On the order theory of local bases

David Milovich
Texas A&M International University
david.milovich@tamiu.edu

Feb. 12, 2010
Fields Institute Set Theory Seminar
Order theory Preliminaries

Definition

- A preorder P is κ-directed if every subset smaller than κ has an (upper) bound in P.

- Directed means \aleph_0-directed.
Order theory Preliminaries

Definition

▶ A preorder P is κ-directed if every subset smaller than κ has an (upper) bound in P.

▶ Directed means \aleph_0-directed.

Conversely:

▶ A preorder P is κ-short if every bounded subset is smaller than κ.

▶ Flat means \aleph_0-short.
Definition

- A preorder P is κ-directed if every subset smaller than κ has an (upper) bound in P.
- **Directed** means \aleph_0-directed.

Conversely:

- A preorder P is κ-short if every bounded subset is smaller than κ.
- **Flat** means \aleph_0-short.

Definition

A preorder P is **almost κ-short** if it has a κ-short cofinal suborder.
Order theory Preliminaries

Definition

▶ A preorder P is κ-directed if every subset smaller than κ has an (upper) bound in P.

▶ Directed means \aleph_0-directed.

Conversely:

▶ A preorder P is κ-short if every bounded subset is smaller than κ.

▶ Flat means \aleph_0-short.

Definition

A preorder P is almost κ-short if it has a κ-short cofinal suborder.

Convention

Order sets like $[\lambda]^\kappa$ and $2^{<\kappa}$ by \subseteq.
Classifying preorders

Definition
Two preorders P and Q are **mutually cofinal** if they are isomorphic to cofinal suborders of a common third preorder R.

Lemma (M., 2005)
If P and Q are mutually cofinal and P is almost κ-short, then Q is almost κ-short.
Classifying preorders

Definition
Two preorders P and Q are **mutually cofinal** if they are isomorphic to cofinal suborders of a common third preorder R.

Lemma (M., 2005)
If P and Q are mutually cofinal and P is almost κ-short, then Q is almost κ-short.

Definition (Tukey, 1940)

- P is **Tukey-below** Q, or $P \leq_T Q$, if there exists $f : P \leq_T Q$, i.e., $f : P \to Q$ sends unbounded sets to unbounded sets.
- $P \equiv_T Q$ means $P \leq_T Q \leq_T P$.

Tukey types aren't cofinal types...
Classifying preorders

Definition
Two preorders P and Q are **mutually cofinal** if they are isomorphic to cofinal suborders of a common third preorder R.

Lemma (M., 2005)
If P and Q are mutually cofinal and P is almost κ-short, then Q is almost κ-short.

Definition (Tukey, 1940)

- P is **Tukey-below** Q, or $P \leq_T Q$, if there exists $f : P \leq_T Q$, i.e., $f : P \to Q$ sends unbounded sets to unbounded sets.
- $P \equiv_T Q$ means $P \leq_T Q \leq_T P$.

Tukey types aren’t cofinal types...
$2^{<\omega_1} \equiv_T [c]^1$ and $[c]^1$ is flat, but $2^{<\omega_1}$ is not almost flat.
... until we assume directedness

Theorem (Tukey, 1940).
If P and Q are directed and $P \equiv_T Q$, then P and Q are mutually cofinal.
... until we assume directedness

Theorem (Tukey, 1940).
If P and Q are directed and $P \equiv_T Q$, then P and Q are mutually cofinal.

Definition
A (λ, κ)-blossom in a preorder P is a map $f : \lambda \to P$ such that $f[I]$ is unbounded for all $I \in [\lambda]^\kappa$.

Theorem (M., 2007)
If P is directed and $\text{cf}(P) \geq \aleph_0$, then (1) \Rightarrow (2) \iff (3):
1. $\text{cf}(P) < \kappa \leq \text{T}_P$.
2. P has a $(\text{cf}(P), \kappa)$-blossom.
3. P is almost κ-short.
If also $\kappa = \text{cf}(\kappa)$ and $|\text{cf}(P)| < \kappa = \text{cf}(P)$, then (1) \iff (2).
... until we assume directedness

Theorem (Tukey, 1940).
If P and Q are directed and $P \equiv_T Q$, then P and Q are mutually cofinal.

Definition
A (λ, κ)-**blossom** in a preorder P is a map $f : \lambda \to P$ such that $f[I]$ is unbounded for all $I \in [\lambda]^{\kappa}$.

Theorem (M., 2007)
If P is directed and $\text{cf}(P) \geq \aleph_0$, then (1) \Rightarrow (2) \iff (3):

1. $[\text{cf}(P)]^{<\kappa} \leq_T P$.
2. P has a $(\text{cf}(P), \kappa)$-blossom.
3. P is almost κ-short.

If also $\kappa = \text{cf}(\kappa)$ and $|[\text{cf}(P)]^{<\kappa}| = \text{cf}(P)$, then (1) \iff (2).
If P is directed and $\text{cf}(P) \geq \aleph_0$, then (1) \Rightarrow (2) \iff (3):

1. $[\text{cf}(P)]^{<\kappa} \leq_T P$.
2. P has a $(\text{cf}(P), \kappa)$-blossom.
3. P is almost κ-short.

If also $\kappa = \text{cf}(\kappa)$ and $|[\text{cf}(P)]^{<\kappa}| = \text{cf}(P)$, then (1) \iff (2).

Proof

- $(1) \Rightarrow (2)$: If $f : [\text{cf}(P)]^{<\kappa} \leq_T P$, then $\langle f(\{\alpha\}) \rangle_{\alpha < \text{cf}(P)}$ is a $(\text{cf}(P), \kappa)$-blossom.
If P is directed and $\text{cf}(P) \geq \aleph_0$, then (1) \Rightarrow (2) \iff (3):

1. $[\text{cf}(P)]^{<\kappa} \leq_T P$.
2. P has a $(\text{cf}(P), \kappa)$-blossom.
3. P is almost κ-short.

If also $\kappa = \text{cf}(\kappa)$ and $|[\text{cf}(P)]^{<\kappa}| = \text{cf}(P)$, then (1) \iff (2).

Proof

- $(1) \Rightarrow (2)$: If $f : [\text{cf}(P)]^{<\kappa} \leq_T P$, then $\langle f(\{\alpha\}) \rangle_{\alpha < \text{cf}(P)}$ is a $(\text{cf}(P), \kappa)$-blossom.

- $(3) \Rightarrow (2)$: If g is an injection from $\text{cf}(P)$ into a κ-short $Q \subseteq P$, then g is a $(\text{cf}(P), \kappa)$-blossom of P.
If P is directed and $\text{cf}(P) \geq \aleph_0$, then (1) \Rightarrow (2) \iff (3):

1. $[\text{cf}(P)]^{<\kappa} \leq_T P$.
2. P has a $(\text{cf}(P), \kappa)$-blossom.
3. P is almost κ-short.

If also $\kappa = \text{cf}(\kappa)$ and $|[\text{cf}(P)]^{<\kappa}| = \text{cf}(P)$, then (1) \iff (2).

Proof

- $(1) \Rightarrow (2)$: If $f : [\text{cf}(P)]^{<\kappa} \leq_T P$, then $\langle f(\{\alpha\}) \rangle_{\alpha < \text{cf}(P)}$ is a $(\text{cf}(P), \kappa)$-blossom.

- $(3) \Rightarrow (2)$: If g is an injection from $\text{cf}(P)$ into a κ-short $Q \subseteq P$, then g is a $(\text{cf}(P), \kappa)$-blossom of P.

- $(2) \Rightarrow (3)$: Given a $(\text{cf}(P), \kappa)$-blossom b and $c : \text{cf}(P) \rightarrow P$ with cofinal range, let $d(\alpha) \geq b(\alpha), c(\alpha)$ for all α; ran(d) is cofinal and κ-short.
If P is directed and $\text{cf}(P) \geq \aleph_0$, then (1) \Rightarrow (2) \iff (3):

1. $[\text{cf}(P)]^{<\kappa} \leq_T P$.
2. P has a $(\text{cf}(P), \kappa)$-blossom.
3. P is almost κ-short.

If also $\kappa = \text{cf}(\kappa)$ and $|[\text{cf}(P)]^{<\kappa}| = \text{cf}(P)$, then (1) \iff (2).

Proof

▷ (1) \Rightarrow (2): If $f : [\text{cf}(P)]^{<\kappa} \leq_T P$, then $\langle f(\{\alpha\}) \rangle_{\alpha < \text{cf}(P)}$ is a $(\text{cf}(P), \kappa)$-blossom.

▷ (3) \Rightarrow (2): If g is an injection from $\text{cf}(P)$ into a κ-short $Q \subseteq P$, then g is a $(\text{cf}(P), \kappa)$-blossom of P.

▷ (2) \Rightarrow (3): Given a $(\text{cf}(P), \kappa)$-blossom b and $c : \text{cf}(P) \rightarrow P$ with cofinal range, let $d(\alpha) \geq b(\alpha), c(\alpha)$ for all α; ran(d) is cofinal and κ-short.

▷ (2) \Rightarrow (1): Given a $(\text{cf}(P), \kappa)$-blossom b and an injective $h : [\text{cf}(P)]^{<\kappa} \rightarrow \text{cf}(P)$, we have $b \circ h : [\text{cf}(P)]^{<\kappa} \leq_T P$.
Topological preliminaries

Convention

- All spaces are Tychonoff ($T_{3.5}$).
- Families of open sets are ordered by \supseteq.
Topological preliminaries

Convention

- All spaces are Tychonoff ($T_{3.5}$).
- Families of open sets are ordered by \supseteq.

Notation

- $\tau(X)$ is the set of open subsets of X.
- $\tau^+(X)$ is the set of nonempty open subsets of X.
- $\tau(p, X)$ is the set of open neighborhoods of p in X.
Topological preliminaries

Convention

- All spaces are Tychonoff ($T_{3.5}$).
- Families of open sets are ordered by \supseteq.

Notation

- $\tau(X)$ is the set of open subsets of X.
- $\tau^+(X)$ is the set of nonempty open subsets of X.
- $\tau(p, X)$ is the set of open neighborhoods of p in X.

Definition

- A **local base** at p is a cofinal subset of $\tau(p, X)$.
- A **π-base** is a cofinal subset of $\tau^+(X)$.
- A **base** is a subset \mathcal{B} of $\tau(X)$ that includes a local base at every point.
<table>
<thead>
<tr>
<th>The weight $w(X)$ of X is the least $\kappa \geq \aleph_0$ such that X has a base that is of size $\leq \kappa$.</th>
<th>The Noetherian type $\text{Nt}(X)$ of X is the least $\kappa \geq \aleph_0$ such that X has a base that is κ-short.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The π-weight $\pi(X)$ of X is the least $\kappa \geq \aleph_0$ such that X has a π-base that is of size $\leq \kappa$.</td>
<td>The Noetherian π-type $\pi\text{Nt}(X)$ of X is the least $\kappa \geq \aleph_0$ such that X has a π-base that is κ-short.</td>
</tr>
<tr>
<td>The character $\chi(p, X)$ of p in X is the least $\kappa \geq \aleph_0$ such that p has a local base that is of size $\leq \kappa$.</td>
<td>The local Noetherian type $\chi\text{Nt}(p, X)$ of p in X is the least $\kappa \geq \aleph_0$ such that p has a local base that is κ-short.</td>
</tr>
<tr>
<td>$\chi(X) = \sup_{p \in X} \chi(p, X)$</td>
<td>$\chi\text{Nt}(X) = \sup_{p \in X} \chi\text{Nt}(p, X)$</td>
</tr>
</tbody>
</table>
History

- Malykhin, Peregudov, and Šapirovskii studied the properties $N_t(X) \leq \aleph_1$, $\pi N_t(X) \leq \aleph_1$, $N_t(X) = \aleph_0$, and $\pi N_t(X) = \aleph_0$ in the 1970s and 1980s.
- Peregudov introduced Noetherian type and Noetherian π-type in 1997.
- Milovich introduced local Noetherian type in 2005.
History

- Malykhin, Peregudov, and Šapirovič studied the properties \(Nt(X) \leq \aleph_1, \pi Nt(X) \leq \aleph_1, Nt(X) = \aleph_0, \) and \(\pi Nt(X) = \aleph_0 \) in the 1970s and 1980s.
- Peregudov introduced Noetherian type and Noetherian \(\pi \)-type in 1997.
- Milovich introduced local Noetherian type in 2005.

