, X))^+$.

Definition

The λ -wide splitting number at $p \in X$, or $\operatorname{split}_{\lambda}(p, X)$, is the least κ such that $\tau(p, X)$ has a (λ, κ) -blossom.

Facts (M., 2009)

 $\lambda \leq \mu \Rightarrow \operatorname{split}_{\lambda}(\rho, X) \leq \operatorname{split}_{\mu}(\rho, X).$

•
$$\operatorname{split}_{\chi(\rho,X)}(\rho,X) = \chi \operatorname{Nt}(\rho,X).$$

- $\chi(p, X) < \operatorname{cf} \lambda \Rightarrow \operatorname{split}_{\lambda}(p, X) = \lambda^+.$
- ► For all singular cardinals λ , split_{λ}(p, X) \leq (sup_{$\mu < \lambda$} split_{μ}(p, X))⁺.
- ▶ If cf $\lambda \leq \kappa < \lambda$, then $\operatorname{split}_{\lambda}(p^{\kappa}, X^{\kappa}) = \sup_{\mu < \lambda} \operatorname{split}_{\mu}(p, X)$.

What about regular limit cardinals?

Definițion

Let $\prod_{i \in I}^{(\kappa)} X_i$ denote the set $\prod_{i \in I} X_i$ with the topology generated by products of open sets with support smaller than κ .

What about regular limit cardinals?

Definițion

Let $\prod_{i \in I}^{(\kappa)} X_i$ denote the set $\prod_{i \in I} X_i$ with the topology generated by products of open sets with support smaller than κ .

Example (M., 2009)

- If p ∈ X = Π^(λ)_{α<λ} 2^α and λ is strongly inaccessible, then split_μ(p, X) = ℵ₀ for all μ < λ, but split_λ(p, X) = χNt (p, X) = λ.
- The proof's essential ingredient runs short an elementary-submodel proof of the Erdös-Rado Theorem.

(日) (同) (三) (三) (三) (○) (○)

Example (M., 2009)

• Let
$$p \in X = \prod_{\alpha < \omega_1}^{(\aleph_1)} \prod_{\beta < \beth_\alpha}^{(\aleph_\omega)} 2.$$

Example (M., 2009)

Example (M., 2009)

- Let $p \in X = \prod_{\alpha < \omega_1}^{(\aleph_1)} \prod_{\beta < \beth_{\alpha}}^{(\aleph_{\omega})} 2.$
- ▶ We then have $\chi(p, X) = \beth_{\omega_1}$, $\chi \operatorname{Nt}(p, X) = \operatorname{split}_{\beth_{\omega_1}}(p, X) = \aleph_{\omega}^+$, and $\chi \operatorname{Nt}(p^{\omega_1}, X^{\omega_1}) = \sup_{\mu < \beth_{\omega_1}} \operatorname{split}_{\mu}(p, X) = \aleph_{\omega}$.
- The key lemma for the proof is that the set of countably supported maps from ω₁ to ω (with the product ordering) does not have an (ω₁, ℵ₀)-blossom.

Example (M., 2009)

• Let
$$p \in X = \prod_{\alpha < \omega_1}^{(\aleph_1)} \prod_{\beta < \beth_\alpha}^{(\aleph_\omega)} 2.$$

- ▶ We then have $\chi(p, X) = \beth_{\omega_1}$, $\chi \operatorname{Nt}(p, X) = \operatorname{split}_{\beth_{\omega_1}}(p, X) = \aleph_{\omega}^+$, and $\chi \operatorname{Nt}(p^{\omega_1}, X^{\omega_1}) = \sup_{\mu < \beth_{\omega_1}} \operatorname{split}_{\mu}(p, X) = \aleph_{\omega}$.
- The key lemma for the proof is that the set of countably supported maps from ω₁ to ω (with the product ordering) does not have an (ω₁, ℵ₀)-blossom.
- Why? If F: ω₁ → Fn(ω₁, ω, ℵ₁), F ∈ M ≺ H(ℵ₂), and |M| = ℵ₀, then we can use reflect properties of F(ω₁ ∩ M) to find infinitely many F(α) ∈ M all dominated by a single g ∈ Fn(ω₁, ω, ℵ₁).

