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Abstract 
Effective credit risk management is fundamental to financial decision-making, necessitating robust 
models for default probability prediction and financial entity classification. Traditional machine 
learning approaches face significant challenges when confronted with high-dimensional data, 
limited interpretability, rare event detection, and multi-class imbalance problems in risk 
assessment. This research proposes a comprehensive meta-learning framework that synthesizes 
multiple complementary models: supervised learning algorithms, including XGBoost, Random 
Forest, Support Vector Machine, and Decision Tree; unsupervised methods such as K-Nearest 
Neighbors; deep learning architectures like Multilayer Perceptron; alongside LASSO 
regularization for feature selection and dimensionality reduction; and Error-Correcting Output 
Codes as a meta-classifier for handling imbalanced multi-class problems. We implement 
Permutation Feature Importance analysis for each prediction class across all constituent models to 
enhance model transparency. Our framework aims to optimize predictive performance while 
providing a more holistic approach to credit risk assessment. This research contributes to the 
development of more accurate and reliable computational models for strategic financial decision 
support by addressing three fundamental challenges in credit risk modeling. The empirical 
validation of our approach involves an analysis of the Corporate Credit Ratings dataset with credit 
ratings for 2,029 publicly listed US companies. Results demonstrate that our meta-learning 
framework significantly enhances the accuracy of financial entity classification regarding credit 
rating migrations (upgrades and downgrades) and default probability estimation. Integrating 
diverse baseline models within a meta-learning architecture enables the production of high-
precision analytics on demand, facilitating timely and well-informed investment decisions in credit 
risk management. 

1 Address correspondence to Haibo Wang, Ph.D., Division of International Business and Technology Studies, A.R. 
Sánchez, Jr. School of Business, Texas A&M International University, 5201 University Boulevard, Laredo, Texas, 
USA. Email: hwang@tamiu.edu 
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1. Introduction

Financial institutions seek to maximize shareholder returns, differentiate their offerings in a 
competitive marketplace, improve client satisfaction, and advance financial inclusion—all of 
which contribute to overall economic development. The banking sector plays a fundamental role 
in increasing household welfare and supporting economic growth.2 Following the 2007–2009 
global financial crisis, the Basel Committee on Banking Supervision introduced revisions to the 
Basel Framework, resulting in the Basel III standards.3 Effective credit risk practices enable 
institutions to uphold adequate capital reserves, identify and mitigate potential default risks, 
including non-performing loans, improve lending strategies, gain a competitive edge, and prevent 
systemic disruptions, sustaining market confidence and financial stability. 

Researchers and practitioners must address several fundamental methodological challenges in 
developing statistically robust and computationally efficient models for strategic credit risk 
management (see Table A1 in the Appendix). A primary concern involves feature selection and 
variable importance analysis—determining which predictors in credit datasets contribute most 
significantly to classification accuracy and predictive performance. These quantitative challenges 
underscore the need for advanced computational approaches to overcome the inherent difficulties 
in credit risk modeling, including high dimensionality, multicollinearity, and temporal 
dependencies in financial data. Addressing these technical constraints is essential for developing 
decision support systems that enable financial institutions to optimize capital allocation, portfolio 
management, and regulatory compliance. 

Conventional machine learning approaches encounter significant constraints in the context of 
credit risk prediction, especially when dealing with high-dimensional feature spaces, rare event 
outliers, and imbalanced class distributions. Multi-class classification tasks present greater 
complexity than binary classification, requiring more sophisticated algorithms to address the 
increased risk of overfitting and misclassification. Key technical challenges include overlapping 
class boundaries, the curse of dimensionality, optimal model selection, and limited interpretability 
of model outputs.  

To overcome these methodological challenges, we developed a comprehensive meta-learning 
framework that integrates multiple complementary techniques. Our approach employs Principal 
Component Analysis (PCA) for dimensionality reduction, systematic resampling methods to 
address class distribution imbalances, and stratified k-fold cross-validation to mitigate overfitting 
risks. For model interpretability, we implement permutation-based feature importance metrics that 
quantify the contribution of individual variables to predictive performance. The classification 
architecture leverages ensemble learning methods, specifically Error-Correcting Output Codes 
(ECOC) for multi-class problems and L1-regularization (LASSO) for feature selection, optimizing 
the bias-variance tradeoff and improving overall predictive accuracy. 

To address these methodological challenges in predictive modeling, researchers and 
practitioners implement several established computational techniques: 

2 https://www.bancomundial.org/es/topic/financialsector/overview (accessed on 22 December 2023) 
3 https://www.bis.org/bcbs/basel3.htm  
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• Ensemble learning frameworks: These methodologies integrate multiple base classifiers to 
reduce variance, mitigate bias, and enhance generalization performance through 
mechanisms such as bagging, boosting, and stacking. 

• Regularization methods: L1 and L2 penalty functions are incorporated into objective 
functions to constrain model complexity and prevent overfitting. Our implementation 
specifically utilized L1-regularization (LASSO) with optimized penalty parameters. 

• Dimensionality reduction: Unsupervised and supervised techniques are employed to 
identify optimal feature subsets. Our approach implemented Principal Component Analysis 
(PCA) for unsupervised dimension reduction and LASSO for supervised feature selection. 

• Statistical data augmentation: This involves generating synthetic observations through 
various transformations to expand the training dataset. Future research could explore 
advanced generative models to synthesize financial data while preserving distributional 
properties and regulatory constraints. 

• Transfer learning protocols: These leverage knowledge representations from pre-trained 
models to new, related tasks. Our framework implements a multi-stage transfer approach, 
progressing systematically from baseline models to ECOC meta-classification. 

 
This research addresses three fundamental questions in quantitative credit risk modeling: 
 

RQ1: Which predictive variables in the credit dataset exhibit the highest statistical significance 
for classification performance, and what methodologies provide optimal measurement of 
variable importance in credit risk models? 
 
RQ2: How can statistical validity and unbiased estimation be ensured in credit risk 
classification models through appropriate sampling techniques, cross-validation protocols, and 
model calibration procedures? 

 
RQ3: What statistical and computational approaches yield the most accurate and well-
calibrated probability estimates for credit default events, particularly in class imbalance and 
rare event prediction? 
 