Order-theoretic definitions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi(X)) is</td>
<td>the least (\kappa \geq \aleph_0) such that (\text{cf}(\tau^+(X)) \leq \kappa).</td>
</tr>
<tr>
<td>(\chi(p, X)) is</td>
<td>the least (\kappa \geq \aleph_0) such that (\text{cf}(\tau(p, X)) \leq \kappa).</td>
</tr>
<tr>
<td>(\pi Nt(X)) is</td>
<td>the least (\kappa \geq \aleph_0) such that (\tau^+(X)) is almost (\kappa)-short.</td>
</tr>
<tr>
<td>(\chi Nt(p, X)) is</td>
<td>the least (\kappa \geq \aleph_0) such that (\tau(p, X)) is almost (\kappa)-short.</td>
</tr>
</tbody>
</table>
Easy upper bounds

Lemma
Every preorder P is almost $\text{cf}(P)$-short.

Corollary
For all spaces X,

- $\chi_{\text{Nt}}(p, X) \leq \chi(p, X)$;
- $\chi_{\text{Nt}}(X) \leq \chi(X)$;
- $\pi_{\text{Nt}}(X) \leq \pi(X)$.

Even easier:
Every P is $|P|$-short, so $\text{Nt}(X) \leq w(X) +$.
Easy upper bounds

Lemma
Every preorder P is almost $\text{cf}(P)$-short.

Corollary
For all spaces X,

- $\chi^\mathbb{Nt}(p, X) \leq \chi(p, X)$;
- $\chi^\mathbb{Nt}(X) \leq \chi(X)$;
- $\pi^\mathbb{Nt}(X) \leq \pi(X)$.

Even easier:
Every P is $|P|^+$-short, so $\mathbb{Nt}(X) \leq w(X)^+$.
Easy upper bounds

Lemma
Every preorder P is almost $\text{cf}(P)$-short.

Corollary
For all spaces X,

1. $\chi_{Nt}(p, X) \leq \chi(p, X)$;
2. $\chi_{Nt}(X) \leq \chi(X)$;
3. $\pi_{Nt}(X) \leq \pi(X)$.

Even easier:
Every P is $|P|^+$-short, so $Nt(X) \leq w(X)^+$.

Example
$Nt(\beta\mathbb{N}) = w(\beta\mathbb{N})^+ = c^+$ because $\pi(\beta\mathbb{N}) = \aleph_0 < \text{cf}(w(\beta\mathbb{N}))$.
Passing to subsets

Applying mutual cofinality

- If \(B \) is a \(\pi \)-base of \(X \), then \(B \) includes a \(\pi \text{Nt} (X) \)-short \(\pi \)-base of \(X \).
- If \(B \) is a local base at \(p \) in \(X \), then \(B \) includes a \(\chi \text{Nt} (X) \)-short local base at \(p \) in \(X \).
Passing to subsets

Applying mutual cofinality

- If \mathcal{B} is a π-base of X, then \mathcal{B} includes a $\pi\text{Nt} (X)$-short π-base of X.
- If \mathcal{B} is a local base at p in X, then \mathcal{B} includes a $\chi\text{Nt} (X)$-short local base at p in X.

Theorem (M., 2007)

Every metrizable space has a flat base.

Proof: For each $n < \omega$, pick a locally finite open cover refining the balls of radius 2^{-n}. Take the union.
Passing to subsets

Applying mutual cofinality

- If B is a π-base of X, then B includes a $\pi \mathsf{Nt} (X)$-short π-base of X.
- If B is a local base at p in X, then B includes a $\chi \mathsf{Nt} (X)$-short local base at p in X.

Theorem (M., 2007)
Every metrizable space has a flat base.
Proof: For each $n < \omega$, pick a locally finite open cover refining the balls of radius 2^{-n}. Take the union.

Example (M., 2009)
Set $X = \mathbb{Z}^\omega$. Let B be the set of all sets of the form $U_{s,n}$ where $s \in \mathbb{Z}^{<\omega}$, $n < \omega$, and $U_{s,n}$ is the set of all $f \in X$ such that $s \upharpoonright i \subseteq f$ for some $i \in [-n, n]$. B a base of X, but B has no flat subcover.
Blossoms and splitters

Applying directedness

If $p \in X$ is not isolated, then $\chi_{Nt}(p, X) \leq \kappa$ if and only if $\tau(p, X)$ has a $(\chi(p, X), \kappa)$-blossom, which is just a $\chi(p, X)$-sequence \vec{U} of neighborhoods of p such that $p \notin \text{int} \bigcap_{\alpha \in I} U_\alpha$ for all $I \in [\chi(p, X)]^\kappa$.
Blossoms and splitters

Applying directedness
If \(p \in X \) is not isolated, then \(\chi_{Nt}(p, X) \leq \kappa \) if and only if \(\tau(p, X) \) has a \((\chi(p, X), \kappa)\)-blossom, which is just a \(\chi(p, X) \)-sequence \(\vec{U} \) of neighborhoods of \(p \) such that \(p \notin \text{int}\bigcap_{\alpha \in I} U_{\alpha} \) for all \(I \in [\chi(p, X)]^\kappa \).

Definition
A \((\lambda, \kappa)\)-splitter of \(X \) is a \(\lambda \)-sequence \(\vec{F} \) of finite open covers of \(X \) such that \(\text{int}\bigcap_{\alpha \in I} U_{\alpha} = \emptyset \) for all \(I \in [\chi(p, X)]^\kappa \) and \(\vec{U} \in \prod_{\alpha \in I} F_{\alpha} \).
Blossoms and splitters

Applying directedness

If \(p \in X \) is not isolated, then \(\chi_{N_t}(p, X) \leq \kappa \) if and only if \(\tau(p, X) \) has a \((\chi(p, X), \kappa) \)-blossom, which is just a \(\chi(p, X) \)-sequence \(\vec{U} \) of neighborhoods of \(p \) such that \(p \not\in \text{int} \bigcap_{\alpha \in I} U_\alpha \) for all \(I \in [\chi(p, X)]^\kappa \).

Definition

A \((\lambda, \kappa) \)-splitter of \(X \) is a \(\lambda \)-sequence \(\vec{F} \) of finite open covers of \(X \) such that \(\text{int} \bigcap_{\alpha \in I} U_\alpha = \emptyset \) for all \(I \in [\chi(p, X)]^\kappa \) and \(\vec{U} \in \prod_{\alpha \in I} F_\alpha \).

Lemma

If \(X \) has a \((w(X), \kappa) \)-splitter, then \(N_t(X) \leq \kappa \).

Question (M., 2007)

Does \(N_t(\beta\omega \setminus \omega) \leq \kappa \) imply \(\beta\omega \setminus \omega \) has a \((c, \kappa) \)-splitter in ZFC? (There can be no counterexamples if \(c \) is regular.)
Theorem
If $X = \prod_{\alpha < \kappa} X_{\alpha}$ and $|X_{\alpha}| > 1$ for all $\alpha < \kappa$, then

- $\kappa \geq \chi(p, X) \Rightarrow \chi Nt(p, X) = \aleph_0$;
- $\kappa \geq \chi(X) \Rightarrow \chi Nt(X) = \aleph_0$;
- $\kappa \geq \pi(X) \Rightarrow \pi Nt(X) = \aleph_0$;
- $\kappa \geq w(X) \Rightarrow Nt(X) = \aleph_0$.
Theorem

If \(X = \prod_{\alpha < \kappa} X_\alpha \) and \(|X_\alpha| > 1 \) for all \(\alpha < \kappa \), then

\[\kappa \geq \chi(p, X) \Rightarrow \chi Nt(p, X) = \aleph_0; \]
\[\kappa \geq \chi(X) \Rightarrow \chi Nt(X) = \aleph_0; \]
\[\kappa \geq \pi(X) \Rightarrow \pi Nt(X) = \aleph_0; \]
\[\kappa \geq w(X) \Rightarrow Nt(X) = \aleph_0. \]

Proof (essentially (Malykhin, 1981))

First claim: For each \(\alpha < \chi(p, X) \), choose a nontrivial open neighborhood \(U_\alpha \) of \(p(\alpha) \). Since all open boxes in the product topology have finite support, \(\langle \pi_\alpha^{-1}[U_\alpha] \rangle_{\alpha < \kappa} \) is a \((\chi(p, X), \aleph_0)\)-blossom for \(\tau(p, X) \).
Corollary

\[N_t(X \times 2^{w(X)}) = \aleph_0. \] (Malykhin, 1981)
Corollary

- $Nt \left(X \times 2^{w(X)} \right) = \aleph_0$. (Malykhin, 1981)
- $\pi Nt \left(X \times 2^{\pi(X)} \right) = \aleph_0$.
- $\chi Nt \left(X \times 2^{\chi(X)} \right) = \aleph_0$.
Corollary

\[\mathcal{N}_t (X \times 2^w(X)) = \aleph_0. \] (Malykhin, 1981)

\[\pi \mathcal{N}_t (X \times 2^{\pi(X)}) = \aleph_0. \]

\[\chi \mathcal{N}_t (X \times 2^{\chi(X)}) = \aleph_0. \]

\[\mathcal{N}_t (X^w(X)) = \aleph_0. \]

\[\pi \mathcal{N}_t (X^{\pi(X)}) = \aleph_0. \]

\[\chi \mathcal{N}_t (X^{\chi(X)}) = \aleph_0. \]
Passing to subsets again

Definition
A space X is **homogeneous** if for all $p, q \in X$, there is a bijection $f : X \to X$ with $f(p) = q$ and f and f^{-1} continuous.

Theorem (M., 2009)
Let \mathcal{B} be a base of X. \mathcal{B} includes an $\mathcal{Nt}(X)$-short base of X if
- X is metrizable and X is locally compact or σ-compact,
- X is compact and $\chi(p, X) = w(X)$ for all $p \in X$, or
- X is compact, homogeneous, and $w(X)$ is regular or strong limit.

About the proof
For the second case, we build a $(w(X), \kappa)$-splitter consisting of subcovers of an arbitrary base.
For the third case, we use Misˇ cenko's Lemma to deduce that the second case holds or $\mathcal{Nt}(X) = w(X) +$.
Definition
A space X is **homogeneous** if for all $p, q \in X$, there is a bijection $f : X \to X$ with $f(p) = q$ and f and f^{-1} continuous.

Theorem (M., 2009)
Let \mathcal{B} be a base of X. \mathcal{B} includes an $\mathbb{N}t(X)$-short base of X if
- X is metrizable and X is locally compact or σ-compact,
- X is compact and $\chi(p, X) = w(X)$ for all $p \in X$, or
- X is compact, homogeneous, and $w(X)$ is regular or strong limit.