► Let
$$p \in X = \prod_{\alpha < \aleph_{\omega}}^{(\aleph_1)} 2$$
. We then have $\chi(p, X) = \pi(X) = w(X) = \aleph_{\omega}^{\aleph_0}$.

▶ Let
$$p \in X = \prod_{\alpha < \aleph_{\omega}}^{(\aleph_1)}$$
 2. We then have $\chi(p, X) = \pi(X) = w(X) = \aleph_{\omega}^{\aleph_0}$.

ℵ₁ ≤ Nt (X) ≤ c⁺. Moreover, c ≤ ℵ_{ω+1} ⇒ Nt (X) ≤ ℵ_{ω+1}.
Open: can we have Nt (X) > ℵ_{ω+1}?

▶ Let
$$p \in X = \prod_{\alpha < \aleph_{\omega}}^{(\aleph_1)}$$
 2. We then have $\chi(p, X) = \pi(X) = w(X) = \aleph_{\omega}^{\aleph_0}$.

▶ $\aleph_1 \leq \operatorname{Nt}(X) \leq \mathfrak{c}^+$. Moreover, $\mathfrak{c} \leq \aleph_{\omega+1} \Rightarrow \operatorname{Nt}(X) \leq \aleph_{\omega+1}$. Open: can we have $\operatorname{Nt}(X) > \aleph_{\omega+1}$?

▶ Let
$$p \in X = \prod_{\alpha < \aleph_{\omega}}^{(\aleph_1)} 2$$
. We then have $\chi(p, X) = \pi(X) = w(X) = \aleph_{\omega}^{\aleph_0}$.

▶ $\aleph_1 \leq \operatorname{Nt}(X) \leq \mathfrak{c}^+$. Moreover, $\mathfrak{c} \leq \aleph_{\omega+1} \Rightarrow \operatorname{Nt}(X) \leq \aleph_{\omega+1}$. Open: can we have $\operatorname{Nt}(X) > \aleph_{\omega+1}$?

- If □_{ℵω} and ℵ^{ℵ₀}_ω = ℵ_{ω+1}, then Nt (X) = πNt (X) = χNt (p, X) = ℵ₁. (Why? We can use Bernstein sets and a locally countable S ⊆ [ℵ_ω]^{ℵ₀} of size ℵ_{ω+1} to build an ℵ₁-short base...)
- (Soukup)

 $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\aleph_1, \aleph_0) \Rightarrow \operatorname{Nt}(X) \ge \chi \operatorname{Nt}(\rho, X) \ge \aleph_2$. (The hypothesis is consistent relative (roughly) to a huge cardinal (Levinski, Magidor, Shelah, 1990).)

▶ Let
$$p \in X = \prod_{\alpha < \aleph_{\omega}}^{(\aleph_1)} 2$$
. We then have $\chi(p, X) = \pi(X) = w(X) = \aleph_{\omega}^{\aleph_0}$.

▶ $\aleph_1 \leq \operatorname{Nt}(X) \leq \mathfrak{c}^+$. Moreover, $\mathfrak{c} \leq \aleph_{\omega+1} \Rightarrow \operatorname{Nt}(X) \leq \aleph_{\omega+1}$. Open: can we have $\operatorname{Nt}(X) > \aleph_{\omega+1}$?

