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Order theory Preliminaries

Definition

I A preorder P is κ-directed if every subset smaller than κ has
an (upper) bound in P.

I Directed means ℵ0-directed.

Conversely:

I A preorder P is κ-short if every bounded subset is smaller
than κ.

I Flat means ℵ0-short.

Definition
A preorder P is almost κ-short if it has a κ-short cofinal suborder.

Convention
Order sets like [λ]κ and 2<κ by ⊆.
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Classifying preorders

Definition
Two preorders P and Q are mutually cofinal if they are
isomorphic to cofinal suborders of a common third preorder R.

Lemma (M., 2005)

If P and Q are mutually cofinal and P is almost κ-short, then Q is
almost κ-short.

Definition (Tukey, 1940)

I P is Tukey-below Q, or P ≤T Q, if there exists f : P ≤T Q,
i.e., f : P → Q sends unbounded sets to unbounded sets.

I P ≡T Q means P ≤T Q ≤T P.

Tukey types aren’t cofinal types. . .

2<ω1 ≡T [c]1 and [c]1 is flat, but 2<ω1 is not almost flat.
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. . . until we assume directedness

Theorem (Tukey, 1940).

If P and Q are directed and P ≡T Q, then P and Q are mutually
cofinal.

Definition
A (λ, κ)-blossom in a preorder P is a map f : λ→ P such that
f [I ] is unbounded for all I ∈ [λ]κ.

Theorem (M., 2007)

If P is directed and cf(P) ≥ ℵ0, then (1)⇒ (2)⇔ (3):

1. [cf(P)]<κ ≤T P.

2. P has a (cf(P), κ)-blossom.

3. P is almost κ-short.

If also κ = cf(κ) and |[cf(P)]<κ| = cf(P), then (1)⇐ (2).
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1. [cf(P)]<κ ≤T P.

2. P has a (cf(P), κ)-blossom.

3. P is almost κ-short.

If also κ = cf(κ) and |[cf(P)]<κ| = cf(P), then (1)⇐ (2).

Proof

I (1)⇒ (2): If f : [cf(P)]<κ ≤T P, then 〈f ({α})〉α<cf(P) is a
(cf(P), κ)-blossom.

I (3)⇒ (2): If g is an injection from cf(P) into a κ-short
Q ⊆ P, then g is a (cf(P), κ)-blossom of P.

I (2)⇒ (3): Given a (cf(P), κ)-blossom b and c : cf(P)→ P
with cofinal range, let d(α) ≥ b(α), c(α) for all α; ran(d) is
cofinal and κ-short.

I (2)⇒ (1): Given a (cf(P), κ)-blossom b and an injective
h : [cf(P)]<κ → cf(P), we have b ◦ h : [cf(P)]<κ ≤T P.
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Topological preliminaries

Convention

I All spaces are Tychonoff (T3.5).

I Families of open sets are ordered by ⊇.

Notation

I τ(X ) is the set of open subsets of X .

I τ+(X ) is the set of nonempty open subsets of X

I τ(p,X ) is the set of open neighborhoods of p in X .

Definition

I A local base at p is a cofinal subset of τ(p,X ).

I A π-base is a cofinal subset of τ+(X ).

I A base is a subset B of τ(X ) that includes a local base at
every point.
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The weight The Noetherian type
w(X ) of X is Nt (X ) of X is
the least κ ≥ ℵ0 such that the least κ ≥ ℵ0 such that
X has a base that is X has a base that is
of size ≤ κ. κ-short.

The π-weight The Noetherian π-type
π(X ) of X is πNt (X ) of X is
the least κ ≥ ℵ0 such that the least κ ≥ ℵ0 such that
X has a π-base that is X has a π-base that is
of size ≤ κ. κ-short.

The character The local Noetherian type
χ(p,X ) of p in X is χNt (p,X ) of p in X is
the least κ ≥ ℵ0 such that the least κ ≥ ℵ0 such that
p has a local base that is p has a local base that is
of size ≤ κ. κ-short.

χ(X ) = supp∈X χ(p,X ) χNt (X ) = supp∈X χNt (p,X )



History

I Malykhin, Peregudov, and Šapirovskĭi studied the properties
Nt (X ) ≤ ℵ1, πNt (X ) ≤ ℵ1, Nt (X ) = ℵ0, and πNt (X ) = ℵ0

in the 1970s and 1980s.