About the proof
- For the second case, we build a $(w(X), \kappa)$-splitter consisting of subcovers of an arbitrary base.
- For the third case, we use Misčenko’s Lemma to deduce that the second case holds or $\mathbb{N}t(X) = w(X)^{+}$.
Van Douwen’s Problem

Definition
The cellularity \(c(X) \) of \(X \) is the least infinite upper bound of the cardinalities of its cellular families, i.e., pairwise disjoint open families.
Van Douwen’s Problem

Definition
The **cellularity** \(c(X) \) of \(X \) is the least infinite upper bound of the cardinalities of its **cellular families**, *i.e.*, pairwise disjoint open families.

Patterns

▶ Every known compact homogeneous space (**CHS**) is a continuous image of a product of compacta with weight at most \(c \).
Van Douwen’s Problem

Definition
The **cellularity** $c(X)$ of X is the least infinite upper bound of the cardinalities of its **cellular families**, i.e., pairwise disjoint open families.

Patterns

- Every known compact homogeneous space (**CHS**) is a continuous image of a product of compacta with weight at most c.
- It follows that every known CHS has cellularity at most c. (Why? Easy: c^+ is a caliber of any such space.)
- Van Douwen’s Problem asks whether $c(X) \leq c$ for every CHS X. **This is open after ~40 years, in all models of ZFC.**
Van Douwen’s Problem

Definition
The \textbf{cellularity} $c(X)$ of X is the least infinite upper bound of the cardinalities of its \textbf{cellular families}, i.e., pairwise disjoint open families.

Patterns

\begin{itemize}
 \item Every known compact homogeneous space (\textbf{CHS}) is a continuous image of a product of compacta with weight at most \mathfrak{c}.
 \item It follows that every known CHS has cellularity at most \mathfrak{c}. (Why? Easy: \mathfrak{c}^+ is a caliber of any such space.)
 \item Van Douwen’s Problem asks whether $c(X) \leq \mathfrak{c}$ for every CHS X. \textbf{This is open after \textasciitilde40 years, in all models of ZFC.}
 \item It also follows that every known CHS has Noetherian type at most \mathfrak{c}^+. (Why? Not as easy...)\end{itemize}
Sharp bounds

Example (Maurice, 1964)
The lexicographically ordered space $X = 2_{\text{lex}}^\omega \cdot \omega$ is a CHS satisfying $c(X) = c$.

Example (Peregudov, 1997)
The double-arrow space X is compact, homogeneous, and $\mathcal{Nt}(X) = c^+$.
Light factors

Theorem (M., 2007)
If X is CHS and a continuous image of a product of compacta all with weight at most λ, then $\mathcal{N}_t(X) \leq \lambda^+$. If also $\lambda = \aleph_0$ (i.e., X is dyadic), then $\mathcal{N}_t(X) = \aleph_0$.

Some ideas from the proof
▶ A long κ-approximation sequence (for regular κ) is an \in-chain \vec{M} of elementary substructures of $H(\theta)$ with $|M_\alpha| \subseteq \kappa \cap M_\alpha \in \kappa \in M_\alpha$ and $\vec{M} \restriction \alpha \in M_\alpha$.
▶ (A. Miller) Generalizing (Jackson, Mauldin, 2002), given \vec{M} as above, there exists $\vec{\Sigma}$ such that $\Sigma_\alpha \in [M_\alpha]_{\aleph_0}$, $\bigcup \Sigma_\alpha = \bigcup (\vec{M} \restriction \alpha)$, and $N \prec H(\theta)$ for all $N \in \Sigma_\alpha$.
▶ The quotient maps $\pi: X \rightarrow X / M_\alpha$ are open.
▶ We can build a κ-short base of X by taking the union of pullbacks of well-chosen bases of these quotients.
Light factors

Theorem (M., 2007)
If X is CHS and a continuous image of a product of compacta all with weight at most λ, then $\mathbb{N}t(X) \leq \lambda^+$. If also $\lambda = \aleph_0$ (i.e., X is dyadic), then $\mathbb{N}t(X) = \aleph_0$.

Some ideas from the proof

- A long κ-approximation sequence (for regular κ) is an \in-chain \vec{M} of elementary substructures of $H(\theta)$ with $|M_\alpha| \subseteq \kappa \cap M_\alpha \in \kappa \in M_\alpha$ and $\vec{M} \upharpoonright \alpha \in M_\alpha$.
Light factors

Theorem (M., 2007)

If X is CHS and a continuous image of a product of compacta all with weight at most λ, then $\mathbb{N}t(X) \leq \lambda^+$. If also $\lambda = \aleph_0$ (i.e., X is dyadic), then $\mathbb{N}t(X) = \aleph_0$.

Some ideas from the proof

- A long κ-approximation sequence (for regular κ) is an \in-chain \vec{M} of elementary substructures of $H(\theta)$ with $|M_\alpha| \subseteq \kappa \cap M_\alpha \in \kappa \in M_\alpha$ and $\vec{M} \upharpoonright \alpha \in M_\alpha$.

- (A. Miller) Generalizing (Jackson, Mauldin, 2002), given \vec{M} as above, there exists $\vec{\Sigma}$ such that $\Sigma_\alpha \in [M_\alpha]^{<\aleph_0}$, $\bigcup \Sigma_\alpha = \bigcup (\vec{M} \upharpoonright \alpha)$, and $N \prec H_\theta$ for all $N \in \Sigma_\alpha$.
Light factors

Theorem (M., 2007)
If X is CHS and a continuous image of a product of compacta all with weight at most λ, then $\mathbb{N}t(X) \leq \lambda^+$. If also $\lambda = \aleph_0$ (i.e., X is dyadic), then $\mathbb{N}t(X) = \aleph_0$.

Some ideas from the proof

- A long κ-approximation sequence (for regular κ) is an \in-chain \vec{M} of elementary substructures of $H(\theta)$ with $|M_\alpha| \subseteq \kappa \cap M_\alpha \in \kappa \in M_\alpha$ and $\vec{M} \upharpoonright \alpha \in M_\alpha$.

- (A. Miller) Generalizing (Jackson, Mauldin, 2002), given \vec{M} as above, there exists $\vec{\Sigma}$ such that $\Sigma_\alpha \in [M_\alpha]^{<\aleph_0}$, $\bigcup \Sigma_\alpha = \bigcup (\vec{M} \upharpoonright \alpha)$, and $N \prec H_\theta$ for all $N \in \Sigma_\alpha$.

- The quotient maps $\pi: X \to X/M_\alpha$ are open.
Light factors

Theorem (M., 2007)
If X is CHS and a continuous image of a product of compacta all with weight at most λ, then $\mathbb{N}t(X) \leq \lambda^+$. If also $\lambda = \aleph_0$ (i.e., X is dyadic), then $\mathbb{N}t(X) = \aleph_0$.

Some ideas from the proof

- A **long κ-approximation sequence** (for regular κ) is an \in-chain \vec{M} of elementary substructures of $H(\theta)$ with $|M_\alpha| \subseteq \kappa \cap M_\alpha \in \kappa \subseteq M_\alpha$ and $\vec{M} \upharpoonright \alpha \in M_\alpha$.
- (A. Miller) Generalizing (Jackson, Mauldin, 2002), given \vec{M} as above, there exists $\vec{\Sigma}$ such that $\Sigma_\alpha \in [M_\alpha]^{<\aleph_0}$, $\bigcup \Sigma_\alpha = \bigcup (\vec{M} \upharpoonright \alpha)$, and $N \prec H_\theta$ for all $N \in \Sigma_\alpha$.
- The quotient maps $\pi: X \to X/M_\alpha$ are **open**.
- We can build a κ-short base of X by taking the union of pullbacks of well-chosen bases of these quotients.
π-character is crucial.

Definition

- \(\pi \chi(p, X) \) is the least \(\kappa \geq \aleph_0 \) such that \(\tau(p, X) \) is dominated by some \(S \in [\tau^+(X)]^{\leq \kappa} \) (i.e., every neighborhood of \(X \) includes a nonempty open set from \(S \)).

- \(\pi \chi(X) = \sup_{p \in X} \pi \chi(p, X) \).
\(\pi\)-character is crucial.

Definition

- \(\pi \chi(p, X)\) is the least \(\kappa \geq \aleph_0\) such that \(\tau(p, X)\) is dominated by some \(S \in [\tau^+(X)]^{\leq \kappa}\) (i.e., every neighborhood of \(X\) includes a nonempty open set from \(S\)).

- \(\pi \chi(X) = \sup_{p \in X} \pi \chi(p, X)\).

Theorems (M., 2007)

- If \(\pi \chi(p, X) < \text{cf} \kappa = \kappa \leq \chi(p, X)\) for some \(p \in X\), then \(\mathcal{N}_t(X) > \kappa\). (Essentially (Peregudov, 1997))
\(\pi\)-character is crucial.

Definition

- \(\pi(\kappa, X)\) is the least \(\kappa \geq \aleph_0\) such that \(\tau(\kappa, X)\) is dominated by some \(S \in [\tau^+ (X)]_{\leq \kappa}\) (i.e., every neighborhood of \(X\) includes a nonempty open set from \(S\)).

\[
\pi(\kappa, X) = \sup_{\rho \in \kappa} \pi(\rho, X).
\]

Theorems (M., 2007)

- If \(\pi(\kappa, X) < \text{cf} \kappa = \kappa \leq \chi(\kappa, X)\) for some \(\rho \in X\), then \(\mathcal{Nt}(X) > \kappa\). (Essentially (Peregudov, 1997))

- If \(h: \prod_{i \in I} X_i \rightarrow X\) is a continuous surjection, \(X_i\) is compact, and \(w(X_i) < \text{cf} \kappa = \kappa \leq w(X)\) (for all \(i \in I\)), then \(\pi(X) = w(X)\).
π-character is crucial.

Definition

- $\pi \chi(p, X)$ is the least $\kappa \geq \aleph_0$ such that $\tau(p, X)$ is dominated by some $S \in [\tau^+(X)]^{\leq \kappa}$ (i.e., every neighborhood of X includes a nonempty open set from S).

- $\pi \chi(X) = \sup_{p \in X} \pi \chi(p, X)$.

Theorems (M., 2007)

- If $\pi \chi(p, X) < \text{cf } \kappa = \kappa \leq \chi(p, X)$ for some $p \in X$, then $\mathbb{N}t(X) > \kappa$. (Essentially (Peregudov, 1997))

- If $h: \prod_{i \in I} X_i \to X$ is a continuous surjection, X_i is compact, and $w(X_i) < \text{cf } \kappa = \kappa \leq w(X)$ (for all $i \in I$), then $\pi \chi(X) = w(X)$.

- If $h: \prod_{i \in I} X_i \to X$ is a continuous surjection, $\pi \chi(p, X) = w(X)$ for all $p \in X$, X_i is compact, and $w(X_i) \leq \lambda$ (for all $i \in I$), then $\mathbb{N}t(X) \leq \lambda$.
Theorem (M., 2006)
If X is a continuous image of a product of compacta all with weight at most λ, then $\pi_{Nt}(X) \leq \lambda$ and $\chi_{Nt}(X) \leq \lambda$.
More light factors

Theorem (M., 2006)
If X is a continuous image of a product of compacta all with weight at most λ, then $\pi_{Nt}(X) \leq \lambda$ and $\chi_{Nt}(X) \leq \lambda$.

About the proof
This time, we don’t need long κ-approximation sequences. Continuous elementary chains work just fine.
Does every CHS have a flat local base?

Another Pattern

Every known CHS X satisfies $\pi_{Nt}(X) \leq \aleph_1$ and $\chi_{Nt}(X) = \aleph_0$.
Does every CHS have a flat local base?