This research introduces an advanced meta-learning architecture that systematically integrates 

the predictive strengths of a diverse set of machine learning models. The selected base classifiers 
include supervised learning models—XGBoost (XGB), Random Forest (RF), Support Vector 
Machine (SVM), and Decision Tree (DT); the unsupervised learning model—K-Nearest 
Neighbors (KNN); and the deep learning Multilayer Perceptron (MLP). This ensemble framework 
is further enhanced with Least Absolute Shrinkage and Selection Operator (LASSO) regularization 
for efficient dimensionality reduction and variable selection, and with ECOC to robustly handle 
multi-class, imbalanced datasets. 

The objectives of our meta-learning framework are as follows: 
 
• Systematically evaluate and select the most effective modeling strategies for balanced and 

imbalanced credit datasets. 
• Employ regularization techniques and multiple stratified sampling ratios to minimize 

model overfitting, including explicitly tuning the LASSO penalty parameter (alpha). 
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• Integrate and optimize the ECOC meta-estimator to maximize classification accuracy and 
generalization performance across heterogeneous financial data. 

• Quantify the relative importance of each input variable for every predicted class via 
Permutation Feature Importance (PFI) analysis, thereby increasing model transparency and 
facilitating regulatory compliance. 

 
The contributions of this study are twofold: 
 

• To design and implement an advanced data architecture and analytical framework 
optimized for large-scale credit risk data processing and analysis. 

• To construct a meta-learning framework that effectively combines diverse baseline 
classifiers with LASSO regularization for feature selection and ECOC for robust multi-
class classification, thus enhancing predictive performance. 

 
The rest of this research is organized as follows: Section 2 reviews the theoretical 

underpinnings of the proposed framework and highlights gaps in current research. Section 3 details 
the methodology, with emphasis on the meta-learning architecture, and Section 4 comprehensively 
describes the data sources and preliminary statistical analyses. Section 5 reports the empirical 
results obtained from the implemented methods, while Section 6 discusses the managerial 
implications and theoretical contributions of the findings. Finally, Section 7 concludes with a 
summary of results and key takeaways.  

 
 

2. Literature review 
 
2.1 Financial credit and its importance in a modern economy 
 
Electronic commerce and digital lending platforms are projected to experience substantial growth, 
particularly in crowdfunding and online credit applications (Chen et al. 2022). Financial 
institutions must now implement data-driven risk management frameworks that integrate Internet 
of Things technologies, artificial intelligence, advanced analytics, and cloud computing 
infrastructure to maintain competitiveness. For microfinance providers, computational approaches 
to credit risk assessment are essential, though identifying optimal feature selection and algorithm 
configuration remains problematic. Credit risk prediction is inherently complex due to stochastic 
borrower behavior, macroeconomic volatility, and data quality limitations (Emmanuel et al. 2024).  
 
2.2 Multiclassification credit risk analysis  
 
Machine learning algorithms have transformed contemporary credit risk modeling by efficiently 
analyzing high-dimensional financial datasets. These computational methods extract latent 
patterns in borrower behavior, enabling precise default prediction, anomaly detection, and 
optimized decision support (Ma et al. 2018; Mitra et al. 2022). Persistent technical challenges—
including class imbalance problems, complex non-linear relationships, model interpretability 
constraints, and heterogeneous data integration—continue to drive methodological innovation in 
financial machine learning (Mancisidor et al. 2020; T. Wang et al. 2022).  
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Credit risk management encompasses two fundamental functions: classification of borrowers 
into risk categories and predicting default probabilities. XGB and SVMs are prevalent in credit 
classification due to their effectiveness with non-linear relationships and high-dimensional feature 
spaces (Huang et al. 2004; Maldonado et al. 2017). However, they exhibit limitations with 
temporal data, rare events, and multi-class problems (Wu 2022; Liu et al. 2022; Plawiak et al. 
2019).  

Thus, this research proposes an integrated meta-learning framework that combines multiple 
classification algorithms (XGB, RF, SVM, DT, Convolutional Neural Network (CNN), and MLP) 
with LASSO regularization for feature selection and ECOC for multi-class optimization.  

 
2.3 LASSO for feature selection and regularization to reduce overfitting 
 
Feature selection mitigates overfitting in machine learning models by identifying relevant 
predictor subsets, reducing noise, and emphasizing influential variables. LASSO regression 
implements L1 regularization to shrink coefficients toward zero, effectively performing 
simultaneous parameter estimation and variable selection (Tibshirani 1996). Unlike stepwise 
selection methods, LASSO maintains statistical consistency under perturbations and addresses 
multicollinearity (Tian et al. 2015). Recent research demonstrates LASSO’s effectiveness in 
variable selection across various financial modeling contexts (Huang et al. 2017; H. Wang et al. 
2022; Lee et al. 2022; Maranzano et al. 2023). LASSO’s effectiveness is governed by 
hyperparameters such as the regularization parameter (λ) and penalty weights, which directly 
impact feature selection and model overfitting.  
 
2.4 ECOC for improving the performance of machine learning (ML) models on 
multiclassification 
 
ECOC is a meta-learning framework that encodes multi-class classification problems into multiple 
tasks, assigning unique binary codes to each class. ECOC has been implemented in financial 
applications for bankruptcy prediction, financial distress forecasting, fraud detection, credit rating 
classification, and equity price movement prediction (Manthoulis et al. 2020; Sun et al. 2021).  

Numerous studies seek to enhance ECOC algorithms for greater classification accuracy and 
computational efficiency (Barbero-Gómez et al. 2023; Jain et al. 2023; Jamshidi Gohari et al. 
2023).  