I Peregudov introduced Noetherian type and Noetherian π-type
in 1997.

I Milovich introduced local Noetherian type in 2005.

Order-theoretic definitions
π(X ) is πNt (X ) is
the least κ ≥ ℵ0 such that the least κ ≥ ℵ0 such that
cf(τ+(X )) ≤ κ. τ+(X ) is almost κ-short.

χ(p,X ) is χNt (p,X ) is
the least κ ≥ ℵ0 such that the least κ ≥ ℵ0 such that
cf(τ(p,X )) ≤ κ. τ(p,X ) is almost κ-short.
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Easy upper bounds

Lemma
Every preorder P is almost cf(P)-short.

Corollary

For all spaces X ,

I χNt (p,X ) ≤ χ(p,X );

I χNt (X ) ≤ χ(X );

I πNt (X ) ≤ π(X ).

Even easier:
Every P is |P|+-short, so Nt (X ) ≤ w(X )+.

Example

Nt (βN) = w(βN)+ = c+ because π(βN) = ℵ0 < cf(w(βN)).
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Passing to subsets

Applying mutual cofinality

I If B is a π-base of X , then B includes a πNt (X )-short π-base
of X .

I If B is a local base at p in X , then B includes a χNt (X )-short
local base at p in X .

Theorem (M., 2007)

Every metrizable space has a flat base.
Proof: For each n < ω, pick a locally finite open cover refining the
balls of radius 2−n. Take the union.

Example (M., 2009)

Set X = Zω. Let B be the set of all sets of the form Us,n where
s ∈ Z<ω, n < ω, and Us,n is the set of all f ∈ X such that s_i ⊆ f
for some i ∈ [−n, n]. B a base of X , but B has no flat subcover.
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Blossoms and splitters

Applying directedness

If p ∈ X is not isolated, then χNt (p,X ) ≤ κ if and only if τ(p,X )
has a (χ(p,X ), κ)-blossom, which is just a χ(p,X )-sequence ~U of
neighborhoods of p such that p 6∈ int

⋂
α∈I Uα for all

I ∈ [χ(p,X )]κ.

Definition
A (λ, κ)-splitter of X is a λ-sequence ~F of finite open covers of X
such that int

⋂
α∈I Uα = ∅ for all I ∈ [χ(p,X )]κ and

~U ∈
∏
α∈I Fα.

Lemma
If X has a (w(X ), κ)-splitter, then Nt (X ) ≤ κ.

Question (M., 2007)

Does Nt (βω \ ω) ≤ κ imply βω \ ω has a (c, κ)-splitter in ZFC?
(There can be no counterexamples if c is regular.)
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Easy applications of blossoms and splitters

Theorem
If X =

∏
α<κ Xα and |Xα| > 1 for all α < κ, then

I κ ≥ χ(p,X )⇒ χNt (p,X ) = ℵ0;

I κ ≥ χ(X )⇒ χNt (X ) = ℵ0;

I κ ≥ π(X )⇒ πNt (X ) = ℵ0;

I κ ≥ w(X )⇒ Nt (X ) = ℵ0.

Proof (essentially (Malykhin, 1981))

First claim: For each α < χ(p,X ), choose a nontrivial open
neighborhood Uα of p(α). Since all open boxes in the product
topology have finite support, 〈π−1

α [Uα]〉α<κ is a
(χ(p,X ),ℵ0)-blossom for τ(p,X ).
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Corollary

I Nt
(
X × 2w(X )

)
= ℵ0. (Malykhin, 1981)

I πNt
(
X × 2π(X )

)
= ℵ0.

I χNt
(
X × 2χ(X )

)
= ℵ0.

I Nt
(
Xw(X )

)
= ℵ0.

I πNt
(
Xπ(X )

)
= ℵ0.

I χNt
(
Xχ(X )

)
= ℵ0.
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Passing to subsets again

Definition
A space X is homogeneous if for all p, q ∈ X , there is a bijection
f : X → X with f (p) = q and f and f −1 continuous.