Another Pattern
Every known CHS X satisfies $\pi_{Nt}(X) \leq \aleph_1$ and $\chi_{Nt}(X) = \aleph_0$.

Theorems (M., 2007)

- If X is a separable CHS and $w(X) < p$, then $\chi_{Nt}(X) = \aleph_0$
Does every CHS have a flat local base?

Another Pattern
Every known CHS X satisfies $\pi_{Nt}(X) \leq \aleph_1$ and $\chi_{Nt}(X) = \aleph_0$.

Theorems (M., 2007)
- If X is a separable CHS and $w(X) < p$, then $\chi_{Nt}(X) = \aleph_0$
- Assuming GCH, $\chi_{Nt}(X) \leq c(X)$ if X is a CHS.
Does every CHS have a flat local base?

Another Pattern
Every known CHS X satisfies $\pi^{\mathcal{N}t}(X) \leq \aleph_1$ and $\chi^{\mathcal{N}t}(X) = \aleph_0$.

Theorems (M., 2007)

- If X is a separable CHS and $w(X) < p$, then $\chi^{\mathcal{N}t}(X) = \aleph_0$
- Assuming GCH, $\chi^{\mathcal{N}t}(X) \leq c(X)$ if X is a CHS.

Attacking Van Douwen’s Problem

- If we found a model of GCH with a CHS X with a local base B such that B is not almost \aleph_1-short, then $c(X) > c$.
- E.g., we could try for $B \equiv_T \omega \times \omega_2$ or $B \equiv_T \omega \times \omega_1 \times \omega_2$.
Does every CHS have a flat local base?

Another Pattern
Every known CHS X satisfies $\pi_{\text{Nt}}(X) \leq \aleph_1$ and $\chi_{\text{Nt}}(X) = \aleph_0$.

Theorems (M., 2007)

- If X is a separable CHS and $\omega(X) < \mathfrak{p}$, then $\chi_{\text{Nt}}(X) = \aleph_0$
- Assuming GCH, $\chi_{\text{Nt}}(X) \leq c(X)$ if X is a CHS.

Attacking Van Douwen’s Problem

- If we found a model of GCH with a CHS X with a local base B such that B is not almost \aleph_1-short, then $c(X) > \mathfrak{c}$.
- E.g., we could try for $B \equiv_T \omega \times \omega_2$ or $B \equiv_T \omega \times \omega_1 \times \omega_2$.
- $X = 2^\omega_{\text{lex}} \times 2^{\omega_1}_{\text{lex}} \times 2^{\omega_2}_{\text{lex}}$ is compact, and $B \equiv_T \omega \times \omega_1 \times \omega_2$ for all local bases B, but X is not homogeneous.
Does every CHS have a flat local base?

Another Pattern
Every known CHS X satisfies $\pi^{\text{Nt}}(X) \leq \aleph_1$ and $\chi^{\text{Nt}}(X) = \aleph_0$.

Theorems (M., 2007)

- If X is a separable CHS and $w(X) < p$, then $\chi^{\text{Nt}}(X) = \aleph_0$
- Assuming GCH, $\chi^{\text{Nt}}(X) \leq c(X)$ if X is a CHS.

Attacking Van Douwen’s Problem

- If we found a model of GCH with a CHS X with a local base B such that B is not almost \aleph_1-short, then $c(X) > c$.
- E.g., we could try for $B \equiv_T \omega \times \omega_2$ or $B \equiv_T \omega \times \omega_1 \times \omega_2$.
- $X = 2^{\omega}_{\text{lex}} \times 2^{\omega_1}_{\text{lex}} \times 2^{\omega_2}_{\text{lex}}$ is compact, and $B \equiv_T \omega \times \omega_1 \times \omega_2$ for all local bases B, but X is not homogeneous.
- (Arhangel’スキ, 2005) If a product of linear orders is a CHS, then all factors are first countable, and hence have weight at most c.

(Andrzej Nowak, 2007)
\(\pi\)-character is crucial, again.

Assuming GCH, \(\chi_{\text{Nt}}(X) \leq c(X)\) if \(X\) is a CHS.

Proof

- **Lemma** (M. 2007). If \(X\) is compact and \(\pi\chi(p, X) \geq \kappa\) for all \(p \in X\), then \(\tau(q, X)\) has \((\kappa, \aleph_0)\)-blossom for some \(q \in X\).
\(\pi\)-character is crucial, again.

Assuming GCH, \(\chi_{\mathit{Nt}}(X) \leq c(X)\) if \(X\) is a CHS.

Proof

- **Lemma** (M. 2007). If \(X\) is compact and \(\pi\chi(p, X) \geq \kappa\) for all \(p \in X\), then \(\tau(q, X)\) has \((\kappa, \aleph_0)\)-blossom for some \(q \in X\).
- Hence, if \(X\) is compact and \(\pi\chi(p, X) = \chi(X)\) for all \(p \in X\), then \(X\) has a flat local base.
\(\pi\)-character is crucial, again.

Assuming GCH, \(\chi_{\mathbb{N}_t}(X) \leq c(X)\) if \(X\) is a CHS.

Proof

- **Lemma** (M. 2007). If \(X\) is compact and \(\pi\chi(p, X) \geq \kappa\) for all \(p \in X\), then \(\tau(q, X)\) has \((\kappa, \aleph_0)\)-blossom for some \(q \in X\).

- Hence, if \(X\) is compact and \(\pi\chi(p, X) = \chi(X)\) for all \(p \in X\), then \(X\) has a flat local base.

- Therefore, given a CHS \(X\), we have \(\chi_{\mathbb{N}_t}(X) = \aleph_0\) or \(\pi\chi(X) < \chi(X)\).
π-character is crucial, again.

Assuming GCH, \(\chi \mathcal{N}_t (X) \leq c (X) \) if \(X \) is a CHS.

Proof

- **Lemma** (M. 2007). If \(X \) is compact and \(\pi \chi(p, X) \geq \kappa \) for all \(p \in X \), then \(\tau(q, X) \) has \((\kappa, \aleph_0) \)-blossom for some \(q \in X \).
- Hence, if \(X \) is compact and \(\pi \chi(p, X) = \chi(X) \) for all \(p \in X \), then \(X \) has a flat local base.
- Therefore, given a CHS \(X \), we have \(\chi \mathcal{N}_t (X) = \aleph_0 \) or \(\pi \chi(X) < \chi(X) \).
- (Arhangel’skii, Ismail) If \(Y \) is a CHS, then \(2^\chi(Y) \leq |Y| \leq 2^{\pi \chi(Y)c(Y)} \).
\(\pi\)-character is crucial, again.

Assuming GCH, \(\chi_Nt(X) \leq c(X)\) if \(X\) is a CHS.

Proof

- **Lemma** (M. 2007). If \(X\) is compact and \(\pi\chi(p, X) \geq \kappa\) for all \(p \in X\), then \(\tau(q, X)\) has \((\kappa, \aleph_0)\)-blossom for some \(q \in X\).

- Hence, if \(X\) is compact and \(\pi\chi(p, X) = \chi(X)\) for all \(p \in X\), then \(X\) has a flat local base.

- Therefore, given a CHS \(X\), we have \(\chi_Nt(X) = \aleph_0\) or \(\pi\chi(X) < \chi(X)\).

- (Arhangel’skiǐ, Ismail) If \(Y\) is a CHS, then
 \[2^\chi(Y) \leq |Y| \leq 2^{\pi\chi(Y)c(Y)}\].

- So, assuming GCH, \(\pi\chi(X) < \chi(X)\) implies \(\chi_Nt(X) \leq \chi(X) \leq c(X)\).
More on π-character

Theorems

- (M., 2008) If X is compact and $\pi_X(p, X) = w(X)$ for all $p \in X$, then $\mathcal{N}_t(X) \leq w(X)$.

- (M., Spadaro, 2010) If X is compact and $\pi_X(p, X) < w(X)$ for a dense set of points, then $\mathcal{N}_t(X) \geq w(X)$, and $\mathcal{N}_t(X) = w(X) + 1$ if $w(X)$ is regular.

Examples

- (M., 2010) If $X = D_{\aleph_\omega} \cup \{\infty\}$, then $\pi_X(X) = \aleph_0$, $w(X) = \aleph_\omega$, and $\mathcal{N}_t(X) = \aleph_\omega + 1$.

- (M., 2010) If $X = \prod_{n < \omega} (D_{\aleph_n} \cup \{\infty\})$, then $\pi_X(X) = \aleph_0$, $w(X) = \aleph_\omega$, and $\mathcal{N}_t(X) = \aleph_\omega$.

More on π-character

Theorems

▶ (M., 2008) If X is compact and $\pi \chi (p, X) = w(X)$ for all $p \in X$, then $Nt (X) \leq w(X)$.

▶ (M., Spadaro, 2010) If X is compact and $\pi \chi (p, X) < w(X)$ for a dense set of points, then $Nt (X) \geq w(X)$, and $Nt (X) = w(X)^+$ if $w(X)$ is regular.
More on π-character

Theorems

- (M., 2008) If X is compact and $\pi_X(p, X) = w(X)$ for all $p \in X$, then $Nt(X) \leq w(X)$.
- (M., Spadaro, 2010) If X is compact and $\pi_X(p, X) < w(X)$ for a dense set of points, then $Nt(X) \geq w(X)$, and $Nt(X) = w(X)^+$ if $w(X)$ is regular.

Examples

- (M., 2010) If $X = D_{\aleph_\omega} \cup \{\infty\}$, then $\pi_X(X) = \aleph_0$, $w(X) = \aleph_\omega$, and $Nt(X) = \aleph_{\omega+1}$.
- (M., 2010) If $X = \prod_{n<\omega}(D_{\aleph_n} \cup \{\infty\})$, then $\pi_X(X) = \aleph_0$, $w(X) = \aleph_\omega$, and $Nt(X) = \aleph_\omega$.
Power homogeneous compacta

Definition (Van Douwen)

A space X is **power homogeneous** if X^α is homogeneous for some $\alpha > 0$.
Power homogeneous compacta

Definition (Van Douwen)

A space X is **power homogeneous** if X^α is homogeneous for some $\alpha > 0$.

▶ Many results about homogeneous compact spaces have been generalized to power homogeneous compact (PHC) spaces.

▶ (Ridderbos, 2006) For example, $2^{\chi(X)} \leq 2^{\pi \chi(X)c(X)}$ for all PHC X.
Power homogeneous compacta

Definition (Van Douwen)
A space \(X \) is **power homogeneous** if \(X^\alpha \) is homogeneous for some \(\alpha > 0 \).

- Many results about homogeneous compact spaces have been generalized to power homogeneous compact (PHC) spaces.
- (Ridderbos, 2006) For example, \(2^{\chi(X)} \leq 2^{\pi\chi(X)c(X)} \) for all PHC \(X \).
- However, it is unknown whether every PHC \(X \) satisfies \(c(X) \leq c \).
Power homogeneous compacta

Definition (Van Douwen)
A space X is **power homogeneous** if X^α is homogeneous for some $\alpha > 0$.

- Many results about homogeneous compact spaces have been generalized to power homogeneous compact (PHC) spaces.
- (Ridderbos, 2006) For example, $2^{\chi(X)} \leq 2^{\pi\chi(X)c(X)}$ for all PHC X.
- However, it is unknown whether every PHC X satisfies $c(X) \leq c$.
- It is also unknown whether every PHC X has a flat local base.
Power homogeneous compacta

Definition (Van Douwen)
A space X is **power homogeneous** if X^α is homogeneous for some $\alpha > 0$.