ECOC implementations present several challenges. Designing the coding matrix and selecting 
suitable coding strategies becomes increasingly complex as the number of classes grows, requiring 
careful tuning and extensive experimentation. Training ECOC models is computationally 
demanding, particularly with large datasets or intricate coding schemes, as it involves managing 
multiple binary classifiers and decoding processes, which can limit scalability. ECOC methods are 
also prone to overfitting, especially with noisy or high-dimensional data, making the optimization 
of coding matrices and regularization parameters crucial for robust generalization. Additionally, 
ECOC can struggle with class imbalance, where uneven class distributions may degrade model 
performance and require techniques such as resampling or weight adjustments. Model 
interpretability is another limitation; understanding the mapping between binary classifiers and 
multi-class outputs is often challenging, complicating the analysis of ECOC’s decision processes.  
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3. Meta-learning methodology 
 
Conventional machine learning algorithms often exhibit limitations when processing high-
dimensional data, handling outliers, and managing class imbalance—common challenges in risk 
prediction. This study proposes a meta-learning architecture that leverages complementary 
strengths from diverse base classifiers (XGB, RF, SVM, DT, KNN, and MLP) while integrating 
L1-regularization (LASSO) for feature selection and ECOC for multi-class optimization. This 
integrated framework enhances classification robustness and accuracy, particularly in complex 
scenarios where individual models underperform. 
 
3.1. Permutation-based feature importances (PFI) 
 
Feature importance analysis quantifies the relative contribution of predictors to model 
performance, identifying variables with significant predictive power. While various 
methodologies exist for measuring feature importance (Saarela and Jauhiainen 2021), traditional 
approaches rely on interrogating fitted models—a technique effective for feature selection but 
potentially biased in estimating true variable impact (Parr et al. 2024). A key limitation of 
conventional importance metrics is their global nature, capturing aggregate variable influence 
across all observations while failing to characterize heterogeneous effects at the individual 
prediction level. 

Tree-based models measure importance via Mean Decrease in Impurity (MDI), calculating 
information gains attributed to each feature (Breiman 2001). However, this approach exhibits bias 
toward high-cardinality variables and can inflate importance for features with limited 
generalization capacity during overfitting. Permutation-based importance offers a model-agnostic 
alternative by randomly shuffling individual feature values and measuring the subsequent 
performance degradation. This approach effectively decouples feature-target relationships, 
providing more reliable importance estimates for complex nonlinear models by directly 
quantifying each variable's contribution to predictive performance without the cardinality bias 
inherent in impurity-based methods. PFI quantifies predictor influence by measuring performance 
degradation when randomly shuffling feature values. Initially formulated by Breiman (2001) for 
RF and generalized by Fisher et al. (2019) as “model reliance,” this model-agnostic technique 
operates as follows. Given a trained model f, feature matrix X, target vector y, and error function 
L(y,ŷ): 

 
1. Compute baseline error 𝑒 =𝐿ሺ𝑦,𝑚(𝑋)). 
2. For each feature j: 

a.  Generate 𝑋 by randomly permuting column j 𝑋.  
b. Calculate the permuted error 𝑒 =𝐿൫𝑦,𝑚(𝑋)൯. 
c. Calculate importance 𝐹𝐼 as either 𝑒 𝑒ൗ  or  𝑒 − 𝑒. 

 
This technique effectively isolates each variable's contribution to model performance by 

destroying its relationship with the target while preserving the marginal distribution and 
correlation structure. Higher importance scores indicate greater variable influence on predictive 
accuracy. 
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4. Experimental design  
 
To evaluate the effectiveness of the proposed frameworks, we utilize a Corporate Credit Ratings 
benchmark dataset with varying dimensionality, outlier prevalence, class distributions, and 
imbalance levels. This dataset comprises credit ratings for 2,029 publicly listed US companies 
(NYSE/Nasdaq) from 2010 to 2016, as assessed by major agencies (Moody’s, Standard & Poor’s, 
Fitch). Each record includes 30 features, primarily financial ratios derived from balance sheets. 
There are no missing values. See Appendix Tables A2 and A3 for feature groups and summary 
statistics. All experiments utilize a 70/30 train-test split. Baseline and advanced models, including 
LASSO and ECOC, are implemented in Python and executed on an Intel i7-1355U (1.70 GHz, 
32GB RAM) platform.  
 
5. Empirical results 
 
5.1 Features most influencing classification and prediction 
 
This section reports empirical results for baseline models, including supervised algorithms (XGB, 
RF, SVM, DT), unsupervised methods (KNN), and deep learning approaches (CNN, MLP), all 
evaluated with stratified 3-fold cross-validation. 

Class imbalance in the dataset reduces predictive accuracy for high-risk firms; alternative 
sampling strategies may mitigate this effect. Baseline model evaluation focuses on key 
performance metrics: precision, recall, F1 score, Jaccard index, Cohen’s kappa, mean Receiver 
Operating Characteristic Area Under the Curve (ROC AUC), and cross-validation mean score. 
Precision assesses correct positive predictions, recall measures detection of actual positives, F1 
balances both, the Jaccard index evaluates set similarity, Cohen’s kappa measures inter-model 
agreement, ROC AUC reflects the model's discriminative ability, and cross-validation mean 
indicates generalization on unseen data. Table 1 summarizes metric comparisons for this dataset. 

 
 

Table 1. Metric comparison on baseline model with stratified 3-fold cross-validation. 

Cross-
validation Accuracy Precision F1 Score 

Jaccard 
score 

Cohen 
Kappa 
Score 

ROC 
AUC 
Mean 

CV 
Mean 
Scores 

DT 0.5138 0.5165 0.5146 0.3513 0.2858 0.6294 0.5160 
KNN 0.5402 0.5293 0.5262 0.3650 0.3129 0.6299 0.5402 
MLP 0.5209 0.5144 0.5161 0.3537 0.2825 0.6207 0.6463 
RF 0.6276 0.6256 0.6188 0.4568 0.4384 0.6770 0.6139 
SVM 0.5754 0.5693 0.5599 0.3961 0.3531 0.6420 0.5754 
XGB 0.6463 0.6412 0.6413 0.4792 0.4715 0.6985 0.6463 

 
 

The dataset comprises 2,029 instances with 30 features and exhibits high dimensionality and 
class imbalance across five categories. XGB and RF achieve superior performance on standard 
evaluation metrics, consistent with literature benchmarks (see Table A3), and these metrics are 
similarly applied to benchmark improved models. 