Theorem (M., 2009)

Let B be a base of X . B includes an Nt (X )-short base of X if

I X is metrizable and X is locally compact or σ-compact,

I X is compact and χ(p,X ) = w(X ) for all p ∈ X , or

I X is compact, homogeneous, and w(X ) is regular or strong
limit.

About the proof

I For the second case, we build a (w(X ), κ)-splitter consisting
of subcovers of an arbitrary base.

I For the third case, we use Misčenko’s Lemma to deduce that
the second case holds or Nt (X ) = w(X )+.
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Van Douwen’s Problem

Definition
The cellularity c (X ) of X is the least infinite upper bound of the
cardinalities of its cellular families, i.e., pairwise disjoint open
families.

Patterns

I Every known compact homogeneous space (CHS) is a
continuous image of a product of compacta with weight at
most c.

I It follows that every known CHS has cellularity at most c.
(Why? Easy: c+ is a caliber of any such space.)

I Van Douwen’s Problem asks whether c (X ) ≤ c for every CHS
X . This is open after ∼40 years, in all models of ZFC.

I It also follows that every known CHS has Noetherian type at
most c+. (Why? Not as easy. . . )
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Sharp bounds

Example (Maurice, 1964)

The lexicographically ordered space X = 2ω·ωlex is a CHS satisfying
c (X ) = c.

Example (Peregudov, 1997)

The double-arrow space X is compact, homogeneous, and
Nt (X ) = c+.



Light factors

Theorem (M., 2007)

If X is CHS and a continuous image of a product of compacta all
with weight at most λ, then Nt (X ) ≤ λ+. If also λ = ℵ0 (i.e., X
is dyadic), then Nt (X ) = ℵ0.

Some ideas from the proof

I A long κ-approximation sequence (for regular κ) is an
∈-chain ~M of elementary substructures of H(θ) with
|Mα| ⊆ κ ∩Mα ∈ κ ∈ Mα and ~M � α ∈ Mα.

I (A. Miller) Generalizing (Jackson, Mauldin, 2002), given ~M as
above, there exists ~Σ such that Σα ∈ [Mα]<ℵ0 ,⋃

Σα =
⋃

( ~M � α), and N ≺ Hθ for all N ∈ Σα.

I The quotient maps π : X → X/Mα are open.

I We can build a κ-short base of X by taking the union of
pullbacks of well-chosen bases of these quotients.
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π-character is crucial.

Definition

I πχ(p,X ) is the least κ ≥ ℵ0 such that τ(p,X ) is dominated
by some S ∈ [τ+(X )]≤κ (i.e., every neighborhood of X
includes a nonempty open set from S).

I πχ(X ) = supp∈X πχ(p,X ).

Theorems (M., 2007)

I If πχ(p,X ) < cf κ = κ ≤ χ(p,X ) for some p ∈ X , then
Nt (X ) > κ. (Essentially (Peregudov, 1997))

I If h :
∏

i∈I Xi → X is a continuous surjection, Xi is compact,
and w(Xi ) < cf κ = κ ≤ w(X ) (for all i ∈ I ), then
πχ(X ) = w(X ).

I If h :
∏

i∈I Xi → X is a continuous surjection,
πχ(p,X ) = w(X ) for all p ∈ X , Xi is compact, and
w(Xi ) ≤ λ (for all i ∈ I ), then Nt (X ) ≤ λ.
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More light factors

Theorem (M., 2006)

If X is a continuous image of a product of compacta all with
weight at most λ, then πNt (X ) ≤ λ and χNt (X ) ≤ λ.

About the proof

This time, we don’t need long κ-approximation sequences.
Continuous elementary chains work just fine.
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Does every CHS have a flat local base?

Another Pattern
Every known CHS X satisfies πNt (X ) ≤ ℵ1 and χNt (X ) = ℵ0.

Theorems (M., 2007)

I If X is a separable CHS and w(X ) < p, then χNt (X ) = ℵ0

I Assuming GCH, χNt (X ) ≤ c (X ) if X is a CHS.

Attacking Van Douwen’s Problem

I If we found a model of GCH with a CHS X with a local base
B such that B is not almost ℵ1-short, then c (X ) > c.

