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Abstract 
This paper addresses the single-assignment uncapacitated multi-level facility location (MFL) 
problem, which has numerous applications, including tactical and strategic supply chain 
management. We consider four- and five-level facilities (4-LFL and 5-LFL). Although the MFL 
has been addressed in the literature in various settings, solutions to large-scale, realistic problems 
are still lacking. This paper considers several variants of the variable neighborhood descent (VND) 
method, including BVND, PVND, CVND, and UVND, for the problem. In each case, a multi-start 
strategy with strong diversification components is provided. Extensive computational experiments 
are presented to compare the methods for large-scale problems involving up to 10,000 customers, 
150 distribution centers, 50 warehouses, and 30 plants in the case of 4-LFL; and 8,000 customers, 
150 distribution centers, 50 warehouses, 50 plants, and 100 suppliers in the case of 5-LFL. 
Sensitivity analyses, supported by appropriate statistical methods, validate the effectiveness of the 
heuristics’ results. 

Keywords: Multi-level Facility Location Problem, Variable Neighborhood Descent Methods, 
Large-Scale Optimization  

1. Introduction

This paper focuses on multi-level facility location (MFL) problems. In the literature, MFL is 
referred to by various terminologies, including multi-echelon facility location, multi-stage facility 
location, hierarchical facility location, multi-layer facility location, and k-level facility location (k-
LFL). Here, we interchangeably refer to these problems as MFL and k-LFL, with k equal to 4 and 
5. The problem has far-reaching applications in various settings, including tactical and strategic 
supply chain configuration and transportation planning (Muriel and Simchi-Levi 2003; Melo, 
Nickel, and Saldanha-da-Gama 2009; Ortiz-Astorquiza, Contreras, and Laporte 2018; Kumar et 
al. 2020; Janjevic, Merchán, and Winkenbach 2021; Li, Li, and Jiang 2021; Kang, Shen, and Xu 
2022; Borajee, Tavakkoli-Moghaddam, and Madani-Saatchi 2023; Ouyang et al. 2023; Chen and 
Chen 2025; Amiri-Aref and Doostmohammadi 2025; Wandelt, Wang, and X. Sun 2025). For 
example, Amiri-Aref and Doostmohammadi (2025) emphasize the integration of strategic 
decisions regarding the number and location of retailers, collection center facilities, as well as
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USA. Email: hwang@tamiu.edu  
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decisions related to manufacturing, remanufacturing, and recycling, inventory levels, and fleet 
sizes across the supply chain network.  

A comprehensive review by Farahani et al. (2014) indicates the model’s remarkable 
adaptability. The model has been used to solve public welfare problems, such as determining the 
optimal sites for new healthcare clinics or positioning emergency medical services for the fastest 
response times. At the same time, the model can handle complex logistical and infrastructure 
planning, from organizing municipal solid waste management systems to optimizing the layout of 
production and distribution networks. Its utility even extends into designing more efficient 
computer and telecommunication systems. Recent applications in services have been reported in 
Ahmadi-Javid, Seyedi, and Syam (2017), Gendron, Khuong, and Semet (2017), Rostami et al. 
(2018), Mogale, Cheikhrouhou, and Tiwari (2020), Majumdar et al. (2023), Kar and Jenamani 
(2024, 2025), Kumar and Kumar (2024), Ariningsih et al. (2025), and Sebatjane (2025). In a survey 
of 50 years of research in Computers & Operations Research, Guan et al. (2025) also emphasize 
the application of MFL in various settings in operations research.  

In a recent survey of facility location in healthcare, Ahmadi-Javid, Seyedi, and Syam (2017) 
emphasize that health systems are hierarchical, resulting in various types of services that differ in 
cost and complexity. From local clinics to major hospitals, their placement is critical. Ariningsih 
et al. (2025) conducted a multi-echelon analysis of the pharmaceutical distribution network and 
waste management. Tsao, Balo, and Lee (2024) emphasize the importance of making strategic 
MFL decisions that will enhance supply chain resilience against natural disasters. Janinhoff et al. 
(2024) and Janjevic, Merchán, and Winkenbach (2021) focus on multi-facility locations of parcel 
lockers for last-mile delivery to solve the final, and often most difficult, logistical puzzle of getting 
a package to a customer. 

Although hub-location analysis differs from the hierarchical model mentioned in this paper, it 
is also considered a multi-echelon approach. It can benefit from our work here, and vice versa. For 
example, Wandelt, Wang, and Sun (2025) and Ouyang et al. (2023) emphasize the multi-echelon 
location analysis of the e-commerce last-mile delivery system.  

The remainder of this article is structured as follows. We first define the MFL model of this 
study, followed by a literature review, and a discussion of the contribution of this paper. Next, we 
describe the variable neighborhood descent (VND) search process for the problem and provide 
several variants of the VND, including Basic Variable Neighborhood Descent (BVND), Pipe 
Variable Neighborhood Descent (PVND), Cycle Variable Neighborhood Descent (CVND), and 
Union Variable Neighborhood Descent (UVND). Extensive computational experiments are 
conducted for 4- and 5-LFL on large-scale problems. Sensitivity analyses, supported by 
appropriate statistical methods, are used to validate the effectiveness of the heuristics’ results. 
Managerial implications are then presented; and finally, the article concludes and provides 
suggestions for further research.  