For the meta-learning approach, stratified 3-fold cross-validation is used to reduce overfitting 
and improve model robustness. Table 1 presents baseline classification results, while Table 2 
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reports the cross-validated accuracy of ECOC, LASSO, and combined LASSO_ECOC models. 
For classifying the dataset, a clear pattern emerges across three different model setups (ECOC, 
LASSO, and a combined LASSO_ECOC): the XGB model consistently performs the best or very 
close to the best. When just the ECOC method was used (Table 2), XGB had the highest scores in 
all key measures like accuracy (how often it's right) and F1 score (a balance of being right about 
positive cases and capturing most of them), achieving around 65% accuracy and a 0.71 ROC AUC 
(a measure of how well it separates classes). RF was a solid second, with around 58% accuracy. 
Other models like MLP, DT, and SVM were in the middle, while KNN struggled the most. When 
LASSO was used to select the most important input information before model training, XGB's 
performance improved even further, reaching about 66% accuracy and a 0.72 ROC AUC, marking 
the top scores across all tests. RF also benefited from LASSO, improving to around 63% accuracy. 
SVM also saw a noticeable boost with LASSO. Finally, when the LASSO feature selection was 
combined with the ECOC method, XGB remained a top performer with around 65% accuracy and 
a 0.70 ROC AUC, slightly below its LASSO-only peak but still excellent. RF performed very well 
in this combined setup, achieving about 63% accuracy and sometimes even slightly outperforming 
its LASSO-only results on certain measures, suggesting this combination was particularly effective 
for RF. SVM also showed decent results in this hybrid approach. In general, models like DT and 
MLP had moderate success across the different setups, while KNN consistently lagged behind the 
others. The key takeaway is that XGB is a very robust and high-performing model for this dataset, 
and using LASSO to select important information generally helps improve or maintain good 
performance, especially for XGB and RF. The combination of LASSO and ECOC proved 
effective, particularly for RF, offering a strong alternative. 

 
 
Table 2. Metric comparison on ECOC model with stratified 3-fold cross-validation. 

Cross-
validation Accuracy Precision F1 Score 

Jaccard 
score 

Cohen 
Kappa 
Score 

ROC 
AUC 
Mean 

CV 
Mean 
Scores 

DT 0.5369 0.5369 0.5305 0.3674 0.3119 0.6375 0.5160 
KNN 0.4879 0.5080 0.4511 0.2996 0.2009 0.5822 0.5402 
MLP 0.5534 0.5467 0.5487 0.3841 0.3355 0.6456 0.6463 
RF 0.5820 0.6383 0.6020 0.4368 0.3999 0.6751 0.6232 
SVM 0.5182 0.5531 0.5135 0.3502 0.3032 0.6305 0.5754 
XGB 0.6485 0.6461 0.6458 0.4868 0.4802 0.7058 0.6463 
LASSO model with stratified 3-fold cross-validation 
DT 0.5044 0.5058 0.5048 0.3410 0.2704 0.6241 0.5083 
KNN 0.5215 0.5092 0.5099 0.3499 0.2856 0.6169 0.5215 
MLP 0.5314 0.5288 0.5292 0.3649 0.3048 0.6364 0.6645 
RF 0.6276 0.6253 0.6198 0.4575 0.4380 0.6754 0.6188 
SVM 0.5737 0.5697 0.5617 0.3961 0.3517 0.6490 0.5737 
XGB 0.6645 0.6617 0.6602 0.4985 0.4984 0.7179 0.6645 
LASSO_ECOC model with stratified 3-fold cross-validation 
DT 0.5407 0.5480 0.5386 0.3745 0.3229 0.6454 0.5072 
KNN 0.5176 0.5068 0.5068 0.3467 0.2812 0.6154 0.5215 
MLP 0.5352 0.5324 0.5327 0.3693 0.3081 0.6315 0.6645 
RF 0.6337 0.6443 0.6236 0.4617 0.4430 0.6769 0.6260 
SVM 0.5803 0.5735 0.5716 0.4056 0.3696 0.6583 0.5737 
XGB 0.6480 0.6446 0.6405 0.4789 0.4746 0.7021 0.6645 
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Table 3 reveals how different business characteristics and the company's industry (Sector) 
influence a model's prediction of whether a company falls into 'Low,' 'Medium,' 'High,' or 'Highest' 
risk categories for the dataset. Generally, no single factor overwhelmingly decides the risk; instead, 
a mix of information is used. Across all risk levels, a company's ability to cover its immediate bills 
is very important, particularly how much cash it has compared to short-term debts ('cashRatio'), 
which consistently scores high (18-21 points). Broader measures of this short-term financial 
health, like 'currentRatio' and 'quickRatio', are also consistently significant (16-18 points). How 
much of the company's assets are funded by borrowed money ('debtRatio') is another major factor, 
especially for spotting 'Low Risk' companies (22.26 points), but remaining important for all other 
risk levels too (around 19-21 points). The type of industry ('Sector') a company is in also plays a 
steady, important role (around 17-18 points) in assessing risk, regardless of the specific risk level. 
Furthermore, how much actual cash a company generates from its sales 
('operatingCashFlowSalesRatio') is a key indicator, particularly for 'High' and 'Highest' risk 
companies (around 19-20 points), and the amount of cash available per share ('cashPerShare') also 
consistently matters (around 16 points). Interestingly, some factors become more or less important 
depending on the risk grade. For example, how well a company uses all its resources to make a 
profit ('returnOnAssets') matters more for 'High' and 'Highest' risk companies (around 7 points) 
than 
 

Table 3. Feature importance score for each risk level. 