I E.g., we could try for B ≡T ω × ω2 or B ≡T ω × ω1 × ω2.

I X = 2ωlex × 2ω1
lex × 2ω2

lex is compact, and B ≡T ω × ω1 × ω2 for
all local bases B, but X is not homogeneous.

I (Arhangel′skĭı, 2005) If a product of linear orders is a CHS,
then all factors are first countable, and hence have weight at
most c.
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π-character is crucial, again.

Assuming GCH, χNt (X ) ≤ c (X ) if X is a CHS.

Proof

I Lemma (M. 2007). If X is compact and πχ(p,X ) ≥ κ for all
p ∈ X , then τ(q,X ) has (κ,ℵ0)-blossom for some q ∈ X .

I Hence, if X is compact and πχ(p,X ) = χ(X ) for all p ∈ X ,
then X has a flat local base.

I Therefore, given a CHS X , we have χNt (X ) = ℵ0 or
πχ(X ) < χ(X ).

I (Arhangel′skĭı, Ismail) If Y is a CHS, then
2χ(Y ) ≤ |Y | ≤ 2πχ(Y )c(Y ).

I So, assuming GCH, πχ(X ) < χ(X ) implies
χNt (X ) ≤ χ(X ) ≤ c (X ).
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More on π-character

Theorems

I (M., 2008) If X is compact and πχ(p,X ) = w(X ) for all
p ∈ X , then Nt (X ) ≤ w(X ).

I (M., Spadaro, 2010) If X is compact and πχ(p,X ) < w(X )
for a dense set of points, then Nt (X ) ≥ w(X ), and
Nt (X ) = w(X )+ if w(X ) is regular.

Examples

I (M., 2010) If X = Dℵω ∪ {∞}, then πχ(X ) = ℵ0,
w(X ) = ℵω, and Nt (X ) = ℵω+1.

I (M., 2010) If X =
∏

n<ω(Dℵn ∪ {∞}), then πχ(X ) = ℵ0,
w(X ) = ℵω, and Nt (X ) = ℵω.
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Power homogeneous compacta

Definition (Van Douwen)

A space X is power homogeneous if Xα is homogeneous for
some α > 0.

I Many results about homogeneous compact spaces have been
generalized to power homogeneous compact (PHC) spaces.

I (Ridderbos, 2006) For example, 2χ(X ) ≤ 2πχ(X )c(X ) for all
PHC X .

I However, it is unknown whether every PHC X satisfies
c (X ) ≤ c.

I It is also unknown whether every PHC X has a flat local base.

I Perhaps an easier question: Does GCH imply
χNt (X ) ≤ c (X ) for all PHC X?
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A partial answer

Definition
d(X ) is the least κ ≥ ℵ0 such that some D ∈ [X ]≤κ is dense in X .

Perhaps an even easier question:

Does GCH imply χNt (X ) ≤ d(X ) for all PHC X?

Theorem (M., Ridderbos, 2007)

Given GCH, X PHC, and maxp∈X χ(p,X ) = cf(χ(X )) > d(X ),
there is a nonempty open U ⊆ X such that χNt (p,X ) = ℵ0 for all
p ∈ U.



If we stop worrying about homogeneity. . .

Sometimes compactness doesn’t matter.

(M., 2009) If p ∈ X and X = Y , e.g., Y = βX , then
χNt (p,X ) = χNt (p,Y ) and πNt (X ) = πNt (Y ). On the other
hand, Nt (N) = ℵ0 and Nt (βN) = c+.

Product spaces can surprise you.

I (Todorčević, 1985) If cf(κ) = κ = κℵ0 , then there exist
directed P,Q with P,Q <T P × Q ≡T [κ]<ℵ0 .

I (M., 2010) Using these P and Q, we can build X , Y such
that χNt (X ) = χNt (Y ) = ℵ1 and χNt (X × Y ) = ℵ0.

I (Sparado, 2010) X , Y can be modified to get Z , W such that
Nt (Z ) = Nt (W ) = ℵ1 and Nt (Z ×W ) = ℵ0.

I (Spadaro, 2008) There are compact K , L with Nt (K ) = ℵ2,
Nt (L) = ℵ3, and Nt (K × L) = ℵ1.