- Many results about homogeneous compact spaces have been generalized to power homogeneous compact (PHC) spaces.
- (Ridderbos, 2006) For example, $2^{\chi(X)} \leq 2^{\pi \chi(X)c(X)}$ for all PHC X.
- However, it is unknown whether every PHC X satisfies $c(X) \leq c$.
- It is also unknown whether every PHC X has a flat local base.
- Perhaps an easier question: Does GCH imply $\chi_{\mathcal{N}_t}(X) \leq c(X)$ for all PHC X?
A partial answer

Definition

$d(X)$ is the least $\kappa \geq \aleph_0$ such that some $D \in [X]^{\leq \kappa}$ is dense in X.

Perhaps an even easier question:

Does GCH imply $\chi_{\text{Nt}}(X) \leq d(X)$ for all PHC X?

Theorem (M., Ridderbos, 2007)

Given GCH, X PHC, and $\max_{p \in X} \chi(p, X) = \text{cf}(\chi(X)) > d(X)$, there is a nonempty open $U \subseteq X$ such that $\chi_{\text{Nt}}(p, X) = \aleph_0$ for all $p \in U$.
If we stop worrying about homogeneity...

Sometimes compactness doesn’t matter.

(M., 2009) If $p \in X$ and $\overline{X} = Y$, e.g., $Y = \beta X$, then
$\chi_{\mathcal{N}t}(p, X) = \chi_{\mathcal{N}t}(p, Y)$ and $\pi_{\mathcal{N}t}(X) = \pi_{\mathcal{N}t}(Y)$. On the other hand, $\mathcal{N}t(\mathbb{N}) = \aleph_0$ and $\mathcal{N}t(\beta \mathbb{N}) = c^+$.
If we stop worrying about homogeneity . . .

Sometimes compactness doesn’t matter.

(M., 2009) If \(p \in X \) and \(\overline{X} = Y \), e.g., \(Y = \beta X \), then
\[
\chi_{Nt}(p, X) = \chi_{Nt}(p, Y) \quad \text{and} \quad \pi_{Nt}(X) = \pi_{Nt}(Y).
\]
On the other hand, \(Nt(\mathbb{N}) = \aleph_0 \) and \(Nt(\beta \mathbb{N}) = c^+ \).

Product spaces can surprise you.

▶ (Todorˇ cevi´ c, 1985) If \(\text{cf}(\kappa) = \kappa = \kappa^{\aleph_0} \), then there exist directed \(P, Q \) with \(P, Q <_T P \times Q \equiv_T [\kappa]^{<\aleph_0} \).

▶ (M., 2010) Using these \(P \) and \(Q \), we can build \(X, Y \) such that
\[
\chi_{Nt}(X) = \chi_{Nt}(Y) = \aleph_1 \quad \text{and} \quad \chi_{Nt}(X \times Y) = \aleph_0.
\]

▶ (Spadaro, 2008) There are compact \(K, L \) with \(Nt(K) = \aleph_2 \), \(Nt(L) = \aleph_3 \), and \(Nt(K \times L) = \aleph_1 \).

Open: Is \(Nt(X^2) \neq Nt(X) \) possible?
If we stop worrying about homogeneity...

Sometimes compactness doesn’t matter.

(M., 2009) If \(p \in X \) and \(\overline{X} = Y \), e.g., \(Y = \beta X \), then
\[
\chi_{Nt}(p, X) = \chi_{Nt}(p, Y) \quad \text{and} \quad \pi_{Nt}(X) = \pi_{Nt}(Y).
\]
On the other hand, \(Nt(\mathbb{N}) = \mathfrak{N}_0 \) and \(Nt(\beta \mathbb{N}) = c^+ \).

Product spaces can surprise you.

▶ (Todorčević, 1985) If \(\text{cf}(\kappa) = \kappa = \kappa^{\mathbb{N}_0} \), then there exist directed \(P, Q \) with \(P, Q <_T P \times Q \equiv_T [\kappa]^{<\mathbb{N}_0} \).

▶ (M., 2010) Using these \(P \) and \(Q \), we can build \(X, Y \) such that \(\chi_{Nt}(X) = \chi_{Nt}(Y) = \mathfrak{N}_1 \) and \(\chi_{Nt}(X \times Y) = \mathfrak{N}_0 \).

▶ (Sparado, 2010) \(X, Y \) can be modified to get \(Z, W \) such that \(Nt(Z) = Nt(W) = \mathfrak{N}_1 \) and \(Nt(Z \times W) = \mathfrak{N}_0 \).
If we stop worrying about homogeneity...

Sometimes compactness doesn’t matter.

(M., 2009) If \(p \in X \) and \(\overline{X} = Y \), e.g., \(Y = \beta X \), then \(\chi^{\text{Nt}}(p, X) = \chi^{\text{Nt}}(p, Y) \) and \(\pi^{\text{Nt}}(X) = \pi^{\text{Nt}}(Y) \). On the other hand, \(\text{Nt}(\mathbb{N}) = \aleph_0 \) and \(\text{Nt}(\beta \mathbb{N}) = c^+ \).

Product spaces can surprise you.

- (Todorčević, 1985) If \(\text{cf}(\kappa) = \kappa = \kappa^{\aleph_0} \), then there exist directed \(P, Q \) with \(P, Q <_T P \times Q \equiv_T [\kappa]^{<\aleph_0} \).

- (M., 2010) Using these \(P \) and \(Q \), we can build \(X, Y \) such that \(\chi^{\text{Nt}}(X) = \chi^{\text{Nt}}(Y) = \aleph_1 \) and \(\chi^{\text{Nt}}(X \times Y) = \aleph_0 \).

- (Sparado, 2010) \(X, Y \) can be modified to get \(Z, W \) such that \(\text{Nt}(Z) = \text{Nt}(W) = \aleph_1 \) and \(\text{Nt}(Z \times W) = \aleph_0 \).

- (Spadaro, 2008) There are compact \(K, L \) with \(\text{Nt}(K) = \aleph_2 \), \(\text{Nt}(L) = \aleph_3 \), and \(\text{Nt}(K \times L) = \aleph_1 \).
If we stop worrying about homogeneity...

Sometimes compactness doesn’t matter.

(M., 2009) If $p \in X$ and $\overline{X} = Y$, e.g., $Y = \beta X$, then

$$\chi^{Nt}(p, X) = \chi^{Nt}(p, Y)$$

and

$$\pi^{Nt}(X) = \pi^{Nt}(Y).$$

On the other hand, $Nt(\mathbb{N}) = \mathfrak{n}_0$ and $Nt(\beta\mathbb{N}) = c^+.$

Product spaces can surprise you.

- (Todorčević, 1985) If $\text{cf}(\kappa) = \kappa = \kappa^{\mathfrak{n}_0}$, then there exist directed P, Q with $P, Q <_T P \times Q \equiv_T [\kappa]^{<\mathfrak{n}_0}.$

- (M., 2010) Using these P and Q, we can build X, Y such that

$$\chi^{Nt}(X) = \chi^{Nt}(Y) = \mathfrak{n}_1$$

and

$$\chi^{Nt}(X \times Y) = \mathfrak{n}_0.$$

- (Sparado, 2010) X, Y can be modified to get Z, W such that

$$Nt(Z) = Nt(W) = \mathfrak{n}_1$$

and

$$Nt(Z \times W) = \mathfrak{n}_0.$$

- (Spadaro, 2008) There are compact K, L with $Nt(K) = \mathfrak{n}_2,$

$Nt(L) = \mathfrak{n}_3,$ and

$$Nt(K \times L) = \mathfrak{n}_1.$$

- Open: Is $Nt(X^2) \neq Nt(X)$ possible?
Powers

- (M., 2010) We can also use the previous P and Q to build an example of

\[\chi^N_t (\langle p, q \rangle, X^2) = \aleph_0 < \aleph_1 = \chi^N_t (p, X) = \chi^N_t (q, X). \]
Powers

- (M., 2010) We can also use the previous P and Q to build an example of
 $\chi^N t (\langle p, q \rangle, X^2) = \aleph_0 < \aleph_1 = \chi^N t (p, X) = \chi^N t (q, X)$.
- (M., 2007) If $f : X \rightarrow Y$ is continuous and open at p, then
 $\chi^N t (p, X) \leq \chi^N t (f(p), Y)$ (and $\tau(p, X) \geq \tau(f(p), Y)$).

- (M., 2009) If $0 < \gamma < \omega_1$, then
 $\chi^N t (p, X)^\gamma = \chi^N t (p, X)$ and $\chi^N t (X^\gamma) = \chi^N t (X)$.

- However, there are examples of $\chi^N t (X^{\omega_1}) < \chi^N t (X)$ with $\aleph_1 < cf (\chi (X))$.

- (Ridderbos, 2007) If $0 < \gamma < cf (\chi (p, X)))$, then
 $\chi^N t (p^\gamma, X^\gamma) = \chi^N t (p, X)$.

- (M., 2005) If $\chi (p, X) \leq \gamma$ and $|X| > 1$, then
 $\chi^N t (p^\gamma, X^\gamma) = \aleph_0$.
Powers

▶ (M., 2010) We can also use the previous P and Q to build an example of
\[\chi^N_t (\langle p, q \rangle, X^2) = \mathbb{N}_0 < \mathbb{N}_1 = \chi^N_t (p, X) = \chi^N_t (q, X). \]

▶ (M., 2007) If $f : X \to Y$ is continuous and open at p, then
\[\chi^N_t (p, X) \leq \chi^N_t (f(p), Y) \text{ (and } \tau(p, X) \geq \tau(f(p), Y)). \]

▶ Hence, $0 < \alpha < \beta \Rightarrow \chi^N_t (p, X^\beta) \leq \chi^N_t (p \upharpoonright \alpha, X^\alpha).$
We can also use the previous P and Q to build an example of
\[\chi_{Nt}(\langle p, q \rangle, X^2) = \aleph_0 < \aleph_1 = \chi_{Nt}(p, X) = \chi_{Nt}(q, X). \]

If $f : X \to Y$ is continuous and open at p, then
\[\chi_{Nt}(p, X) \leq \chi_{Nt}(f(p), Y) \] (and $\tau(p, X) \geq \tau(f(p), Y)$).

Hence, $0 < \alpha < \beta \Rightarrow \chi_{Nt}(p, X^\beta) \leq \chi_{Nt}(p \upharpoonright \alpha, X^\alpha)$.

If $0 < \gamma < \omega_1$, then $\chi_{Nt}(p^\gamma, X^\gamma) = \chi_{Nt}(p, X)$ and $\chi_{Nt}(X^\gamma) = \chi_{Nt}(X)$.
Powers

- (M., 2010) We can also use the previous P and Q to build an example of
 \[\chi_{\mathbb{N}_t}(\langle p, q \rangle, X^2) = \aleph_0 < \aleph_1 = \chi_{\mathbb{N}_t}(p, X) = \chi_{\mathbb{N}_t}(q, X). \]

- (M., 2007) If \(f : X \to Y \) is continuous and open at \(p \), then
 \[\chi_{\mathbb{N}_t}(p, X) \leq \chi_{\mathbb{N}_t}(f(p), Y) \text{ (and } \tau(p, X) \geq \tau(f(p), Y)) \text{.} \]

- Hence, \(0 < \alpha < \beta \implies \chi_{\mathbb{N}_t}(p, X^\beta) \leq \chi_{\mathbb{N}_t}(p \upharpoonright \alpha, X^\alpha) \).