2. Problem Definition

The single-assignment MFL, known as k-LFL, is defined as follows. This paper considers 4- and 
5-level facilities, i.e., 4-LFL and 5-LFL. In the 4-LFL, we have Levels 1 through 4, while in the
5-LFL, we have Levels 1 through 5. The following notations are used to explain the problem:
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R:  Number of retail stores (Level 1) 
D:  Number of distribution centers (Level 2) 
W:  Number of warehouses (Level 3) 
P:  Number of plants (Level 4) 
S:  Number of suppliers (Level 5) 
r:  A retail store, r=1,…, R 
d:  A distribution center, d=1,…, D 
w:  A warehouse, w=1, …, W 
p:  A plant, p=1,…, P 
s:  A supplier, s=1,…, S 
(s,p,w,d,r), a feasible solution for a retailer r=1,…, R 

 
Considering 5-LFL, each retail store 𝑟 ∈ 𝐿𝑒𝑣𝑒𝑙 1 must be served via a single-assignment 

product (a bundle of products), starting from Level 5 and finally reaching r. In that, a bundle of 
products flows from Level (k+1) to Level k (for k=1,…,4); however, an element in Level k can 
receive products only from a set of elements in facilities in Level (k+1) (for k=1,…,4).  

Furthermore, each retail store 𝑟 ∈ 𝐿𝑒𝑣𝑒𝑙 1, besides being interested in receiving a bundle of 
products from an eligible Level 2 facility, it may also only be interested in receiving products from 
an eligible set of facilities in Level 4 (i.e., an eligible facility 𝑝 ∈ 𝐿𝑒𝑣𝑒𝑙 4). This may occur in 
reality, as retailers are often interested in products from specific facilities (e.g., Level 4 plants, 
facilities). A general topology of such a complex network of facilities is illustrated in Figure 1. A 
schedule for transporting a bundle of products to a retail store 𝑟 ∈ 𝐿𝑒𝑣𝑒𝑙 1 is illustrated by path 
(s,p,w,d,r) in Figure 1.  

 
 

 
Figure 1. Topology of a 5-LFL. 

 
 

Due to many real factors such as resource limitations and market considerations, we impose 
upper bounds on the number of facilities selected in each level k (k=2,...,5). Transporting products 
through such a complex network incurs some costs. Opening a facility at Level k (for k=2,…,5) 
involves a one-time fixed cost, while moving a bundle of products from Level (k+1) to Level k (for 
k=1,…,5) incurs a cost each time it is moved. The objective is to serve all retailers (i.e., elements 
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of the Level 1 facility) while minimizing total costs. We defined the problem for k=5; however, it 
can similarly be defined for k=4. 

This problem has numerous applications in supply chain management. It is similar to the 
problem discussed in Ortiz-Astorquiza, Contreras, and Laporte (2018, 2019), except that we also 
consider the interests of retailers with products from a specific set of facilities in Level 4. Ortiz-
Astorquiza, Contreras, and Laporte (2018) provided a comprehensive review of the MFL. Ortiz-
Astorquiza, Contreras, and Laporte (2019) obtained an exact solution to the problem for k equal to 
2 and 3, solving medium-sized problems. Here, we consider a very large-scale multi-start heuristic 
based on several variants of the VND meta-heuristic for k equal to 4 and 5. In the next section, we 
present the literature review, followed by a discussion of this paper’s contribution. 

3. Literature Review

Below, we review the literature on single-assignment MFL problems.  
The single-assignment uncapacitated multi-level facility location (UMFL) problem generalizes 

the fundamental single-assignment uncapacitated single-level facility location (UFL) problem. 
The UFL problem has been extensively researched over many decades (e.g., Laporte, Nickel, and 
Saldanha da-Gama 2019).  

An early study of the MFL problem was conducted by Kaufman, Eede, and Hansen (1977), 
who introduced the two-level so-called warehouse and plant location problem. Ortiz-Astorquiza, 
Contreras, and Laporte (2018) and Kumar et al. (2020) noted that most research on MFL has 
focused on two- or three-level cases, which is also discussed in Gendron, Khuong, and Semet 
(2017), Malik, Contreras, and Vidyarthi (2022), Sluijk et al. (2023), Fokouop et al. (2024), 
Gendron, Khuong, and Semet (2024), and Marianov and Eiselt (2024). We refer to a 
comprehensive review of general MFL problems by Ortiz-Astorquiza, Contreras, and Laporte 
(2018), including single-assignment cases.  

Chardaire, Lutton, and Sutter (1999) formulated a telecommunication problem as a single-
assignment two-level model and provided upper and lower bounds for the problem. Previously, 
Tragantalerngsak, Holt, and Rönnqvist (1997) also formulated a transportation problem as a 
single-assignment two-echelon model and applied a Lagrangian heuristic. Yaman (2009) considers 
a three-level single-assignment transportation problem with loading and unloading as a three-level 
facility location in the context of a hub network and presents a mixed-integer programming model. 

Gendron, Khuong, and Semet (2015) implemented a multilayer variable neighborhood search 
(VNS) to solve a two-level, single-assignment facility location problem. Gendron, Khuong, and 
Semet (2016) presented a Lagrangian branch-and-bound approach for the optimal solution to the 
two-level uncapacitated single-assignment problem. Gendron, Khuong, and Semet (2017) also 
considered the two-level uncapacitated single assignment problem. The authors present six mixed-
integer formulations and compare them experimentally.  

Hammami, Frein, and Bahli (2017) examined the impact of lead time on a single-assignment, 
multi-echelon facility location in the supply chain. They concluded that manufacturing and 
distribution sites should be located near the demand zone (i.e., retailers) and local suppliers should 
be selected, despite their higher costs.  

Ortiz-Astorquiza, Contreras, and Laporte (2018, 2019) studied the UMFL with single-
assignment constraints. Path-based and arc-based integer programming approaches are given. An 
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optimal solution approach based on Benders’ reformulation is provided, which solves medium-
sized two- and three-level problems.  

Ramshani et al. (2019) considered the single-assignment two-level uncapacitated facility 
location problem with uncertain disruption. The authors developed two mathematical models and 
a tabu search as a solution approach.  