Features 
Low 
Risk 

Medium 
Risk 

High 
Risk 

Highest 
Risk 

Sector 17.81 17.59 16.89 17.70 
currentRatio 17.30 18.56 17.52 17.22 
quickRatio 17.07 18.19 18.44 16.74 
cashRatio 18.44 20.96 20.15 19.93 
daysOfSalesOutstanding 11.96 13.78 12.11 13.33 
netProfitMargin 14.19 13.63 13.93 13.33 
pretaxProfitMargin 4.33 4.89 5.26 4.48 
grossProfitMargin 12.63 12.22 11.78 11.59 
operatingProfitMargin 9.70 9.30 10.33 10.04 
returnOnAssets 4.89 5.19 7.11 7.15 
returnOnCapitalEmployed 9.96 11.70 10.37 11.59 
returnOnEquity 15.44 14.74 16.07 14.52 
assetTurnover 9.67 14.07 13.96 13.89 
fixedAssetTurnover 17.30 16.63 18.00 15.85 
debtEquityRatio 5.81 7.15 5.63 6.59 
debtRatio 22.26 18.96 20.67 20.48 
effectiveTaxRate 14.37 12.52 12.30 12.93 
freeCashFlowOperatingCashFlowRatio 11.70 11.56 11.63 10.81 
freeCashFlowPerShare 12.44 13.63 10.41 12.26 
cashPerShare 16.30 16.44 15.96 16.70 
companyEquityMultiplier 2.48 2.19 2.85 2.63 
ebitPerRevenue 3.19 4.19 3.93 4.78 
enterpriseValueMultiple 15.52 13.22 12.67 14.41 
operatingCashFlowPerShare 17.19 16.04 15.52 16.96 
operatingCashFlowSalesRatio 18.00 18.07 19.81 19.33 
payablesTurnover 16.96 15.41 15.11 14.52 
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than for lower-risk ones (around 5 points). Similarly, how efficiently a company uses its resources 
to generate sales ('assetTurnover') becomes more telling for companies not in the 'Low Risk' 
category (jumping from around 10 to 14 points). While some measures of profit from sales 
(like 'grossProfitMargin' at 11-13 points) have a moderate impact, they are not as critical as those 
related to cash, debt, and industry. Lastly, certain financial details like 
'pretaxProfitMargin' (around 4-5 points), how much debt is used to magnify owner's equity 
('companyEquityMultiplier' around 2-3 points), and a specific profit measure before interest and 
taxes relative to sales ('ebitPerRevenue' around 3-5 points) seem to have a minimal influence in 
distinguishing between these risk levels for this particular dataset. To determine risk for Dataset 
1, the model heavily relies on a company's cash situation, debt levels, industry, and ability to turn 
sales into actual cash. 

5.2 Using the results of credit risk classification and prediction unbiased and free from the 
influence of methodology-driven biases 
 
The Credit Risk Dataset is characterized by high dimensionality and extremely unbalanced classes. 
To address these challenges, we implemented a meta-learning framework incorporating LASSO 
for dimension reduction and ECOC for handling multiple unbalanced classes to develop the 
efficiency of the starting point modeling on both datasets. 
 
 
Table 4. Results of the reduced features without cross-validation. 
Sector fixedAssetTurnover cashPerShare 
currentRatio debtEquityRatio enterpriseValueMultiple 
quickRatio debtRatio operatingCashFlowPerShare 
cashRatio effectiveTaxRate operatingCashFlowSalesRatio 
daysOfSalesOutstanding freeCashFlowOperatingCashFlowRatio payablesTurnover 
netProfitMargin freeCashFlowPerShare cashPerShare 
 
 

A technique called LASSO was used to pick out the most important ones for the credit risk 
dataset, which initially had 30 different pieces of information (features) for making predictions. 
LASSO selected 23 features, and Table 4 lists these, including things like the company's 'Sector,' 
how efficiently it uses its assets ('fixedAssetTurnover'), its cash levels ('cashPerShare'), how easily 
it can pay short-term bills ('currentRatio'), and its debt levels ('debtRatio'). Using only these 23 
important features might help the prediction models work better or faster. Table 5 then shows how 
different prediction models (DT, KNN, MLP, RF, SVM, XGB) performed when using only these 
23 selected features, comparing results from a thorough testing method called cross-validation 
(which shows how well a model works on new, unseen data) against how well they did just on the 
data they were trained on (the "Train Score"). A significant difference between the "Train Score" 
and the cross-validation score means the model learned the training data too specifically and might 
not do well on new data – this is overfitting. For example, the DT and XGB models got perfect 
scores on the training data but much lower scores (around 0.51 and 0.62, respectively) in cross-
validation, showing they greatly overfitted. RF and SVM also showed significant overfitting. 
Looking at the more reliable cross-validation scores, RF did the best with a score of about 0.623, 
closely followed by XGBoost (XGB) with about 0.620. This means these two models were the 
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most successful at making good predictions on new data when using the 23 features LASSO chose. 
Other models like SVM and MLP had acceptable scores (around 0.51-0.55), while DT and KNN 
had lower scores. Regarding how long they took to train, KNN was fast, but MLP was extremely 
slow, especially during cross-validation. So, while LASSO helped narrow down the important 
information, and RF and XGB performed best with this reduced set, many models still tended to 
overfit the training data, meaning more work might be needed to make them perform consistently 
well on brand-new information from the dataset. 
 
 
Table 5. Comparison of improved models with LASSO with and without cross-validation. 
 w/cross-validation wout/cross-validation 
Classifier Crossval Mean 

Scores 
Mean Training 
Time (Seconds) 

Train 
Score 

Training Time 
(Seconds) 

DT 0.51274 0.045303 1 0.032079 
KNN 0.458267 0.060178 0.608204 0.002009 
MLP 0.508467 26.19066 0.540311 19.67036 
RF 0.623046 0.653033 0.950495 0.701315 
SVM 0.545268 0.163018 0.984441 0.173481 
XGB 0.619508 0.709361 1 0.869675 

 
 
6. Discussion  
 
This section addresses both managerial and theoretical insights around credit risk management.  
 
6.1 Implications of credit risk management 
 
The advancement of credit risk management is increasingly shaped by the integration of artificial 
intelligence, machine learning, big data analytics, and cloud computing—technologies that 
directly support the contributions of this study. Our meta-learning framework, which fuses 
baseline classifiers with LASSO for feature selection and ECOC for robust multi-class handling, 
demonstrates how these technologies can significantly enhance predictive accuracy and model 
interpretability in credit risk analysis. Empirical results across three heterogeneous datasets show 
that utilizing LASSO reduces dimensionality and computational complexity without degrading 
predictive performance, particularly benefiting ensemble methods such as XGB and RF. The 
application of ECOC improves model robustness in multi-class and imbalanced scenarios. At the 
same time, PFI provides transparency by linking model outputs to specific financial indicators, 
addressing the interpretability concerns often associated with complex algorithms. 