- If □_{ℵω} and ℵ^{ℵ₀}_ω = ℵ_{ω+1}, then Nt (X) = πNt (X) = χNt (p, X) = ℵ₁. (Why? We can use Bernstein sets and a locally countable S ⊆ [ℵ_ω]^{ℵ₀} of size ℵ_{ω+1} to build an ℵ₁-short base...)
- (Soukup)

 $(\aleph_{\omega+1}, \aleph_{\omega}) \rightarrow (\aleph_1, \aleph_0) \Rightarrow \operatorname{Nt}(X) \ge \chi \operatorname{Nt}(p, X) \ge \aleph_2$. (The hypothesis is consistent relative (roughly) to a huge cardinal (Levinski, Magidor, Shelah, 1990).)

▶ Open: Can we have $\pi Nt(X) > \aleph_1$? Equivalently, can $\langle Fn(\aleph_{\omega}, 2, \aleph_1), \subseteq \rangle$ fail to be almost \aleph_1 -short?

Noetherian spectra

Another application of Bernstein sets (M., 2009)

If $c \ge \kappa$ and κ is weakly inacessible, then there is a Lindelöf linear order with Noetherian type κ ..

Excluded Noetherian types (M., 2008)

► The compact linear orders attain all Noetherian types except ℵ₁ and weak inaccessibles.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Noetherian spectra

Another application of Bernstein sets (M., 2009)

If $\mathfrak{c} \geq \kappa$ and κ is weakly inacessible, then there is a Lindelöf linear order with Noetherian type κ ..

Excluded Noetherian types (M., 2008)

► The compact linear orders attain all Noetherian types except ℵ₁ and weak inaccessibles.

• The dyadic compacta do not attain Noetherian type \aleph_1 .

Noetherian spectra

Another application of Bernstein sets (M., 2009)

If $c \ge \kappa$ and κ is weakly inacessible, then there is a Lindelöf linear order with Noetherian type κ ..

Excluded Noetherian types (M., 2008)

- ► The compact linear orders attain all Noetherian types except ℵ₁ and weak inaccessibles.
- The dyadic compacta do not attain Noetherian type \aleph_1 .
- Open: do the dyadic compacta attain weakly inaccessible Noetherian types?
- Open: do the dyadic compacta attain Noetherian type $\aleph_{\omega+1}$?

Local bases in $\beta \omega \setminus \omega$

Convention

- ▶ If \mathcal{U} is an ultrafilter on ω , then order \mathcal{U} by \supseteq .
- ▶ Let \mathcal{U}_* denote \mathcal{U} ordered by \supseteq^* (containment modulo $[\omega]^{<\aleph_0}$).

Local bases in $\beta \omega \setminus \omega$

Convention

- ▶ If \mathcal{U} is an ultrafilter on ω , then order \mathcal{U} by \supseteq .
- ▶ Let \mathcal{U}_* denote \mathcal{U} ordered by \supseteq^* (containment modulo $[\omega]^{<\aleph_0}$).

Facts

• Given $\mathcal{U} \in \beta \omega \setminus \omega$, $\tau(\mathcal{U}, \beta \omega \setminus \omega)$ is mutually cofinal with \mathcal{U}_* .

▶ Hence, \mathcal{U} has a flat local base in $\beta \omega \setminus \omega$ if and only if $\mathcal{U}_* \geq_T [\chi(\mathcal{U}, \beta \omega \setminus \omega)]^{<\aleph_0}$.
Local bases in $\beta \omega \setminus \omega$

Convention

- ▶ If \mathcal{U} is an ultrafilter on ω , then order \mathcal{U} by \supseteq .
- ▶ Let \mathcal{U}_* denote \mathcal{U} ordered by \supseteq^* (containment modulo $[\omega]^{<\aleph_0}$).

Facts

• Given $\mathcal{U} \in \beta \omega \setminus \omega$, $\tau(\mathcal{U}, \beta \omega \setminus \omega)$ is mutually cofinal with \mathcal{U}_* .