Myung and Yu (2020) analyzed a freight transportation model with a multi-echelon structure 
that bundles products. They mentioned that the transportation of product bundling can be viewed 
as a special case of single-assignment; however, additional efforts and costs are associated with 
the bundling and unbundling of products. The authors developed a heuristic based on the network 
flow algorithm.  

De Oliveira et al. (2021) examined how well a specific “divide-and-conquer” algorithm works 
for a dynamic facility location problem. Their study looked at a two-level system without capacity 
limits, testing the algorithm’s performance when customers must be assigned to just one facility 
and when they can be assigned to many.  

Wang et al. (2023) addressed a single-item, multi-echelon location inventory and provided a 𝜀 − optimal approach using Lagrangian relaxation. Although the hub facility location is 
hierarchical and shares a significant similarity with the MFL considered in the current study, they 
are not identical. Our approaches can benefit hub location analysis and vice versa. For a 
comprehensive review of articles from an air transportation perspective, refer to O’Kelly, Sun, and 
Wandelt (2025), which includes a review of single-assignment models. 

In a recent survey of facility location in healthcare applications, Ahmadi-Javid, Seyedi, and 
Syam (2017) noted that healthcare systems are hierarchical. They formulated the multistage single-
assignment p-median problem. The authors identified several gaps in the MFL within healthcare 
systems, utilizing both modeling and computational approaches. In the context of a closed-loop 
supply chain design, Amiri-Aref and Doostmohammadi (2025) developed a mathematical model 
to determine the best locations and the ideal number of facilities that serve as retail stores and 
return centers. They also provide two algorithms, Relax-and-Fix and Fix-and-Optimise, to solve 
the problem.  
 
 
4. Contribution of This Paper 
 
As the literature suggests, for single-assignment MFL, most algorithms are based on two-level (in 
rare cases, three-level) facility location problems. Even in these cases, small to medium-sized 
problems are being considered. Real-world problems are large-scale, often involving more layers 
(e.g., supply chain design problems), and within each layer, potentially more facilities are 
considered (Zandi Atashbar, Labadie, and Prins 2018). Note that even in the simplest case, the 
UFLP is NP-hard (nondeterministic polynomial time hard). MFL problems are more complex and 
require sophisticated algorithms for large-scale cases. The problems considered in this study are 
not only larger in scale, but they also involve additional constraints related to the literature, as 
explained above. To address these shortcomings, we consider the VND meta-heuristic, a variant 
of the VNS meta-heuristic, for large-scale 4- and 5-LFL problems. Although there are many 
variants of VND, the most representative are BVND, PVND, CVND, and UVND (Duarte et al. 
2018). The detailed explanation of these four variants for 5-LFL is explained in the next section. 
Again, tuning the algorithms for 4-LFL is straightforward. 
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A brief overview of recent applications of the four variants of VND (BVND, PVND, CVND, 
and UVND) algorithms is provided below. As mentioned earlier, Duarte et al. (2018) provide an 
excellent discussion of these VND variants and their applications.  

Erzin, Mladenovic, and Plotnikov (2017) provided a hybrid genetic algorithm and VND for 
min-power symmetric connectivity. In this VND, three neighborhood structures were considered. 
Liu et al. (2021) also provided a hybrid VND genetic-particle swarm algorithm for the flexible 
job-shop. The VND is integrated into the standard genetic algorithm (GA) framework as an 
improvement process. Mjirda et al. (2017) employed a sequential VND for the traveling salesman 
problem. The authors used the four variants we also consider here as the moves in their procedures. 
Osorio-Mora, Escobar, and Toth (2023) proposed an iterated hybrid simulated annealing and VND 
for a variant of the vehicle routing problem (VRP), known as the latency VRP. Matijević et al. 
(2024) considered a general VNS for symmetric vehicle routing. The BVND variant was integrated 
as an improvement process into multi-start local search and several well-known meta-heuristics. 
Tadaros, Sifaleras, and Migdalas (2024) considered a hierarchical multi-echelon VRP, integrating 
a general VNS that employs BVND to solve the problem. Daquin et al. (2021) applied two VND 
variants, BVND and UVND, as an improvement to the general VNS and used them to cross-dock 
truck assignments. They employed the Best Improvement (BI) and First Improvement (FI) 
processes in the algorithms. Janinhoff et al. (2024) surveyed out-of-home delivery in last-mile 
logistics, including VND applications. Siew, Sze, and Goh (2025) considered VND variants, 
including the four variants we consider here, as an improvement process in the Whale Optimization 
Algorithm (WOA). Surprisingly, variants of the VNS are absent from the application in MFL 
problems.  
 
 
5. Four Variants of VND Meta-heuristic for MFL 
 
An optimization problem may be defined by a feasible solution X, and an objective function 𝑓:𝑋 →
Real where Real is the set of real numbers. The problem is to find a solution, 𝑥 ∗∈ 𝑋 that optimizes 
(maximizes or minimizes, depending on the problem) the function f. Without loss of generality, 
we focus on minimization, noting that maximization is equivalent to minimizing -f.  

Members of the set X may be defined differently depending on the problem considered. Often, 𝑥 ∈ 𝑋 is a binary vector, or a vector of real numbers.  
Below, we provide several definitions for 5-LFL; however, similar definitions may be given 

for 4-LFL. In many cases, the set of solutions is defined on a network, as we do here. Earlier, we 
explained that a feasible solution (schedule) for a customer 𝑟 ∈ 𝐿𝑒𝑣𝑒𝑙 1  is defined by a path 
(s,p,w,d,r) in the network shown in Figure 1. We show this individual solution by 𝑥௥ =(𝑠, 𝑝,𝑤,𝑑, 𝑟). Generally, many feasible solutions for a retailer r create a set of solutions denoted 
by rX . Now, we can define the set of feasible solutions for the problem as 𝑋 = {𝑋௥} for r=1, …, 
R. 