I Open: Is Nt
(
X 2
)
6= Nt (X ) possible?
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Powers

I (M., 2010) We can also use the previous P and Q to build an
example of
χNt

(
〈p, q〉,X 2

)
= ℵ0 < ℵ1 = χNt (p,X ) = χNt (q,X ).

I (M., 2007) If f : X → Y is continuous and open at p, then
χNt (p,X ) ≤ χNt (f (p),Y ) (and τ(p,X ) ≥T τ(f (p),Y )).

I Hence, 0 < α < β ⇒ χNt
(
p,X β

)
≤ χNt (p � α,Xα).

I (M., 2009) If 0 < γ < ω1, then χNt (pγ ,X γ) = χNt (p,X )
and χNt (X γ) = χNt (X ).

I However, there are examples of χNt (Xω1) < χNt (X ) with
ℵ1 < cf(χ(X )).

I (Ridderbos, 2007) If 0 < γ < cf(χ(p,X )), then
χNt (pγ ,X γ) = χNt (p,X ).

I (M., 2009) If cf(χ(p,X )) ≤ γ < χ(p,X ), then
χNt (pγ ,X γ) ≤ χNt (p,X ) ≤ χNt (pγ ,X γ)+.

I (M., 2005) If χ(p,X ) ≤ γ and |X | > 1, then
χNt (pγ ,X γ) = ℵ0.
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Measuring blossoms

Definition
The λ-wide splitting number at p ∈ X , or splitλ(p,X ), is the
least κ such that τ(p,X ) has a (λ, κ)-blossom.

Facts (M., 2009)

I λ ≤ µ⇒ splitλ(p,X ) ≤ splitµ(p,X ).

I splitχ(p,X )(p,X ) = χNt (p,X ).

I χ(p,X ) < cf λ⇒ splitλ(p,X ) = λ+.

I For all singular cardinals λ,
splitλ(p,X ) ≤

(
supµ<λ splitµ(p,X )

)+
.

I If cf λ ≤ κ < λ, then splitλ(pκ,Xκ) = supµ<λ splitµ(p,X ).
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What about regular limit cardinals?

Definition
Let

∏(κ)
i∈I Xi denote the set

∏
i∈I Xi with the topology generated by

products of open sets with support smaller than κ.

Example (M., 2009)

I If p ∈ X =
∏(λ)
α<λ 2α and λ is strongly inaccessible, then

splitµ(p,X ) = ℵ0 for all µ < λ, but
splitλ(p,X ) = χNt (p,X ) = λ.

I The proof’s essential ingredient runs short an
elementary-submodel proof of the Erdös-Rado Theorem.
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Singular character

Example (M., 2009)

I Let p ∈ X =
∏(ℵ1)
α<ω1

∏(ℵω)
β<iα 2.

I We then have χ(p,X ) = iω1 ,
χNt (p,X ) = splitiω1

(p,X ) = ℵ+
ω , and

χNt (pω1 ,Xω1) = supµ<iω1
splitµ(p,X ) = ℵω.

I The key lemma for the proof is that the set of countably
supported maps from ω1 to ω (with the product ordering)
does not have an (ω1,ℵ0)-blossom.

I Why? If F : ω1 → Fn(ω1, ω, ℵ1), F ∈ M ≺ H(ℵ2), and
|M| = ℵ0, then we can use reflect properties of F (ω1 ∩M) to
find infinitely many F (α) ∈ M all dominated by a single
g ∈ Fn(ω1, ω, ℵ1).
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Example (M., Spadaro, 2009)

I Let p ∈ X =
∏(ℵ1)
α<ℵω 2. We then have

χ(p,X ) = π(X ) = w(X ) = ℵℵ0
ω .

I ℵ1 ≤ Nt (X ) ≤ c+. Moreover, c ≤ ℵω+1 ⇒ Nt (X ) ≤ ℵω+1.
Open: can we have Nt (X ) > ℵω+1?

I If �ℵω and ℵℵ0
ω = ℵω+1, then
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Noetherian spectra

Another application of Bernstein sets (M., 2009)

If c ≥ κ and κ is weakly inacessible, then there is a Lindelöf linear
order with Noetherian type κ..