- Hence, U has a flat local base in βω \ ω if and only if U_{*} ≥_T [χ(U, βω \ ω)]^{<ℵ₀}.
- ► Likewise, \mathcal{U} has a flat local base in $\beta \omega$ if and only if $\mathcal{U} \geq_{\mathcal{T}} [\chi(\mathcal{U}, \beta \omega \setminus \omega)]^{<\aleph_0}.$

Local bases in $\beta \omega \setminus \omega$

Convention

- ▶ If \mathcal{U} is an ultrafilter on ω , then order \mathcal{U} by \supseteq .
- ▶ Let \mathcal{U}_* denote \mathcal{U} ordered by \supseteq^* (containment modulo $[\omega]^{<\aleph_0}$).

Facts

- Given $\mathcal{U} \in \beta \omega \setminus \omega$, $\tau(\mathcal{U}, \beta \omega \setminus \omega)$ is mutually cofinal with \mathcal{U}_* .
- ▶ Hence, \mathcal{U} has a flat local base in $\beta \omega \setminus \omega$ if and only if $\mathcal{U}_* \geq_{\mathcal{T}} [\chi(\mathcal{U}, \beta \omega \setminus \omega)]^{<\aleph_0}$.
- ► Likewise, \mathcal{U} has a flat local base in $\beta \omega$ if and only if $\mathcal{U} \geq_{\mathcal{T}} [\chi(\mathcal{U}, \beta \omega \setminus \omega)]^{<\aleph_0}$.

Isbell's Problem

ZFC proves there exists $\mathcal{U} \in \beta \omega \setminus \omega$ such that $\mathcal{U}_* \equiv_{\mathcal{T}} \mathcal{U} \equiv_{\mathcal{T}} [\mathfrak{c}]^{<\aleph_0}$. Does ZFC prove there exists $\mathcal{V} \in \beta \omega \setminus \omega$ such that $\mathcal{V} \not\equiv_{\mathcal{T}} [\mathfrak{c}]^{<\aleph_0}$?

This seminar has already heard a lot about recent progress for Tukey classes of the form U by Dobrinen, Raghavan, and Todorčević. I will focus on Tukey classes of the form U_{*}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This seminar has already heard a lot about recent progress for Tukey classes of the form U by Dobrinen, Raghavan, and Todorčević. I will focus on Tukey classes of the form U_{*}.

$$\blacktriangleright \mathcal{U}_* \leq_T \mathcal{U} \leq_T [\mathfrak{c}]^{<\aleph_0} \text{ for all } \mathcal{U} \in \beta \omega \setminus \omega.$$

This seminar has already heard a lot about recent progress for Tukey classes of the form U by Dobrinen, Raghavan, and Todorčević. I will focus on Tukey classes of the form U_{*}.

•
$$\mathcal{U}_* \leq_T \mathcal{U} \leq_T [\mathfrak{c}]^{<\aleph_0}$$
 for all $\mathcal{U} \in \beta \omega \setminus \omega$.

▶ If \mathcal{U}_* is not \aleph_1 -directed, then $\mathcal{V} \leq_T \mathcal{U}_*$ for some $\mathcal{V} \in \beta \omega \setminus \omega$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This seminar has already heard a lot about recent progress for Tukey classes of the form U by Dobrinen, Raghavan, and Todorčević. I will focus on Tukey classes of the form U_{*}.

•
$$\mathcal{U}_* \leq_T \mathcal{U} \leq_T [\mathfrak{c}]^{<\aleph_0}$$
 for all $\mathcal{U} \in \beta \omega \setminus \omega$.

▶ If \mathcal{U}_* is not \aleph_1 -directed, then $\mathcal{V} \leq_T \mathcal{U}_*$ for some $\mathcal{V} \in \beta \omega \setminus \omega$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ If *P* is \aleph_1 -directed and $\kappa \ge \aleph_0$, then $P \not\ge_T [\kappa]^{<\aleph_0}$.

This seminar has already heard a lot about recent progress for Tukey classes of the form U by Dobrinen, Raghavan, and Todorčević. I will focus on Tukey classes of the form U_{*}.