Given a feasible solution, 𝑥௥ ∈ 𝑋௥ for a retail store 𝑟 ∈ 𝐿𝑒𝑣𝑒𝑙 1, let 𝑥′௥ ∈ 𝑋௥ when k (for 
k=1,…,4) eligible elements from the set {s,p,w,d} are changed. The set of all such 𝑥′௥ ∈ 𝑋௥ is 
called the set of k-neighborhoods of 𝑥௥, denoted by 𝑁௞(𝑥௥). For a retail store r, 𝑁௞(𝑥௥) includes 4 
(one-element change), 6 (two-element change), 4 (three-element change), and 1 (four-element 
change), also called neighborhood types,  for k=1, 2, 3, and 4, respectively, for a total of 15 
neighborhood types. Furthermore, ℕ(𝑘) =∪௥ୀଵோ 𝑁௞(𝑥௥) is referred to as the set of k-neighborhood 
structures for the problem. Let 𝑥௟௢௖ ∈ ℕ(𝑘) be such that 𝑓(𝑥௟௢௖) ≤ 𝑓(𝑥) for all 𝑥 ∈ ℕ(𝑘), 𝑥௟௢௖ 
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gives us the best possible outcome. Let ℕ =∪௞ୀଵ௠௔௫_௞ 𝑁(𝑘), and 𝑥 ∗∈ ℕ be such that ( *) ( )f x f x≤  
for all 𝑥 ∈ ℕ, x* is a global optimal solution for the problem. 

Over the last several decades, researchers have formulated a wide range of real-world problems 
as optimization problems and solved them using various methods. Since these problems are NP-
hard and finding a solution to realistic, large-scale problems is difficult, researchers often use 
heuristics, specifically meta-heuristics. Duarte et al. (2018) noted that over the last several decades, 
more than 50 variants of meta-heuristics have been developed. In general, such heuristics can be 
categorized into Adaptive Heuristics (AH), Large Neighborhood Search (LNS), Adaptive Large 
Neighborhood Search (ALNS), and various combinations of these methods (Rahimi and Rahmani 
2024).  

AH is a heuristic that modifies its configuration as the search progresses and, thus, changes its 
behavior (Gouda and Herman 1991; Sevaux, Sörensen, and Pillay 2018; Yaakoubi and 
Dimitrakopoulos 2025). First introduced by Shaw (1998), LNS is a metaheuristic built on a 
surprisingly straightforward principle: to find a better solution, it may be necessary to break an 
existing good one selectively. The core idea isn’t to construct a solution from scratch, but to operate 
through a cyclical process of partial destruction and subsequent reconstruction. At each search 
step, the algorithm typically pairs one of each. It first applies a destructive method to take the 
current solution apart, creating a partial, incomplete version. Then, using a constructive method, it 
rebuilds from that point, ideally charting a path to an improved overall outcome. Often, the 
selection of constructive and destructive processes is implemented probabilistically. ALNS, 
initially developed by Ropke and Pisinger (2006), builds upon LNS by probabilistically selecting 
the pair of constructive and destructive processes based on information from previous 
performances.  

In general, the basic idea of AH involves dynamic neighborhood changes to reach better 
solutions when a simpler neighborhood is stuck in a local optimum. This dynamism expands the 
search to diverse areas of the search space for better solutions. Refer to Sevaux, Sörensen, and 
Pillay (2018) for a general discussion of AH models, Ahuja et al. (2002) for a survey of very large-
scale neighborhood search algorithms, and Mara et al. (2022) for a survey of ALNS applications. 

A popular adaptive meta-heuristic is the VNS, proposed by Mladenović and Hansen (1997). 
The VNS relies on several local search processes across several neighborhood structures. The 
General VNS is a type of ALNS and, thus, often depends on the pair of constructive and destructive 
processes in a solution. However, several variants of the VNS have been proposed in the literature, 
including VND, Reduced VNS (RVNS), Basic VNS (BVNS), General VNS (GVNS), Skewed 
VNS (SVNS), and Variable Neighborhood Decomposition Search (VNDS); refer to Duarte et al. 
(2018) for a basic discussion of these methods. Among these variants, VND is one of the most 
applied by researchers; it is effective and straightforward to implement and does not rely on 
constructive and destructive phases. Over the years, many variants of VND have been proposed, 
see for example, Erzin, Mladenovic, and Plotnikov (2017), Mjirda et al. (2017), Duarte et al. 
(2018), Daquin et al. (2021), Matijević et al. (2024), de Armas and Moreno-Perez (2025), and 
Siew, Sze, and Goh (2025).  

In the VND algorithms, a list of neighborhood structures is provided sequentially, usually in 
the order of sophistication (starting from the smallest to the largest neighborhood structures). 
Within these variants, Basic VND (BVND), Pipe VND (PVND), Cyclic VND (CVND), and Union 
VND (UVND) are the most representative, according to Duarte et al. (2018). These methods differ 
in the order in which the neighborhood structures are implemented and the depth to which they are 
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implemented. This means that when an improvement in a neighborhood is detected, it is important 
to determine which neighborhood to explore next and how deeply it should be investigated.  

It is believed that the larger the neighborhood, the better the quality of the locally optimal 
solutions. However, using a larger neighborhood incurs high CPU time costs (Ahuja et al. 2002). 
Thus, when applied to large-scale problems, it is crucial to balance CPU time and explore larger 
areas of the neighborhood to find better solutions. A general description of these algorithms is 
given below, focusing on where to explore next after an improvement is detected in the process 
(Duarte et al. 2018). 