Excluded Noetherian types (M., 2008)

I The compact linear orders attain all Noetherian types except
ℵ1 and weak inaccessibles.

I The dyadic compacta do not attain Noetherian type ℵ1.

I Open: do the dyadic compacta attain weakly inaccessible
Noetherian types?

I Open: do the dyadic compacta attain Noetherian type ℵω+1?
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Local bases in βω \ ω

Convention

I If U is an ultrafilter on ω, then order U by ⊇.

I Let U∗ denote U ordered by ⊇∗ (containment modulo [ω]<ℵ0).

Facts

I Given U ∈ βω \ ω, τ(U , βω \ ω) is mutually cofinal with U∗.
I Hence, U has a flat local base in βω \ ω if and only if
U∗ ≥T [χ(U , βω \ ω)]<ℵ0 .

I Likewise, U has a flat local base in βω if and only if
U ≥T [χ(U , βω \ ω)]<ℵ0 .

Isbell’s Problem
ZFC proves there exists U ∈ βω \ ω such that U∗ ≡T U ≡T [c]<ℵ0 .
Does ZFC prove there exists V ∈ βω \ ω such that V 6≡T [c]<ℵ0?
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U versus U∗

I This seminar has already heard a lot about recent progress for
Tukey classes of the form U by Dobrinen, Raghavan, and
Todorčević. I will focus on Tukey classes of the form U∗.

I U∗ ≤T U ≤T [c]<ℵ0 for all U ∈ βω \ ω.

I If U∗ is not ℵ1-directed, then V ≤T U∗ for some V ∈ βω \ ω.

I If P is ℵ1-directed and κ ≥ ℵ0, then P 6≥T [κ]<ℵ0 .

I Hence, Isbell’s Problem is equivalent to asking if ZFC proves
there exists U ∈ βω \ ω such that U∗ 6≡T [c]<ℵ0 .
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Ultrafilter Tukey classes for ⊇∗

I (M., 2008) Assuming p = c, for every regular κ ∈ [ℵ0, c], there
exists U∗ ≡T [c]<κ, which implies χNt (U , βω \ ω) = κ.

I (Aviles, Todorčević, 2010) If n ≥ 2, κ < mσ−n−linked, and
A0, . . . ,An ⊆ βω \ ω are disjoint open Fκ sets, then there are
clopen B0 ⊇ A0, . . . ,Bn ⊇ An such that

⋂
i≤n Bi = ∅.

I (M., 2010) It follows that U∗ 6≡T κ× P for all U ∈ βω \ ω if
ω ≤ cf(κ) = κ < supn<ω mσ−n−linked and P is the union of at
most κ-many κ+-directed sets. E.g., U∗ 6≡T ω × ω1, and
MAℵ1 ⇒ U∗ 6≡T ω1 × ω2.

I (M., 2009) Assuming t = c and ♦(S c
ω) (which are implied by

MA ∧ c = ℵ2), there exists W : 2c → βω \ ω such that
W(f )∗ 6≤T W(g) for all f 6= g .

I Open: Does CH imply there exist U ,V ∈ βω \ ω such that
U∗ 6≤T V∗ 6≤T U∗?
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The (local) Noetherian (π-)type of βω \ ω

ZFC proves each of the following statements.

I πNt (βω \ ω) = h ≤ s ≤ Nt (βω \ ω) ≤ c+.

I χNt (βω \ ω) ≤ min {Nt (βω \ ω) , c}.
I MA⇒ πNt (βω \ ω) = c⇒ Nt (βω \ ω) = c.

I r = c⇒ Nt (βω \ ω) ≤ c.

I r < c⇒ Nt (βω \ ω) ≥ c.

I r < cf c⇒ Nt (βω \ ω) = c+.

Each of the following statements is consistent with ZFC.

I ω1 = πNt (βω \ ω) = χNt (βω \ ω) = Nt (βω \ ω) < c.

I ω1 < πNt (βω \ ω) = χNt (βω \ ω) = Nt (βω \ ω) < c.

I ω1 = πNt (βω \ ω) < Nt (βω \ ω) < c.

I ω1 < πNt (βω \ ω) < χNt (βω \ ω) = c < Nt (βω \ ω).