- (M., 2009) If \(0 < \gamma < \omega_1 \), then \[\chi_{\mathbb{N}_t}(p^\gamma, X^\gamma) = \chi_{\mathbb{N}_t}(p, X) \]
 and \[\chi_{\mathbb{N}_t}(X^\gamma) = \chi_{\mathbb{N}_t}(X). \]

- However, there are examples of \(\chi_{\mathbb{N}_t}(X^{\omega_1}) < \chi_{\mathbb{N}_t}(X) \) with \(\aleph_1 < \text{cf}(\chi(X)) \).

- (Ridderbos, 2007) If \(0 < \gamma < \text{cf}(\chi(p, X)) \), then
 \[\chi_{\mathbb{N}_t}(p^\gamma, X^\gamma) = \chi_{\mathbb{N}_t}(p, X). \]

- (M., 2009) If \(\text{cf}(\chi(p, X)) \leq \gamma < \chi(p, X) \), then
 \[\chi_{\mathbb{N}_t}(p^\gamma, X^\gamma) \leq \chi_{\mathbb{N}_t}(p, X) \leq \chi_{\mathbb{N}_t}(p^\gamma, X^\gamma) +. \]

- (M., 2005) If \(\chi(p, X) \leq \gamma \) and \(|X| > 1 \), then
 \[\chi_{\mathbb{N}_t}(p^\gamma, X^\gamma) = \aleph_0. \]
Powers

- (M., 2010) We can also use the previous P and Q to build an example of
 \(\chi^{\aleph_0} (\langle p, q \rangle, X^2) = \aleph_0 < \aleph_1 = \chi^{\aleph_0} (p, X) = \chi^{\aleph_0} (q, X) \).

- (M., 2007) If \(f : X \rightarrow Y \) is continuous and open at \(p \), then
 \(\chi^{\aleph_0} (p, X) \leq \chi^{\aleph_0} (f(p), Y) \) (and \(\tau(p, X) \geq \tau(f(p), Y) \)).

- Hence, \(0 < \alpha < \beta \Rightarrow \chi^{\aleph_0} (p, X^\beta) \leq \chi^{\aleph_0} (p \upharpoonright \alpha, X^\alpha) \).

- (M., 2009) If \(0 < \gamma < \omega_1 \), then \(\chi^{\aleph_0} (p^\gamma, X^\gamma) = \chi^{\aleph_0} (p, X) \) and \(\chi^{\aleph_0} (X^\gamma) = \chi^{\aleph_0} (X) \).

- However, there are examples of \(\chi^{\aleph_0} (X^{\omega_1}) < \chi^{\aleph_0} (X) \) with \(\aleph_1 < \text{cf} (\chi(X)) \).

- (Ridderbos, 2007) If \(0 < \gamma < \text{cf} (\chi(p, X)) \), then
 \(\chi^{\aleph_0} (p^\gamma, X^\gamma) = \chi^{\aleph_0} (p, X) \).
(M., 2010) We can also use the previous P and Q to build an example of
\[\chi^{\kappa_t}(\langle p, q \rangle, X^2) = \aleph_0 < \aleph_1 = \chi^{\kappa_t}(p, X) = \chi^{\kappa_t}(q, X). \]

(M., 2007) If $f : X \rightarrow Y$ is continuous and open at p, then
\[\chi^{\kappa_t}(p, X) \leq \chi^{\kappa_t}(f(p), Y) \] (and $\tau(p, X) \geq \tau(f(p), Y)$).

Hence, $0 < \alpha < \beta \Rightarrow \chi^{\kappa_t}(p, X^\beta) \leq \chi^{\kappa_t}(p \upharpoonright \alpha, X^\alpha)$.

(M., 2009) If $0 < \gamma < \omega_1$, then $\chi^{\kappa_t}(p^\gamma, X^\gamma) = \chi^{\kappa_t}(p, X)$ and $\chi^{\kappa_t}(X^\gamma) = \chi^{\kappa_t}(X)$.

However, there are examples of $\chi^{\kappa_t}(X^{\omega_1}) < \chi^{\kappa_t}(X)$ with $\aleph_1 < \text{cf}(\chi(X))$.

(Ridderbos, 2007) If $0 < \gamma < \text{cf}(\chi(p, X))$, then
\[\chi^{\kappa_t}(p^\gamma, X^\gamma) = \chi^{\kappa_t}(p, X). \]

(M., 2009) If $\text{cf}(\chi(p, X)) \leq \gamma < \chi(p, X)$, then
\[\chi^{\kappa_t}(p^\gamma, X^\gamma) \leq \chi^{\kappa_t}(p, X) \leq \chi^{\kappa_t}(p^\gamma, X^\gamma)^+. \]
(M., 2010) We can also use the previous P and Q to build an example of
\[\chi_{\mathbb{N}t} (\langle p, q \rangle, X^2) = \aleph_0 < \aleph_1 = \chi_{\mathbb{N}t} (p, X) = \chi_{\mathbb{N}t} (q, X). \]

(M., 2007) If $f : X \to Y$ is continuous and open at p, then
\[\chi_{\mathbb{N}t} (p, X) \leq \chi_{\mathbb{N}t} (f(p), Y) \quad \text{(and } \tau(p, X) \geq \tau(f(p), Y)). \]

Hence, $0 < \alpha < \beta \Rightarrow \chi_{\mathbb{N}t} (p, X^\beta) \leq \chi_{\mathbb{N}t} (p \upharpoonright \alpha, X^\alpha)$.

(M., 2009) If $0 < \gamma < \omega_1$, then $\chi_{\mathbb{N}t} (p^\gamma, X^\gamma) = \chi_{\mathbb{N}t} (p, X)$ and $\chi_{\mathbb{N}t} (X^\gamma) = \chi_{\mathbb{N}t} (X)$.

However, there are examples of $\chi_{\mathbb{N}t} (X^{\omega_1}) < \chi_{\mathbb{N}t} (X)$ with $\aleph_1 < \text{cf}(\chi(X))$.

(Ridderbos, 2007) If $0 < \gamma < \text{cf}(\chi(p, X))$, then
\[\chi_{\mathbb{N}t} (p^\gamma, X^\gamma) = \chi_{\mathbb{N}t} (p, X). \]

(M., 2009) If $\text{cf}(\chi(p, X)) \leq \gamma < \chi(p, X)$, then
\[\chi_{\mathbb{N}t} (p^\gamma, X^\gamma) \leq \chi_{\mathbb{N}t} (p, X) \leq \chi_{\mathbb{N}t} (p^\gamma, X^\gamma)^+. \]

(M., 2005) If $\chi(p, X) \leq \gamma$ and $|X| > 1$, then
\[\chi_{\mathbb{N}t} (p^\gamma, X^\gamma) = \aleph_0. \]
Measuring blossoms

Definition
The \(\lambda \)-wide splitting number at \(p \in X \), or \(\text{split}_\lambda(p, X) \), is the least \(\kappa \) such that \(\tau(p, X) \) has a \((\lambda, \kappa)\)-blossom.
Measuring blossoms

Definition
The λ-wide splitting number at $p \in X$, or $\text{split}_\lambda(p, X)$, is the least κ such that $\tau(p, X)$ has a (λ, κ)-blossom.

Facts (M., 2009)

- $\lambda \leq \mu \Rightarrow \text{split}_\lambda(p, X) \leq \text{split}_\mu(p, X)$.
Measuring blossoms

Definition
The λ-wide splitting number at $p \in X$, or $\text{split}_\lambda(p, X)$, is the least κ such that $\tau(p, X)$ has a (λ, κ)-blossom.

Facts (M., 2009)

- $\lambda \leq \mu \Rightarrow \text{split}_\lambda(p, X) \leq \text{split}_\mu(p, X)$.
- $\text{split}_{\chi(p, X)}(p, X) = \chi_{\text{Nt}}(p, X)$.
Measuring blossoms

Definition
The λ-wide splitting number at $p \in X$, or $\text{split}_\lambda(p, X)$, is the least κ such that $\tau(p, X)$ has a (λ, κ)-blossom.

Facts (M., 2009)

- $\lambda \leq \mu \Rightarrow \text{split}_\lambda(p, X) \leq \text{split}_\mu(p, X)$.
- $\text{split}_{\chi(p, X)}(p, X) = \chi_{\text{Nt}}(p, X)$.
- $\chi(p, X) < \text{cf} \lambda \Rightarrow \text{split}_\lambda(p, X) = \lambda^+$.
Measuring blossoms

Definition
The \(\lambda \)-wide splitting number at \(p \in X \), or \(\text{split}_\lambda (p, X) \), is the least \(\kappa \) such that \(\tau (p, X) \) has a \((\lambda, \kappa)\)-blossom.

Facts (M., 2009)

- \(\lambda \leq \mu \Rightarrow \text{split}_\lambda (p, X) \leq \text{split}_\mu (p, X) \).
- \(\text{split}_{\chi (p, X)} (p, X) = \chi \text{Nt} (p, X) \).
- \(\chi (p, X) < \text{cf} \lambda \Rightarrow \text{split}_\lambda (p, X) = \lambda^+ \).
- For all singular cardinals \(\lambda \),
 \(\text{split}_\lambda (p, X) \leq (\sup_{\mu < \lambda} \text{split}_\mu (p, X))^+ \).
Measuring blossoms

Definition
The \(\lambda \)-wide splitting number at \(p \in X \), or \(\text{split}_\lambda(p, X) \), is the least \(\kappa \) such that \(\tau(p, X) \) has a \((\lambda, \kappa)\)-blossom.

Facts (M., 2009)

\[\lambda \leq \mu \implies \text{split}_\lambda(p, X) \leq \text{split}_\mu(p, X). \]
\[\text{split}_{\chi(p, X)}(p, X) = \chi \text{Nt} (p, X). \]
\[\chi(p, X) < \text{cf} \lambda \implies \text{split}_\lambda(p, X) = \lambda^+. \]
\[\text{For all singular cardinals } \lambda, \]
\[\text{split}_\lambda(p, X) \leq \left(\sup_{\mu < \lambda} \text{split}_\mu(p, X) \right)^+. \]
\[\text{If } \text{cf} \lambda \leq \kappa < \lambda, \text{ then } \text{split}_\lambda(p^\kappa, X^\kappa) = \sup_{\mu < \lambda} \text{split}_\mu(p, X). \]
What about regular limit cardinals?

Definition
Let \(\prod_{i \in I}^{(\kappa)} X_i \) denote the set \(\prod_{i \in I} X_i \) with the topology generated by products of open sets with support smaller than \(\kappa \).
What about regular limit cardinals?

Definition
Let $\prod_{i \in I} X_i$ denote the set $\prod_{i \in I} X_i$ with the topology generated by products of open sets with support smaller than κ.