After finding a way to improve the solution:  
 
• BVND – This strategy returns to the beginning and reapplies its first search method on the 

newly improved solution. 
• PVND – This strategy uses the same search method that just succeeded. 
• CVND – This strategy proceeds to the next search method in its predefined list. 
• UVND – This strategy treats all search methods as one big “toolbox.” After finding an 

improvement with one tool, it continues searching using any tools from its entire 
collection, without a strict order. 

 
As mentioned, the neighborhood structures are presented in order of sophistication. Thus, the 

BVND process is fully explored each time the least sophisticated (simplest) neighborhood 
structure is reached. In the PVND, each neighborhood structure is fully explored before proceeding 
to the next structure. In the CVND, however, as soon as an improvement is detected, the search 
continues to the next structure. In the case of UVND, all structures are combined into a single large 
structure and appropriately explored.  

An important factor to consider when implementing a local search within a specific 
neighborhood is the order in which the search process is executed. This is especially important 
when dealing with very large-scale problems. In these cases, the order of implementation is 
effective in reaching actionable results. This provides an opportunity to explore a more diverse 
area of the solution space. It has been experimentally demonstrated that a random order of 
implementations yields significantly better results than always choosing a specific order (Alidaee 
and Wang 2017). Choosing a random order each time to explore the neighborhood structure can 
be time-consuming. However, selecting a sequence each time can significantly reduce this time, 
as discussed in Wang and Alidaee (2023) and several references in that study. We explore this 
factor in more detail later in the paper when describing the pseudocode of the algorithms.  

In the following subsection, we provide the pseudocode of the algorithms for 5-LFL, which 
can be easily tuned for 4-LFL. 
 
5.1 Pseudocode of the Four Algorithms for 5-LFL 
 
Considering 5-LFL, given a schedule 𝑥௥ = (𝑠,𝑝,𝑤,𝑑, 𝑟) for a retail store r, with all neighborhood 
structures 𝑁௞(𝑥௥) for k=1,…,4, and k possible changes among s, p, w, and d. We also refer to this 
as a k-flip move (or exchange). Thus, for k=1, 2, 3, and 4, the number of elements in 𝑁௞(𝑥௥), 
respectively, is n=4, 6, 4, and 1, totaling 15 neighborhood moves. 

As previously mentioned, a critical issue in designing heuristics is the choice of neighborhood 
structure and the order in which they are implemented. The order of implementation for a local 
search within each neighborhood structure is also an important factor. Furthermore, in 
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optimization problems, neighborhood structures are often defined based on the mathematical 
programming formulation of the problem. However, a graphical neighborhood structure is 
considered here.  

In the case of 4-LFL, we have three neighborhood structures ℕ(𝑘) for k=1, 2, and 3. For ℕ(𝑘) 
and k=1 and 2, each includes three neighborhood types, while for k=3, there is one, for a total of 
seven neighborhood types, as illustrated in Figure 2. In the case of 5-LFL, we have four 
neighborhood structures ℕ(𝑘) for k=1, 2, 3, and 4. For ℕ(𝑘) and k=1 and 3, each includes four 
neighborhood types, and for k=2, it includes six neighborhood types, while for k=4, it includes 
one, for a total of 15 neighborhood types, as illustrated in Figure 3. These figures are shown in 
Appendix A. 

To implement the k-flip move processes, for a given value of k, several important issues should 
be considered:  

 
(a) Which retail stores, r, should be considered each time for a possible k-flip move 

implementation? We use a sequence Lr(1), …, Lr(R) of R numbers to select the next retail 
store.  

(b) Given a schedule for a retail store, r, which combination of k elements from the set 𝑁௞(𝑥௥) 
should be considered for k-flip moves? For this, we use a sequence, q(1),…,q(n), for 
example, for k=2, we use a sequence of n=6 numbers q(1),…,q(6), indicating an order of 
six elements in 𝑁ଶ(𝑥௥). Thus, for k=2, each element 𝑞(. ) ∈ 𝑁௞(𝑥௥) is a pair of nodes. 

(c) Given a schedule for a retail store, r, a neighborhood structure, 𝑁௞(𝑥௥) for some value of 
k, and an element 𝑞(. ) ∈ 𝑁௞(𝑥௥), which element of q(.) should be considered next for a k-
flip move? For example, for (s,p,w,d,r) and k=2, let 𝑞(. ) = {𝑑, 𝑝}. For this, we consider 
sequences Ld(1),…,Ld(D), and Lp(1),…,Lp(P), respective, D and P numbers. Thus, along 
these two sequences, we flip two nodes 𝑑′ ≠ 𝑑 and 𝑝′ ≠ 𝑝 for a possible 2-flip move. 
Similarly, we can implement k-flip moves for different values of k. 

 
Algorithm-0 is a basic k-flip local search strategy appropriately used in other algorithms.  

 
Algorithm-0: Simple k-flip Neighborhood Search Process (5-FLP) 
Initialization: Set of numbers R, D, W, P, and S.  
A value for k (1,…,4), and the set of neighborhood structures ℕ(𝑘). A feasible schedule (s,p,w,d,r) for 
each retail store r=1,…,R. 
Improvement=True 
While (Improvement) Do 
    Improvement=False 
    Randomly select an order of numbers 1,…,n, i.e., q(1),…,q(n), of elements in ℕ(𝑘) 
    For (h=q(1),…,q(n)) 
        Randomly select sequences, Lr, Ls, Lp, Lw, and Ld, of numbers R, S, P, W, and D, respectively. 
        If a h-flip is improving along appropriate sequences Lr, Ls, Lp, Lw, and Ld, implement the move,  
        and set improvement=True 
    End For 
    Update the best-known solution 
End While 

 
Algorithm-0 exhaustively implements the process of k-flips until no more moves are possible. 