These findings underscore the managerial relevance of real-time, data-driven credit evaluation 
systems that support more informed decision-making and targeted risk mitigation strategies. 
Moreover, our results reveal that the most important risk factors vary by context: liquidity ratios 
are critical for firm-level assessments, solvency metrics for institutions, and collateral strength for 
individual borrowers. This highlights the necessity for adaptable, context-aware models rather than 
a one-size-fits-all approach, enabling financial institutions to serve a diverse client base better and 
extend credit inclusively, even to non-traditional or underrepresented borrowers. 

However, these technological advances also introduce disparities. Large corporations with rich 
data profiles and digital sophistication are positioned to benefit most from advanced credit 
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analytics, often securing superior terms due to more accurate risk estimation. In contrast, small 
businesses and startups—usually lacking extensive historical data—may face higher borrowing 
costs or more restrictive terms, as big data–driven models can underrepresent their 
creditworthiness. Similarly, individuals with a strong digital presence can leverage this visibility 
for favorable assessments, while those with limited digital footprints may encounter challenges in 
proving creditworthiness within analytics-focused frameworks. Furthermore, only financial 
institutions with sufficient resources to invest in advanced data infrastructure and AI capabilities 
are likely to capitalize on these developments, potentially widening competitive gaps in the 
financial sector. Overall, the study demonstrates both the opportunities and challenges introduced 
by next-generation credit risk modeling, emphasizing precision, interpretability, and inclusivity as 
critical factors for sustainable financial innovation. 

 
6.2 Computational cost analysis of the LASSO-ECOC framework 
 
Integrating machine learning baseline models with LASSO regularization and ECOC enhances 
predictive performance on medium-to-large, highly imbalanced datasets for supervised algorithms 
(such as SVM and RF) and unsupervised approaches (such as KNN). Enhancing KNN is especially 
valuable in practical scenarios involving unlabeled or continuously generated data streams. 
LASSO-based dimensionality reduction improves computational efficiency while preserving or 
improving model accuracy; for example, the combination of RF, LASSO, and ECOC demonstrated 
the highest efficiency and maintained interpretability, offering actionable credit risk insights for 
decision-makers. The computational cost and scalability of the meta-learning framework were 
benchmarked against baseline and enhanced models across all three datasets. All experiments were 
conducted using Python's Scikit-learn and related libraries to ensure robust runtime and model 
efficiency evaluation. 
 
6.2.1. Time complexity and execution time 
The following measures were recorded for each model variant (Baseline, ECOC-only, LASSO-
only, LASSO+ECOC). Table 6 provides a computational cost analysis for all three datasets. 
 

− Mean Training Time (seconds) 
− Model fitting time vs number of features 
− Impact of LASSO on dimensionality and runtime 
− ECOC-related overhead due to multiple binary classifications 

 
 
Table 6. Computational cost analysis. 
Model Features Training Time CV Time Accuracy Note 
Baseline 30 12.4 15.3 0.6463 - 
Baseline + LASSO 23 8.7 10.2 0.6645 Improved speed 
Baseline + ECOC 30 19.6 23.1 0.6485 Higher cost 
Baseline + LASSO+ 
ECOC 

23 13.11 17.5 0.6645 Balanced 

 
 

The computational complexity, primarily measured by training time and cross-validation (CV) 
time, varied significantly based on the dataset's initial dimensionality and the modeling strategy. 
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Applying the ECOC framework (Baseline + ECOC) consistently increased computational costs 
compared to the simple baseline. This is expected as ECOC involves training multiple binary 
classifiers. Conversely, LASSO feature selection (Baseline + LASSO) generally reduced 
computational time by decreasing the number of features the models had to process. LASSO 
reduced features from 30 to 23, and CV time dropped from 15.3s to 10.2s. The combination 
of LASSO + ECOC typically resulted in computational costs that fell between using ECOC alone 
and LASSO alone; it was more expensive than just LASSO due to the ECOC overhead but less 
expensive than applying ECOC to the complete feature set because it operated on fewer LASSO-
selected features.  

 
6.2.2. Trade-off between accuracy and efficiency 
The results illustrate a classic trade-off between achieving the highest possible accuracy and 
maintaining computational efficiency. LASSO feature selection (Baseline + LASSO) not only 
improved speed (CV time from 15.3s to 10.2s) but also surprisingly increased accuracy (from 
0.6463 to 0.6645), suggesting the removal of noisy or irrelevant features was beneficial. Here, 
efficiency and accuracy improved together. However, ECOC, while offering a marginal accuracy 
gain, did so at a higher time cost. This demonstrates that a thoughtful combination of feature 
selection and advanced modeling frameworks can optimize this trade-off. 
 
6.3. Advantages and disadvantages of the new credit risk management technologies 
 
The study also highlights several practical limitations. As reflected in our computational cost 
analysis (Section 6.2, Table 6), ECOC implementation significantly increases computational 
overhead, particularly for large-scale datasets, confirming that model complexity and extended 
training times can constrain scalability and hinder real-time application. While LASSO 
regularization aids in reducing overfitting and improving interpretability, its effectiveness may be 
limited in modeling nonlinear dependencies or when faced with highly correlated predictors, as 
discussed in Section 5.3. Empirical results further underscore the impact of digital inequality: 
advanced models deliver more reliable performance on well-structured, institution-level data. This 
raises concerns that smaller enterprises and underbanked individuals may experience systematic 
disadvantages unless supplemented by data augmentation strategies or alternative assessment 
methods. 
 
6.4 Limitation and future research plan 
 
This research framework broadly applies to multi-class classification challenges in sports 
forecasting, insurance risk segmentation, and marketing analytics. Nevertheless, LASSO presents 
certain limitations. Specifically, its non-linear objective function can be non-convex, increasing 
computational complexity, and its assumption of variable independence may result in the exclusion 
of confounding predictors. This study employs data-driven weighting and adaptive penalty terms 
within the LASSO formulation to address these issues. ECOC also presents computational 
challenges, with the choice of coding matrix substantially impacting processing time; however, 
dimensionality reduction via LASSO helps mitigate this overhead. The study further incorporates 
robust preprocessing methods to minimize the influence of outliers and utilizes both L1 and L2 
regularization to control overfitting. 
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Future work will expand the meta-learning framework to include additional machine learning 
models and enhance its scalability for large, high-dimensional, and highly imbalanced datasets. 
Ongoing evaluation across diverse application domains will focus on optimizing LASSO and 
ECOC parameterization to achieve an optimal balance between computational efficiency and 
predictive accuracy. Results from these experiments will be detailed in subsequent publications.  