•
$$\mathcal{U}_* \leq_T \mathcal{U} \leq_T [\mathfrak{c}]^{<\aleph_0}$$
 for all $\mathcal{U} \in \beta \omega \setminus \omega$.

- ▶ If \mathcal{U}_* is not \aleph_1 -directed, then $\mathcal{V} \leq_T \mathcal{U}_*$ for some $\mathcal{V} \in \beta \omega \setminus \omega$.
- ▶ If P is \aleph_1 -directed and $\kappa \ge \aleph_0$, then $P \not\ge_T [\kappa]^{<\aleph_0}$.
- Hence, Isbell's Problem is equivalent to asking if ZFC proves there exists U ∈ βω \ ω such that U_{*} ≠_T [c]^{<ℵ0}.

(M., 2008) Assuming p = c, for every regular κ ∈ [ℵ₀, c], there exists U_{*} ≡_T [c]^{<κ}, which implies χNt (U, βω \ ω) = κ.

- (M., 2008) Assuming p = c, for every regular κ ∈ [ℵ₀, c], there exists U_{*} ≡_T [c]^{<κ}, which implies χNt (U, βω \ ω) = κ.
- (Aviles, Todorčević, 2010) If $n \ge 2$, $\kappa < \mathfrak{m}_{\sigma-n-\text{linked}}$, and $A_0, \ldots, A_n \subseteq \beta \omega \setminus \omega$ are disjoint open F_{κ} sets, then there are clopen $B_0 \supseteq A_0, \ldots, B_n \supseteq A_n$ such that $\bigcap_{i \le n} B_i = \emptyset$.
- (M., 2010) It follows that U_{*} ≢_T κ × P for all U ∈ βω \ ω if ω ≤ cf(κ) = κ < sup_{n<ω} m_{σ-n-linked} and P is the union of at most κ-many κ⁺-directed sets. E.g., U_{*} ≢_T ω × ω₁, and MA_{ℵ1} ⇒ U_{*} ≢_T ω₁ × ω₂.

- (M., 2008) Assuming p = c, for every regular κ ∈ [ℵ₀, c], there exists U_{*} ≡_T [c]^{<κ}, which implies χNt (U, βω \ ω) = κ.
- (Aviles, Todorčević, 2010) If $n \ge 2$, $\kappa < \mathfrak{m}_{\sigma-n-\text{linked}}$, and $A_0, \ldots, A_n \subseteq \beta \omega \setminus \omega$ are disjoint open F_{κ} sets, then there are clopen $B_0 \supseteq A_0, \ldots, B_n \supseteq A_n$ such that $\bigcap_{i \le n} B_i = \emptyset$.
- (M., 2010) It follows that U_{*} ≢_T κ × P for all U ∈ βω \ ω if ω ≤ cf(κ) = κ < sup_{n<ω} m_{σ-n-linked} and P is the union of at most κ-many κ⁺-directed sets. E.g., U_{*} ≢_T ω × ω₁, and MA_{ℵ1} ⇒ U_{*} ≢_T ω₁ × ω₂.
- (M., 2009) Assuming $\mathfrak{t} = \mathfrak{c}$ and $\Diamond(S_{\omega}^{\mathfrak{c}})$ (which are implied by MA $\land \mathfrak{c} = \aleph_2$), there exists $\mathcal{W}: 2^{\mathfrak{c}} \to \beta \omega \setminus \omega$ such that $\mathcal{W}(f)_* \not\leq_T \mathcal{W}(g)$ for all $f \neq g$.