In Algorithm-0-k, however, the algorithm returns when an improvement is detected. 
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Algorithm-0-k(.) for k=2,3,4, is the same as Algorithm-0 except that as soon as an improvement is found
for any of the h values, RETURN the result. 

Algorithm-1 (Multi-start k-flip): Multi-start Neighborhood Search Process (5-FLP) 
Initialization: Set of neighborhood structures, ℕ(𝑘), for a value of k=1,…,4. Set of integer numbers R, D, 
W, P, and S. Max-Local (number of multiple starts), j=1 
While (j<=Max-Local) Do 
    Randomly select sequences, Lr, Ls, Lp, Lw, and Ld 
    Call Algorithm-0 for k 
    j=j+1 
    Keep track of the best solution found throughout 
End While 
 
Algorithm-2: BVND Multi-start Neighborhood Search Process (5-FLP) 
Initialization: Set of neighborhood structures, ( )k , (for k=1,…,4) 
Call Algorithm-1(.) with k=1 
Improvement=True 
While (Improvement) Do 
    Improvement=False 
    Step 1. Call Algorithm-0(.) with k=1. 
    For (k=2,…,4) Do 
        Call Algorithm-0-k(.) with k, if an improvement is detected, implement the change,  
        improvement=True, and go to Step 1, otherwise continue 
    End For 
    Update the best-known solution 
End While 
 

Note that in Step 1 of Algorithm-2, the 1-flip Algorithm-0(.) is exhaustively implemented; 
however, the same algorithm for k=2, 3, and 4 returns to Step 1 as soon as an improvement is 
detected, i.e., Algorithm-0-k(.). Also, note that Algorithm-1(.) with k=1 is the multi-start 1-flip 
local search strategy. The result of this algorithm is used as a starting solution for the BVND, 
PVND, CVND, and UVND algorithms.  

The choice of different sequences in the algorithms is crucial. Using different sequences allows 
diversification into a large area of the solution space as the search progresses. It is also easy to start 
different solutions in the multi-start strategy. Any method for selecting new sequences each time 
is acceptable. However, a clever implementation of the sequence selection process can 
significantly reduce CPU time. Two such innovative approaches are adapted from applications in 
sequencing problems, such as the Traveling Salesman Problem (TSP). One is based on the so-
called l-Opt local search strategy applied to the TSP and many other sequencing problems (see 
Alidaee and Wang 2017). The other is the Random-Key strategy (see Wang and Alidaee 2023), 
adapted from the Random-Key application in the TSP (Bean 1994). There are both advantages and 
disadvantages to using these two strategies. Using the l-Opt strategy may be more time-consuming, 
but it takes less memory space. However, the opposite is true for the use of the Random-Keys 
application. To address very large-scale problems, we employed the l-Opt strategy to minimize 
space usage. Refer to Alidaee and Wang (2017) for a detailed implementation of the l-Opt strategy, 
and Wang and Alidaee (2023) for details on the Random-Key strategy supplication. Note that the 
value of r in the l-Opt strategy is effective in results when solving problems. We used a limited 4-
Opt strategy in our implementation, adapted from Glover (1996) for TSP applications. 
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As explained earlier, there are different ways to define neighborhood structures. Often, they 
are determined based on mathematical programming formulations of the problem. However, this 
study uses graphical structures, as shown in Figure 2 for 4-FLP and Figure 3 for 5-FLP.  

We previously noted variations of the VND methods differ in the order and depth in which the 
neighborhood structures are implemented. This can create many variants, some of which could be 
very time-consuming. However, four popular variants are BVND, PVND, CVND, and UVND. 
Even within each of these variants, there are many ways to implement the process. After applying 
several approaches (see the computational experiments section), it was revealed that implementing 
a multi-start strategy similar to Algorithm 1 significantly reduces CPU time. At the same time, the 
quality of the results of Algorithms 2 through 5 also remains high. 

A k-flip local search can be exhaustively implemented for each neighborhood structure ℕ(𝑘). 
Generally, implementing local searches for larger values of k is more time-consuming. However, 
it is also believed that larger values of k can diversify to broader areas of the solution space and 
possibly create better solutions. Thus, it is important to balance CPU time and achieving better 
solutions. Here, we used a multi-start strategy, Algorithm-1, which incorporates the 1-flip strategy. 
The results of this algorithm are used as a starting solution in Algorithms 2 through 5.  

Algorithm-2 is written for BVND; however, it can easily be tuned for other VND variants. 
Algorithms 3, 4, and 5 are designed for PVND, CVND, and UVND. Note that in PVND, before 
the search moves from one neighborhood structure to another, an exhaustive 1-flip local search is 
completed. However, in CVND, the search is explored in the next neighborhood structure after 
each local improvement is detected. Also note that in the UVND, it is important to specify the 
order of the local improvement process within the big neighborhood structures. The union of all 
neighborhoods includes different types of possible moves: 1, 2, 3, or 4 moves. Here, we randomly 
chose the order to check the improvement of moves in the big neighborhood structure. The UVND 
has similarities with CVND. In CVND, we have an order in which we implement neighborhood 
structures; however, in UVND, we treat all neighborhood structures the same and randomly 
implement the improvement process. Also, note that most researchers use the so-called Best 
Improvement (BI) or First Improvement (FI) (Daquin et al. 2021; Matijević et al. 2024) process in 
UVND; however, we use the Next Improvement process here. 
 