Example (M., 2009)

- If $p \in X = \prod_{\alpha < \lambda}^{(\lambda)} 2^\alpha$ and λ is strongly inaccessible, then $\text{split}_\mu(p, X) = \aleph_0$ for all $\mu < \lambda$, but $\text{split}_\lambda(p, X) = \chi \text{Nt}(p, X) = \lambda$.
- The proof’s essential ingredient runs short an elementary-submodel proof of the Erdös-Rado Theorem.
Singular character

Example (M., 2009)

Let \(p \in X = \prod_{\alpha < \omega_1} (\mathbb{N}_1) \prod_{\beta < \omega_1} (\mathbb{N}_\omega) 2. \)
Singular character

Example (M., 2009)

- Let \(p \in X = \prod_{\alpha < \omega_1} (\mathcal{N}_1) \prod_{\beta < \mu} (\mathcal{N}_\omega) \cdot 2. \)
- We then have \(\chi(p, X) = \mathcal{N}_1 \),
 \(\chi_{\text{Nt}} (p, X) = \text{split}_{\omega_1} (p, X) = \mathcal{N}_\omega^+ \), and
 \(\chi_{\text{Nt}} (p^{\omega_1}, X^{\omega_1}) = \sup_{\mu < \omega_1} \text{split}_\mu (p, X) = \mathcal{N}_\omega. \)
Example (M., 2009)

- Let \(p \in X = \prod_{\alpha < \omega_1}^{(\aleph_1)} \prod_{\beta < \aleph_\alpha}^{(\aleph_\omega)} 2 \).
- We then have \(\chi(p, X) = \beth_\omega \),
 \(\chi_{\text{Nt}}(p, X) = \text{split}_{\omega_1}(p, X) = \aleph_\omega^+ \), and
 \(\chi_{\text{Nt}}(p^{\omega_1}, X^{\omega_1}) = \sup_{\mu < \beth_{\omega_1}} \text{split}_\mu(p, X) = \aleph_\omega \).
- The key lemma for the proof is that the set of countably supported maps from \(\omega_1 \) to \(\omega \) (with the product ordering) does not have an \((\omega_1, \aleph_0)\)-blossom.
Singular character

Example (M., 2009)

- Let \(p \in X = \prod_{\alpha < \omega_1} (\aleph_\alpha) \prod_{\beta < \omega} 2. \)
- We then have \(\chi(p, X) = \uparrow_{\omega_1}, \chi_{Nt}(p, X) = \chi_{\text{split}}_{\omega_1}(p, X) = \aleph_\omega, \text{ and } \chi_{Nt}(p^{\omega_1}, X^{\omega_1}) = \sup_{\mu < \omega_1} \chi_{\text{split}}_{\mu}(p, X) = \aleph_\omega. \)
- The key lemma for the proof is that the set of countably supported maps from \(\omega_1 \) to \(\omega \) (with the product ordering) does not have an \((\omega_1, \aleph_0)\)-blossom.
- Why? If \(F : \omega_1 \to F_n(\omega_1, \omega, \aleph_1), F \in M \prec H(\aleph_2), \) and \(|M| = \aleph_0, \) then we can use reflect properties of \(F(\omega_1 \cap M) \) to find infinitely many \(F(\alpha) \in M \) all dominated by a single \(g \in F_n(\omega_1, \omega, \aleph_1). \)
Example (M., Spadaro, 2009)

Let $p \in X = \prod_{\alpha < \aleph_\omega}^{(\aleph_1)} 2$. We then have
\[\chi(p, X) = \pi(X) = w(X) = \aleph_\omega^{\aleph_0}. \]
Example (M., Spadaro, 2009)

Let \(p \in X = \prod_{\alpha < \aleph_\omega}^{(\aleph_1)} 2 \). We then have
\[
\chi(p, X) = \pi(X) = w(X) = \aleph_{\omega}^{\aleph_0}.
\]

\(\aleph_1 \leq Nt(X) \leq c^+ \). Moreover, \(c \leq \aleph_{\omega+1} \Rightarrow Nt(X) \leq \aleph_{\omega+1} \).

Open: can we have \(Nt(X) > \aleph_{\omega+1} \)?
Example (M., Spadaro, 2009)

Let \(p \in X = \prod_{\alpha < \aleph_\omega} \mathbb{N}_1 \). We then have
\[
\chi(p, X) = \pi(X) = w(X) = \aleph_{\omega_0}.
\]

\(\aleph_1 \leq Nt(X) \leq c^+ \). Moreover, \(c \leq \aleph_{\omega+1} \Rightarrow Nt(X) \leq \aleph_{\omega+1} \).
Open: can we have \(Nt(X) > \aleph_{\omega+1} \)?

If \(\square_{\aleph_\omega} \) and \(\aleph_{\omega_0} = \aleph_{\omega+1} \), then
\[
Nt(X) = \pi Nt(X) = \chi Nt(p, X) = \aleph_1.
\]
(Why? We can use Bernstein sets and a locally countable \(S \subseteq [\aleph_\omega]^{\aleph_0} \) of size \(\aleph_{\omega+1} \) to build an \(\aleph_1 \)-short base...
Example (M., Spadaro, 2009)

- Let \(p \in X = \prod_{\alpha < \aleph_\omega}^{(\aleph_1)} 2 \). We then have
 \[\chi(p, X) = \pi(X) = w(X) = \aleph_\omega^{\aleph_0}. \]

- \(\aleph_1 \leq \text{Nt}(X) \leq c^+ \). Moreover, \(c \leq \aleph_{\omega+1} \Rightarrow \text{Nt}(X) \leq \aleph_{\omega+1}. \) Open: can we have \(\text{Nt}(X) > \aleph_{\omega+1} \)?

- If \(\Box_{\aleph_\omega} \) and \(\aleph_\omega^{\aleph_0} = \aleph_{\omega+1} \), then
 \[\text{Nt}(X) = \pi \text{Nt}(X) = \chi \text{Nt}(p, X) = \aleph_1. \) (Why? We can use Bernstein sets and a locally countable \(S \subseteq [\aleph_\omega]^{\aleph_0} \) of size \(\aleph_{\omega+1} \) to build an \(\aleph_1 \)-short base...)

- (Soukup)
 \((\aleph_{\omega+1}, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0) \Rightarrow \text{Nt}(X) \geq \chi \text{Nt}(p, X) \geq \aleph_2. \) (The hypothesis is consistent relative (roughly) to a huge cardinal (Levinski, Magidor, Shelah, 1990).)
Example (M., Spadaro, 2009)

- Let \(p \in X = \prod_{\alpha < \aleph_\omega}^{(\aleph_1)} 2 \). We then have
 \[\chi(p, X) = \pi(X) = w(X) = \aleph_\omega^{\aleph_0}. \]

- \(\aleph_1 \leq Nt(X) \leq c^+ \). Moreover, \(c \leq \aleph_{\omega+1} \Rightarrow Nt(X) \leq \aleph_{\omega+1} \).
 Open: can we have \(Nt(X) > \aleph_{\omega+1} \)?

- If \(\square_{\aleph_\omega} \) and \(\aleph_\omega^{\aleph_0} = \aleph_{\omega+1} \), then
 \[Nt(X) = \pi Nt(X) = \chi Nt(p, X) = \aleph_1. \] (Why? We can use Bernstein sets and a locally countable \(S \subseteq [\aleph_\omega]^{\aleph_0} \) of size \(\aleph_{\omega+1} \) to build an \(\aleph_1 \)-short base . . .)

- (Soukup)
 \[(\aleph_{\omega+1}, \aleph_\omega) \rightarrow (\aleph_1, \aleph_0) \Rightarrow Nt(X) \geq \chi Nt(p, X) \geq \aleph_2. \] (The hypothesis is consistent relative (roughly) to a huge cardinal (Levinski, Magidor, Shelah, 1990).)

- Open: Can we have \(\pi Nt(X) > \aleph_1 \)? Equivalently, can \(\langle F_n(\aleph_\omega, 2, \aleph_1), \subseteq \rangle \) fail to be almost \(\aleph_1 \)-short?
Noetherian spectra

Another application of Bernstein sets (M., 2009)
If \(c \geq \kappa \) and \(\kappa \) is weakly inaccessible, then there is a Lindelöf linear order with Noetherian type \(\kappa \).

Excluded Noetherian types (M., 2008)

- The compact linear orders attain all Noetherian types except \(\aleph_1 \) and weak inaccessibles.
Noetherian spectra

Another application of Bernstein sets (M., 2009)

If $c \geq \kappa$ and κ is weakly inaccessible, then there is a Lindelöf linear order with Noetherian type κ.

Excluded Noetherian types (M., 2008)

- The compact linear orders attain all Noetherian types except \aleph_1 and weak inaccessibles.
- The dyadic compacta do not attain Noetherian type \aleph_1.
Noetherian spectra

Another application of Bernstein sets (M., 2009)
If $c \geq \kappa$ and κ is weakly inaccessible, then there is a Lindelöf linear order with Noetherian type κ.

Excluded Noetherian types (M., 2008)

- The compact linear orders attain all Noetherian types except \aleph_1 and weak inaccessibles.
- The dyadic compacta do not attain Noetherian type \aleph_1.
- Open: do the dyadic compacta attain weakly inaccessible Noetherian types?
- Open: do the dyadic compacta attain Noetherian type $\aleph_{\omega+1}$?
Local bases in $\beta \omega \setminus \omega$

Convention

- If \mathcal{U} is an ultrafilter on ω, then order \mathcal{U} by \supseteq.
- Let \mathcal{U}_* denote \mathcal{U} ordered by \supseteq^* (containment modulo $[\omega]^{<\aleph_0}$).

Isbell's Problem

ZFC proves there exists $\mathcal{U} \in \beta \omega \setminus \omega$ such that $\mathcal{U}^* \equiv T \equiv T[c] < \aleph_0$.

Does ZFC prove there exists $\mathcal{V} \in \beta \omega \setminus \omega$ such that $\mathcal{V} \not\equiv T[c] < \aleph_0$?
Local bases in $\beta\omega \setminus \omega$

Convention

- If U is an ultrafilter on ω, then order U by \supseteq.
- Let U_* denote U ordered by \supseteq^* (containment modulo $[\omega]^{<\aleph_0}$).

Facts

- Given $U \in \beta\omega \setminus \omega$, $\tau(U, \beta\omega \setminus \omega)$ is mutually cofinal with U_*.
- Hence, U has a flat local base in $\beta\omega \setminus \omega$ if and only if $U_* \geq_T [\chi(U, \beta\omega \setminus \omega)]^{<\aleph_0}$.
Local bases in $\beta\omega \setminus \omega$

Convention

- If \mathcal{U} is an ultrafilter on ω, then order \mathcal{U} by \supseteq.
- Let \mathcal{U}_* denote \mathcal{U} ordered by \supseteq^* (containment modulo $[\omega]^{<\aleph_0}$).

Facts

- Given $\mathcal{U} \in \beta\omega \setminus \omega$, $\tau(\mathcal{U}, \beta\omega \setminus \omega)$ is mutually cofinal with \mathcal{U}_*.
- Hence, \mathcal{U} has a flat local base in $\beta\omega \setminus \omega$ if and only if $\mathcal{U}_* \geq_T [\chi(\mathcal{U}, \beta\omega \setminus \omega)]^{<\aleph_0}$.
- Likewise, \mathcal{U} has a flat local base in $\beta\omega$ if and only if $\mathcal{U} \geq_T [\chi(\mathcal{U}, \beta\omega \setminus \omega)]^{<\aleph_0}$.

Isbell's Problem

ZFC proves there exists $\mathcal{U} \in \beta\omega \setminus \omega$ such that $\mathcal{U} \not\equiv_T c < \aleph_0$.

Does ZFC prove there exists $\mathcal{V} \in \beta\omega \setminus \omega$ such that $\mathcal{V} \not\equiv_T c < \aleph_0$?
Local bases in $\beta\omega \setminus \omega$

Convention

- If \mathcal{U} is an ultrafilter on ω, then order \mathcal{U} by \supseteq.
- Let \mathcal{U}_* denote \mathcal{U} ordered by \supseteq^* (containment modulo $[\omega]^{<\aleph_0}$).