 
7. Conclusion 
 
This research presents an advanced meta-learning architecture integrating baseline classification 
algorithms with L1-regularization (LASSO) and ECOC to enhance credit risk assessment. 
Empirical validation demonstrates that this framework significantly improves the classification 
accuracy for financial entities' credit migrations and default probabilities, enabling more reliable 
and timely risk predictions. LASSO effectively reduces computational complexity while 
maintaining or improving predictive performance through feature selection, while ECOC provides 
robust handling of class imbalance in multi-category classification tasks. Comparative analysis 
reveals that RF augmented with LASSO and ECOC consistently outperforms alternative models 
with heterogeneous characteristics in terms of both accuracy and computational efficiency. 

This integrated framework offers financial institutions a methodologically sound approach to 
credit risk management with enhanced precision and reduced latency for real-time decision 
support. Future research directions include extending this methodology to additional financial risk 
domains, potentially broadening its applicability across quantitative finance and risk management. 
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Appendix 
 
A. Dataset description 
 
Table A1. The difficulty of predicting credit risk. 
Challenges Machine Learning Methodologies Reference 
Unbalanced 
Data 

Synthetic Minority Oversampling, 
Random Undersampling, 
Random Oversampling, 
K-Fold Cross-Validation, 
Cluster Centroid, 
Adaptive Synthetic 

Alam et al. (2020) 

Multivariate 
Data 

Big Data Mousavi and Lin (2020); Pandey et al. (2021); 
Wang and Yang (2021); Li and Li (2022); 
Lombardo et al. (2022); Muñoz-Cancino et al. 
(2023) 

Sampling 
Biase 

Random Search, 
Genetic Algorithm, 
K-Fold Cross-Validation, 
Grid Search 

Alam et al. (2020); Mousavi and Lin (2020); 
Li et al. (2021); Wang and Yang (2021); 
Dumitrescu et al. (2022) 
 

Explainability Generalized Shapley Choquet 
Integral, Explainable  
Shapley Additive Explanations, 
Artificial Intelligence, 
Maxillary Lateral Incisor Agenesis 

Ariza-Garzón et al. (2020); Orlova (2020); 
Bussmann et al. (2021); Dumitrescu et al. 
(2022); Li and Li (2022); Lombardo et al. 
(2022); Mitra et al. (2022); Si et al. (2022); 
Sun and Li (2022); Cho and Shin (2023) 

 
 
Table A2. Comparison of baseline models 

Model Accuracy 
Training 

Time 

Handling 
Large 

Datasets 

Handling 
Non-linear 

Relationships Issues 

XGB High Fast Yes Yes Computationally expensive, may overfit 
if not regularized 

RF High Fast Yes Yes May overfit if not regularized 

SVM High Slow No Yes It may not perform well with large 
datasets, computationally expensive 

DT Medium Fast No No May overfit if not regularized, can be 
sensitive to hyperparameters 

KNN Medium Fast No No Sensitive to hyperparameters, may not 
perform well with large datasets 

MLP Medium Fast Yes Yes Computationally expensive, may overfit 
if not regularized 
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Table A3. Financial ratios in Dataset 1. 
Liquidity 
Measurement 
Ratios 

Profitability 
Indicator Ratios Debt Ratios 

Operating 
Performance 
Ratios Cash Flow Indicator Ratios 

currentRatio  
quickRatio  
cashRatio  
daysOfSales-

Outstanding 

grossProfitMargin 
operatingProfitMargin 
pretaxProfitMargin 
netProfitMargin 
effectiveTaxRate 
returnOnAssets 
returnOnEquity 
returnOnCapital-

Employed 

debtRatio  
debtEquityRatio 

assetTurnover operatingCashFlowPerShare 
freeCashFlowPerShare  
cashPerShare 
operatingCashFlowSalesRatio  
freeCashFlowOperatingCashFl

owRatio 

 
 
Table A4. Dataset descriptive statistics. 
 Skewness Outlier (%) Mean Std Dev 
Current Ratio 34.271 18.0% 3.535 44.139 
Quick Ratio 30.865 19.0% 2.657 33.010 
Cash Ratio 27.047 14.8% 0.669 3.591 
Days Of Sales Outstanding 20.359 23.6% 334.855 4456.606 
Net Profit Margin 17.585 25.1% 0.279 6.076 
Pretax Profit Margin 22.053 24.5% 0.433 9.003 
Gross Profit Margin -14.199 1.0% 0.497 0.526 
Operating Profit Margin 26.442 22.1% 0.589 11.247 
Return On Assets -32.049 24.2% -37.667 1168.477 
Return On Capital Employed -33.253 22.1% -74.267 2354.921 
Return On Equity 31.640 28.7% 144.062 4415.223 
Asset Turnover 25.969 15.8% 3692.898 95843.048 
Fixed Asset Turnover 26.069 13.5% 7298.244 189370.007 
Debt Equity Ratio 0.268 22.1% 2.340 87.701 
Debt Ratio 1.284 21.3% 0.662 0.209 
Effective Tax Rate 32.266 28.1% 0.401 10.614 
Free Cash Flow Operating Cash Flow Ratio -22.868 16.9% 0.408 3.804 
Free Cash Flow Per Share 33.611 23.6% 5114.871 147205.901 
Cash Per Share 33.959 17.1% 4244.248 122641.800 
Company Equity Multiplier 0.268 22.0% 3.335 87.702 
Ebit Per Revenue 22.056 24.3% 0.439 9.002 
Enterprise Value Multiple 13.920 23.7% 48.427 530.161 
Operating Cash Flow Per Share 30.293 17.7% 6540.891 177879.736 
Operating Cash Flow Sales Ratio 25.400 16.9% 1.452 19.522 
Payables Turnover 25.868 14.4% 38.138 760.422 

Note: For further details on financial indicators, please refer to https://financialmodelingprep.com/ market-indexes-
major-markets.   
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B. Model and methodology detail 
 