Algorithm-3: PVND Multi-start Neighborhood Search Process (5-FLP) 
Initialization: Set of neighborhood structures, ℕ(𝑘), (for k=1,…,4) 
Call Algorithm-1(.) with k=1 
Improvement=True 
While (Improvement) Do 
    Improvement=False 
    For (k=1,…,4) Do 
        Call Algorithm-0(.) with k, if an improvement is detected, implement the change. 
        Improvement=True 
    End For 
    Update the best-known solution 
End While 

 
Note that Algorithm-3 does not return immediately after finding an improvement in Algorithm-

0(.) with k. It exhaustively continues the search in the same neighborhood structure, then returns 
and restarts Algorithm-0(.) with k+1. 
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Algorithm-4: CVND Multi-start Neighborhood Search Process (5-FLP) 
Initialization: Set of neighborhood structures, ℕ(𝑘), (for k=1,…,4) 
Call Algorithm-1(.) with k=1 
Improvement=True 
While (Improvement) Do 
    Improvement=False 
    For (k=1,…,4) Do 
        Call Algorithm-0-k(.) with k, if an improvement is detected, implement the change  
        Improvement=True,  
    End For 
    Update the best-known solution 
End While 
 

Note that, in CVND, Algorithm-0-k(.) is used in the inner loop, as each time a local search is 
detected, we return to the next neighborhood. Additionally, the inner loop is consistently 
implemented with the same order: k = 1, 2, 3, 4. You may obtain different results for each order if 
other orders are used. However, CPU time will increase. 

 
Algorithm 5: UVND Multi-start Neighborhood Search Process, (5-FLP) 
Initialization: Set of neighborhood structures, ℕ(𝑏𝑖𝑔) = ℕ(1) ∪ ℕ(2) ∪ ℕ(3) ∪ ℕ(4) 
Call Algorithm-1(.) with k=1 
Improvement=True 
While (Improvement) Do 
    Improvement=False 
    Randomly select an order of four neighborhood structures, M(j), j=1,…,4, in ℕ(𝑏𝑖𝑔) 
    For (k=M(1),…,M(4)) Do 
        Select an order of numbers 1,…,n, (i.e., q(1),…,q(n)), where n is the number of elements in ℕ(𝑘). 
        For (h=q(1),…,q(n)) Do 
            Call Algorithm-0-k(.) with k, if an improvement is detected, implement the change,  
            Improvement=True, and go to Start a new neighborhood, otherwise continue 
        End For 
        Start a new neighborhood 
    End For 
    Update the best-known solution 
End While 
 

In UVND, the loop running via k goes through all neighborhood structures, and the loop 
running via h goes through each element of ℕ(𝑘). As soon as an improvement is detected, it 
proceeds to the next neighborhood. It should be clear that the orders used in the implementation 
processes can significantly affect the outcomes in UVND and other algorithms regarding solution 
values and CPU time. Thus, there are many ways to create an effective variant of VND. 

 
 

6. Experimental Design and Results 
 
6.1 Data Generation 
 
There is no benchmark available for the problems considered in this paper. The only benchmark 
that shares some characteristics with our problems is provided by Ortiz-Astorquiza, Contreras, and 
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Laporte (2019). However, there are only two with four-level facilities. These two problems also 
lack some data that cannot be used in our computational experiment. Thus, we randomly generated 
problem instances and solved them using the algorithms. All algorithms were implemented in 
Fortran and executed in order on a Cray Cluster 140 with Intel Haswell Xeon processors.  

We generated problems of varying sizes with different densities for matrices and fixed cost 
levels. Table B1 in Appendix B shows the parameters with which the data is generated. For each 
problem size with High, Medium, and Low densities, and Large, Medium, and Small fixed costs, 
we generated three instances and solved them using B-VND, P-VND, C-VND, and U-VND 
algorithms. Results for 4-LFL are shown in Table 1, and for 5-LFL are shown in Table 2. Note 
that problem IDs for 4-LFL are shown by (R-D-W-P-Density-Fixed Cost-#). For example, (2000-
150-50-30-Hdens-LgFx-1) means R=2000, D=150, W=50, and P=30, with High Density, Large 
Fixed Cost, and problem # 1. Similarly, problem IDs for 5-LFL are shown by (R-D-W-P-S-
Density-Fixed Cost-#). For example, (2000-150-50-50-100-Hdens-LgFx-1) means R=2000, 
D=150, W=50, P=50, S=100, High Density, Large Fixed Cost, and problem number 1. Three 
instances of each problem were generated and solved using B-VND, P-VND, C-VND, and U-
VND. The objective function in each case, as well as the CPU time to reach the best solution, is 
given.  

 
6.2 Computational Results 
 
As discussed earlier, each VND variant can be implemented in many different ways. However, it 
is important to strike a balance between CPU time and high-quality solutions. This is especially 
important when dealing with large-scale problems. The multi-start strategy offers an opportunity 
to start a new solution each time, leading to different end solutions and, potentially, a higher-
quality solution. To balance CPU time with the final solution, we applied a multi-start strategy on 
Algorithm-1 with k=1, a speedy process. Then, we used the best result of this process as a starting 
solution for each variant of the VND process. Tables 1 and 2 show the results. 
 
6.3 Sensitivity Analyses of Algorithms 
 
To determine which of our algorithms performs better across different tasks, we employed rank-
based statistical methods, which are well-suited for these evaluations. Instead of getting 
overwhelmed by the precise numerical outcomes, these tests focus on the relative ordering of 
algorithm performance for each problem. Of course, care was taken to ensure these comparisons 
were meaningful. This includes running sufficient experiments and being thoughtful about our 
significance thresholds. It is especially important to account for making multiple comparisons at 
once, so we report not just the raw significance values (p-values) but also effect sizes, where 
appropriate, to provide a clearer picture of the results.  

Our first step was to get a bird’s-eye view of the overall performance. For this, we used 
Friedman’s test, a non-parametric method that serves a similar purpose to a repeated measures 
ANOVA. It works by ranking the algorithms on each dataset and then checking if the average 
ranks are too different to be explained by random chance. A significant result from Friedman’s 
test suggests that at least one algorithm behaves differently but does not specify which ones. 