Facts

- Given $\mathcal{U} \in \beta\omega \setminus \omega$, $\tau(\mathcal{U}, \beta\omega \setminus \omega)$ is mutually cofinal with \mathcal{U}_*.
- Hence, \mathcal{U} has a flat local base in $\beta\omega \setminus \omega$ if and only if $\mathcal{U}_* \geq_T [\chi(\mathcal{U}, \beta\omega \setminus \omega)]^{<\aleph_0}$.
- Likewise, \mathcal{U} has a flat local base in $\beta\omega$ if and only if $\mathcal{U} \geq_T [\chi(\mathcal{U}, \beta\omega \setminus \omega)]^{<\aleph_0}$.

Isbell’s Problem

ZFC proves there exists $\mathcal{U} \in \beta\omega \setminus \omega$ such that $\mathcal{U}_* \equiv_T \mathcal{U} \equiv_T [c]^{<\aleph_0}$. Does ZFC prove there exists $\mathcal{V} \in \beta\omega \setminus \omega$ such that $\mathcal{V} \not\equiv_T [c]^{<\aleph_0}$?
U versus U_*

- This seminar has already heard a lot about recent progress for Tukey classes of the form U by Dobrinen, Raghavan, and Todorčević. I will focus on Tukey classes of the form U_*.
This seminar has already heard a lot about recent progress for Tukey classes of the form \mathcal{U} by Dobrinen, Raghavan, and Todorčević. I will focus on Tukey classes of the form \mathcal{U}_*.

$\mathcal{U}_* \leq_T \mathcal{U} \leq_T [\mathcal{c}]^{<\aleph_0}$ for all $\mathcal{U} \in \beta\omega \setminus \omega$.

Hence, Isbell’s Problem is equivalent to asking if ZFC proves there exists $\mathcal{U} \in \beta\omega \setminus \omega$ such that $\mathcal{U}_* \not\equiv_T [\mathcal{c}]^{<\aleph_0}$.

This seminar has already heard a lot about recent progress for Tukey classes of the form \mathcal{U} by Dobrinen, Raghavan, and Todorčević. I will focus on Tukey classes of the form \mathcal{U}_*.

- $\mathcal{U}_* \leq_T \mathcal{U} \leq_T [\mathfrak{c}]^{<\aleph_0}$ for all $\mathcal{U} \in \beta\omega \setminus \omega$.
- If \mathcal{U}_* is not \aleph_1-directed, then $\mathcal{V} \leq_T \mathcal{U}_*$ for some $\mathcal{V} \in \beta\omega \setminus \omega$.
This seminar has already heard a lot about recent progress for Tukey classes of the form \(\mathcal{U} \) by Dobrinen, Raghavan, and Todorčević. I will focus on Tukey classes of the form \(\mathcal{U}_* \).

\(\mathcal{U}_* \leq_T \mathcal{U} \leq_T [\mathfrak{c}]^{<\aleph_0} \) for all \(\mathcal{U} \in \beta\omega \setminus \omega \).

If \(\mathcal{U}_* \) is not \(\aleph_1 \)-directed, then \(\mathcal{V} \leq_T \mathcal{U}_* \) for some \(\mathcal{V} \in \beta\omega \setminus \omega \).

If \(P \) is \(\aleph_1 \)-directed and \(\kappa \geq \aleph_0 \), then \(P \not\geq_T [\kappa]^{<\aleph_0} \).

Hence, Isbell's Problem is equivalent to asking if ZFC proves there exists \(\mathcal{U} \in \beta\omega \setminus \omega \) such that \(\mathcal{U}_* \not\equiv_T [\mathfrak{c}]^{<\aleph_0} \).
This seminar has already heard a lot about recent progress for Tukey classes of the form U by Dobrinen, Raghavan, and Todorčević. I will focus on Tukey classes of the form U_*.

- $U_* \leq_T U \leq_T [c]^{<\aleph_0}$ for all $U \in \beta\omega \setminus \omega$.
- If U_* is not \aleph_1-directed, then $V \leq_T U_*$ for some $V \in \beta\omega \setminus \omega$.
- If P is \aleph_1-directed and $\kappa \geq \aleph_0$, then $P \not\geq_T [\kappa]^{<\aleph_0}$.
- Hence, Isbell’s Problem is equivalent to asking if ZFC proves there exists $U \in \beta\omega \setminus \omega$ such that $U_* \not\equiv_T [c]^{<\aleph_0}$.

Ultrafilter Tukey classes for \supseteq^*

- (M., 2008) Assuming $p = c$, for every regular $\kappa \in [\aleph_0, c]$, there exists $U_* \equiv_T [c]^{<\kappa}$, which implies $\chi_{\text{Nt}} (U, \beta\omega \setminus \omega) = \kappa$.

- (Aviles, Todorčević, 2010) If $n \geq 2$, $\kappa < m$ σ-linked, and $A_0, \ldots, A_n \subseteq \beta\omega \setminus \omega$ are disjoint open κ sets, then there are clopen $B_0 \supseteq A_0, \ldots, B_n \supseteq A_n$ such that $\bigcap_{i\leq n} B_i = \emptyset$.

- (M., 2009) Assuming $t = c$ and $\Diamond (S_0, c^1)$ (which are implied by $\text{MA} \land c = \aleph_2$), there exists $W : 2^c \to \beta\omega \setminus \omega$ such that $W(f) \upharpoonright \supseteq^* W(g)$ for all $f \neq g$.

- Open: Does CH imply there exist $U, V \in \beta\omega \setminus \omega$ such that $U \supseteq^* V \supseteq^* U$?
Ultrafilter Tukey classes for \supseteq^*

- (M., 2008) Assuming $p = c$, for every regular $\kappa \in [\aleph_0, c]$, there exists $U_* \equiv_T [c]^{<\kappa}$, which implies $\chi \mathcal{Nt} (U, \beta \omega \setminus \omega) = \kappa$.

- (Aviles, Todorčević, 2010) If $n \geq 2$, $\kappa < m_{\sigma-n\text{-linked}}$, and $A_0, \ldots, A_n \subseteq \beta \omega \setminus \omega$ are disjoint open F_κ sets, then there are clopen $B_0 \supseteq A_0, \ldots, B_n \supseteq A_n$ such that $\bigcap_{i \leq n} B_i = \emptyset$.

- (M., 2010) It follows that $U_* \not\equiv_T \kappa \times P$ for all $U \in \beta \omega \setminus \omega$ if $\omega \leq \text{cf}(\kappa) = \kappa < \sup_{n < \omega} m_{\sigma-n\text{-linked}}$ and P is the union of at most κ-many κ^{+}-directed sets. E.g., $U_* \not\equiv_T \omega \times \omega_1$, and $\text{MA}_{\aleph_1} \Rightarrow U_* \not\equiv_T \omega_1 \times \omega_2$.
Ultrafilter Tukey classes for \supseteq^*

- (M., 2008) Assuming $p = c$, for every regular $\kappa \in [\aleph_0, c]$, there exists $U_* \equiv_T [c]^{<\kappa}$, which implies $\chi_{\text{Nt}}(U, \beta \omega \setminus \omega) = \kappa$.

- (Aviles, Todorčević, 2010) If $n \geq 2$, $\kappa < m_{\sigma-n\text{-linked}}$, and $A_0, \ldots, A_n \subseteq \beta \omega \setminus \omega$ are disjoint open F_{κ} sets, then there are clopen $B_0 \supseteq A_0, \ldots, B_n \supseteq A_n$ such that $\bigcap_{i \leq n} B_i = \emptyset$.

- (M., 2010) It follows that $U_* \not\equiv_T \kappa \times P$ for all $U \in \beta \omega \setminus \omega$ if $\omega \leq \text{cf}(\kappa) = \kappa < \sup_{n < \omega} m_{\sigma-n\text{-linked}}$ and P is the union of at most κ-many κ^+-directed sets. E.g., $U_* \not\equiv_T \omega \times \omega_1$, and $\text{MA}_{\aleph_1} \Rightarrow U_* \not\equiv_T \omega_1 \times \omega_2$.

- (M., 2009) Assuming $t = c$ and $\Diamond(S^c_\omega)$ (which are implied by $\text{MA} \land c = \aleph_2$), there exists $W : 2^c \to \beta \omega \setminus \omega$ such that $W(f)_* \not\leq_T W(g)$ for all $f \neq g$.

- Open: Does CH imply there exist $U, V \in \beta \omega \setminus \omega$ such that $U_* \not\leq_T V^*$?

Ultrafilter Tukey classes for \supseteq^*

- (M., 2008) Assuming $p = c$, for every regular $\kappa \in [\aleph_0, c]$, there exists $U_* \equiv_{T} [c]^{<\kappa}$, which implies $\chi_{Nt}(U, \beta \omega \setminus \omega) = \kappa$.

- (Aviles, Todorčević, 2010) If $n \geq 2$, $\kappa < m_{\sigma-n-linked}$, and $A_0, \ldots, A_n \subseteq \beta \omega \setminus \omega$ are disjoint open F_κ sets, then there are clopen $B_0 \supseteq A_0, \ldots, B_n \supseteq A_n$ such that $\bigcap_{i \leq n} B_i = \emptyset$.

- (M., 2010) It follows that $U_* \not\equiv_T \kappa \times P$ for all $U \in \beta \omega \setminus \omega$ if $\omega \leq cf(\kappa) = \kappa < \sup_{n < \omega} m_{\sigma-n-linked}$ and P is the union of at most κ-many κ^+-directed sets. E.g., $U_* \not\equiv_T \omega \times \omega_1$, and $\text{MA}_{\aleph_1} \Rightarrow U_* \not\equiv_T \omega_1 \times \omega_2$.

- (M., 2009) Assuming $t = c$ and $\Diamond(S^c_\omega)$ (which are implied by $\text{MA} \land c = \aleph_2$), there exists $W : 2^c \to \beta \omega \setminus \omega$ such that $W(f)_* \not\leq_T W(g)$ for all $f \neq g$.

- Open: Does CH imply there exist $U, V \in \beta \omega \setminus \omega$ such that $U_* \not\leq_T V_* \not\leq_T U_*$?
The (local) Noetherian (π-)type of $\beta \omega \setminus \omega$

ZFC proves each of the following statements.

- $\pi \text{Nt} (\beta \omega \setminus \omega) = h \leq s \leq \text{Nt} (\beta \omega \setminus \omega) \leq c^+$.
- $\chi \text{Nt} (\beta \omega \setminus \omega) \leq \min \{\text{Nt} (\beta \omega \setminus \omega), c\}$.
- $\text{MA} \Rightarrow \pi \text{Nt} (\beta \omega \setminus \omega) = c \Rightarrow \text{Nt} (\beta \omega \setminus \omega) = c$.
- $r = c \Rightarrow \text{Nt} (\beta \omega \setminus \omega) \leq c$.
- $r < c \Rightarrow \text{Nt} (\beta \omega \setminus \omega) \geq c$.
- $r < c \text{f} c \Rightarrow \text{Nt} (\beta \omega \setminus \omega) = c^+$.

Each of the following statements is consistent with ZFC.

- $\omega_1 = \pi \text{Nt} (\beta \omega \setminus \omega) = \chi \text{Nt} (\beta \omega \setminus \omega) = \text{Nt} (\beta \omega \setminus \omega) < c$.
- $\omega_1 < \pi \text{Nt} (\beta \omega \setminus \omega) = \chi \text{Nt} (\beta \omega \setminus \omega) = \text{Nt} (\beta \omega \setminus \omega) < c$.
- $\omega_1 = \pi \text{Nt} (\beta \omega \setminus \omega) < \text{Nt} (\beta \omega \setminus \omega) < c$.
- $\omega_1 < \pi \text{Nt} (\beta \omega \setminus \omega) < \chi \text{Nt} (\beta \omega \setminus \omega) = c < \text{Nt} (\beta \omega \setminus \omega)$.