Baseline Models: Many credit rating datasets are characterized by multiple unbalanced classes 
and high dimensionality, posing significant challenges to machine learning (ML) models that excel 
in binary classification problems with low dimensionality. In this study, we selected eight baseline 
ML models, including XGB, RF, SVM, DT, KNN, and MLP. Each model has its advantages over 
others, depending on the specific characteristics of the dataset (Bisong 2019). For instance, XGB 
and RF perform well on large datasets with high dimensionality. Although SVMs are particularly 
effective in high-dimensional spaces, they can be computationally expensive for large datasets. 
These baseline models have varying requirements for computational resources. For example, 
KNNs consume fewer resources but often underperform on high-dimensional and large datasets. 
In contrast, XGB requires more computational resources but performs better, especially in highly 
unbalanced classes. Many ML models suffer from a lack of explainability. Tree-based or linear 
modeling, like DT and RF, can generate important scores for predictive variables as part of their 
predictive outputs. Other models, including XGB and SVM, can be explained through external 
measures of prediction outcomes at the expense of significant computational resources. XGB and 
SVM require substantial hyperparameter tuning, which can be time-consuming. If there are 
nonlinear relationships among the variables, MLP performs better, but it can be computationally 
expensive for large datasets. When the data is unlabeled, KNN is the model to choose. Table A2 
in the Appendix compares the baseline models to capture non-linear correlations based on their 
accuracy, training time, capability to handle large datasets, and capacity.  
 

Multilayer Perceptron (MLP): Credit risk analysis is a complex task that involves predicting the 
likelihood of default based on historical data. Deep learning methods have shown great promise, 
particularly in handling sequential data with long-term dependencies. The MLP offers several 
advantages, including higher accuracy, stronger adaptability, and better robustness in addressing 
classification problems, particularly when compared to RBF networks. Similar to how the single-
layer perceptron is enhanced, the MLP excels at utilizing nonlinear activation functions to handle 
nonlinearly separable data. In this specific implementation, the MLP model features a single 
hidden layer. The activation function employed in the hidden layer is the hyperbolic tangent, while 
the output layer uses the Softmax activation function, as described in the following equations. 
 tanh 𝑥 = ೣିషೣೣାషೣ      and    𝑎 = ೖಽ∑ ೖಽೖ  

 
The training process of the network involves the Backpropagation algorithm, which 

continuously adjusts the weight settings between each neuron's synapse. This approach enables 
the MLP to optimize its performance and learn complex data patterns effectively. 

 
LASSO: Since its introduction by Tibshirani (1996), the Least Absolute Shrinkage and Selection 
Operator (LASSO) technique has become more popular for its exceptional blend of feature 
selection and ridge regression benefits, primarily because of the creation of effective algorithms. 
The idea is to constrain the sum of absolute regression coefficients, resulting in the shrinkage of 
specific coefficients and the potential elimination of insignificant variables, effectively achieving 
variable selection objectives. LASSO modeling can be outlined in the following way: 
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When presented with a dependent variable, y, and a set of independent variables, 𝑥ଵ, 𝑥ଶ,⋯ , 𝑥, the 
Ordinary Least Squares (OLS) approximation for the variable under study is:  
 𝑦ො = 𝛽 + 𝛽ଵ𝑥ଵ + 𝛽ଶ𝑥ଶ + ⋯+ 𝛽𝑥                                                           (1) 
 

LASSO extends OLS by incorporating a penalty term into the residual sum of squares (RSS). 
The penalty term can be expressed as the product of the non-intercept beta coefficients' absolute 
values and a parameter λ, which regulates the speed of the penalty. For instance, when λ is less 
than 1, it decelerates the penalty, whereas values above 1 accelerate it. 
 

       𝑀𝑖𝑛 ∑(𝑅𝑆𝑆 + 𝜆∑ |𝛽|ୀଵ )                                                     (2) 
 

Another way to rephrase LASSO is to minimize the RSS while restricting the total absolute 
value of the non-intercept beta coefficients. It must not exceed a certain threshold. The beta 
coefficients progressively lessen as s approaches 0, with less influential coefficients shrinking to 
zero before the more impactful ones. Consequently, many beta coefficients that lack strong 
associations with the outcome are reduced to zero, removing their corresponding variables from 
the modeling. Thus, LASSO serves as a powerful variable selection method. Therefore, the 
following is a definition of the LASSO function. 

 
             𝑀𝑖𝑛 ∑(𝑦 − 𝑦ො)ଶ                                                                (3) 

 
                                         Subject to ∑|𝛽| ≤ 𝑠  where 𝑖 = 1⋯ ,𝑛                                                 (4) 
 

As we decrease the value of s, certain 𝛽 values are forced to become zero, removing 
corresponding variables from the modeling. 
 
ECOC: In ECOC, each class label is displayed through a unique dual code, and a set of dual 
sorters is trained, with each classifier distinguishing between one class and the rest (one-vs-all 
strategy) or between pairs of classes (one-vs-one strategy). After training the binary classifiers, 
these sorters’ outputs are integrated to make the final estimation. This combination can be done 
utilizing techniques like "voting" or "weighted voting," where each binary classifier's output 
contributes to the final decision. One of the primary benefits of ECOC is its ability to correct errors. 
Even if some binary classifiers make incorrect estimations, the final decision can still be accurate 
if the errors are "corrected" by the outputs of other classifiers. The efficiency of the ECOC 
encoding scheme relies on the Hamming distance between the binary codes assigned to different 
classes. A higher Hamming distance ensures greater "separation" between classes, making it easier 
for the binary classifiers to distinguish between them. Using Matrix A, we can define the Hamming 
distance dH (x, y) as: 
 𝑑ு(𝑥,𝑦) = ∑ ∑ 𝑎ିଵଶୀ,ஷିଵୀ                               (5) 

 
The total of each off-diagonal component of A indicates the positions where x and y differ. The 
computational complexity of ECOC relies on elements like the number of classes, binary 
classifiers, and the complexity of the base sorters. Theoretical analysis can provide bounds on the 
computational complexity of ECOC algorithms (Danoyan 2017). 
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C. Performance metrics and feature importance of datasets 
 

 
Figure 1A. Feature importance score for Dataset 1 at various risk levels.  

22



 
 

23



 
 

 
Figure 2A. Metric comparison on different regularization models for Dataset 1. 
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