- (M., 2008) Assuming p = c, for every regular κ ∈ [ℵ₀, c], there exists U_{*} ≡_T [c]^{<κ}, which implies χNt (U, βω \ ω) = κ.
- (Aviles, Todorčević, 2010) If $n \ge 2$, $\kappa < \mathfrak{m}_{\sigma-n-\text{linked}}$, and $A_0, \ldots, A_n \subseteq \beta \omega \setminus \omega$ are disjoint open F_{κ} sets, then there are clopen $B_0 \supseteq A_0, \ldots, B_n \supseteq A_n$ such that $\bigcap_{i \le n} B_i = \emptyset$.
- (M., 2010) It follows that U_{*} ≢_T κ × P for all U ∈ βω \ ω if ω ≤ cf(κ) = κ < sup_{n<ω} m_{σ-n-linked} and P is the union of at most κ-many κ⁺-directed sets. E.g., U_{*} ≢_T ω × ω₁, and MA_{ℵ1} ⇒ U_{*} ≢_T ω₁ × ω₂.
- (M., 2009) Assuming $\mathfrak{t} = \mathfrak{c}$ and $\Diamond(S_{\omega}^{\mathfrak{c}})$ (which are implied by MA $\land \mathfrak{c} = \aleph_2$), there exists $\mathcal{W}: 2^{\mathfrak{c}} \to \beta \omega \setminus \omega$ such that $\mathcal{W}(f)_* \not\leq_T \mathcal{W}(g)$ for all $f \neq g$.
- ▶ Open: Does CH imply there exist $U, V \in \beta \omega \setminus \omega$ such that $U_* \not\leq_T V_* \not\leq_T U_*$?

The (local) Noetherian (π -)type of $\beta \omega \setminus \omega$

ZFC proves each of the following statements.

•
$$\pi \operatorname{Nt} (\beta \omega \setminus \omega) = \mathfrak{h} \leq \mathfrak{s} \leq \operatorname{Nt} (\beta \omega \setminus \omega) \leq \mathfrak{c}^+.$$

•
$$\chi \operatorname{Nt} (\beta \omega \setminus \omega) \leq \min \{ \operatorname{Nt} (\beta \omega \setminus \omega), \mathfrak{c} \}.$$

•
$$MA \Rightarrow \pi \operatorname{Nt} (\beta \omega \setminus \omega) = \mathfrak{c} \Rightarrow \operatorname{Nt} (\beta \omega \setminus \omega) = \mathfrak{c}.$$

$$\blacktriangleright \ \mathfrak{r} = \mathfrak{c} \Rightarrow \operatorname{Nt} \left(\beta \omega \setminus \omega \right) \leq \mathfrak{c}.$$

$$\mathfrak{r} < \mathfrak{c} \Rightarrow \operatorname{Nt} (\beta \omega \setminus \omega) \geq \mathfrak{c}.$$

•
$$\mathfrak{r} < \mathsf{cf} \,\mathfrak{c} \Rightarrow \mathrm{Nt} \,(\beta \omega \setminus \omega) = \mathfrak{c}^+.$$

Each of the following statements is consistent with ZFC.

$$\begin{aligned} & \omega_1 = \pi \operatorname{Nt} \left(\beta \omega \setminus \omega \right) = \chi \operatorname{Nt} \left(\beta \omega \setminus \omega \right) = \operatorname{Nt} \left(\beta \omega \setminus \omega \right) < \mathfrak{c}. \\ & \omega_1 < \pi \operatorname{Nt} \left(\beta \omega \setminus \omega \right) = \chi \operatorname{Nt} \left(\beta \omega \setminus \omega \right) = \operatorname{Nt} \left(\beta \omega \setminus \omega \right) < \mathfrak{c}. \\ & \omega_1 = \pi \operatorname{Nt} \left(\beta \omega \setminus \omega \right) < \operatorname{Nt} \left(\beta \omega \setminus \omega \right) < \mathfrak{c}. \\ & \omega_1 < \pi \operatorname{Nt} \left(\beta \omega \setminus \omega \right) < \chi \operatorname{Nt} \left(\beta \omega \setminus \omega \right) = \mathfrak{c} < \operatorname{Nt} \left(\beta \omega \setminus \omega \right). \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?