When the Friedman test indicated a meaningful difference, we needed to dig deeper to identify 
the specific pairs of algorithms that were outperforming others. The Nemenyi test is designed for 
this situation, comparing all algorithms against each other while carefully controlling the error rate 
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Table 1a. Computational results of four VND processes on 4-LFL instances of 2000 retailers. 
H=High, M=Medium, L=Low, Lg=Large, Med=Medium, Sm=Small (Dens=Density, Fx= Fixed Costs) 
R=# Retailers, D=# Dist Centers, W=# Warehouses, P=# Plants 
Problem ID Objective Function Time to Best (Seconds) 
(R-D-W-P-Density-Fixed Cost Size-#) BVND PVND CVND UVND BVND PVND CVND UVND 
2000-150-50-30-Hdend-LgFx-1 82516 86936 86799 82526 97.03 91.99 92.08 100.99 
2000-150-50-30-Hdend-LgFx-2 93339 93795 93672 93283 348.10 348.56 346.97 350.82 
2000-150-50-30-Hdend-LgFx-3 104994 114192 113427 105810 168.18 150.51 147.30 166.85 
2000-150-50-30-Hdend-MedFx-1 87044 91414 90685 87105 47.25 38.94 31.96 42.92 
2000-150-50-30-Hdend-MedFx-2 77593 78426 77962 77798 44.65 46.59 38.42 48.01 
2000-150-50-30-Hdend-MedFx-3 84139 84258 84285 84139 335.55 334.96 328.18 344.14 
2000-150-50-30-Hdend-SmFx-1 95006 95295 95236 94980 236.52 235.87 221.99 254.58 
2000-150-50-30-Hdend-SmFx-2 88092 90839 90091 88084 225.18 172.04 181.31 217.52 
2000-150-50-30-Hdend-SmFx-3 79293 81267 79732 79287 232.29 221.69 216.82 221.03 
2000-150-50-30-Ldend-LgFx-1 48260 49314 49400 48260 114.10 113.42 113.44 114.19 
2000-150-50-30-Ldend-LgFx-2 53515 53675 53516 53677 17.08 16.73 16.53 16.81 
2000-150-50-30-Ldend-LgFx-3 49092 49289 49180 49092 6.59 6.30 6.33 6.93 
2000-150-50-30-Ldend-MedFx-1 43313 44401 44109 43295 8.46 7.57 7.54 8.28 
2000-150-50-30-Ldend-MedFx-2 44200 46591 46503 44160 109.07 108.09 108.01 108.94 
2000-150-50-30-Ldend-MedFx-3 42525 42774 42773 42518 40.83 40.38 40.15 40.83 
2000-150-50-30-Ldend-SmFx-1 37037 37132 37179 37031 86.99 86.87 86.80 86.90 
2000-150-50-30-Ldend-SmFx-2 41712 42716 42203 41712 142.56 141.24 141.83 141.75 
2000-150-50-30-Ldend-SmFx-3 43197 43268 43190 43188 154.14 153.66 153.80 153.78 
2000-150-50-30-Mdend-LgFx-1 87964 88780 88322 87951 264.56 261.60 260.82 266.42 
2000-150-50-30-Mdend-LgFx-2 86041 87853 86522 86557 265.45 264.17 263.81 267.34 
2000-150-50-30-Mdend-LgFx-3 96397 103287 100513 96410 87.37 79.96 79.25 84.27 
2000-150-50-30-Mdend-MedFx-1 78867 80260 78863 78159 88.88 83.26 88.22 87.10 
2000-150-50-30-Mdend-MedFx-2 76912 84061 83021 76928 232.99 227.44 227.16 229.98 
2000-150-50-30-Mdend-MedFx-3 69865 76446 76090 69916 162.71 158.24 158.42 162.97 
2000-150-50-30-Mdend-SmFx-1 63630 63711 63626 63646 155.42 151.46 152.40 154.65 
2000-150-50-30-Mdend-SmFx-2 83593 84916 83572 83605 50.19 33.47 43.52 40.19 
2000-150-50-30-Mdend-SmFx-3 71192 76370 75316 71162 268.24 265.92 263.91 266.17 
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Table 1b. Computational results of four VND processes on 4-LFL instances of 4000 retailers. 
H=High, M=Medium, L=Low, Lg=Large, Med=Medium, Sm=Small (Dens=Density, Fx= Fixed Costs) 
R=# Retailers, D=# Dist Centers, W=# Warehouses, P=# Plants 
Problem ID Objective Function Time to Best (Seconds) 
(R-D-W-P-Density-Fixed Cost Size-#) BVND PVND CVND UVND BVND PVND CVND UVND 
4000-150-50-30-Hdend-LgFx-1 163782 167375 166115 163851 1072.31 1061.14 1062.49 1065.11 
4000-150-50-30-Hdend-LgFx-2 144186 147013 146360 144151 226.74 225.45 204.67 225.98 
4000-150-50-30-Hdend-LgFx-3 142331 145623 144457 142388 320.24 321.90 326.89 321.63 
4000-150-50-30-Hdend-MedFx-1 179338 180803 179841 179462 1029.07 997.08 999.71 1003.84 
4000-150-50-30-Hdend-MedFx-2 148549 148879 148540 148544 268.42 252.38 251.16 254.26 
4000-150-50-30-Hdend-MedFx-3 168375 176749 173930 168375 1166.66 987.03 1054.70 1034.42 
4000-150-50-30-Hdend-SmFx-1 129510 129906 129520 129487 569.84 542.02 546.21 566.37 
4000-150-50-30-Hdend-SmFx-2 170884 174552 173076 170863 317.76 204.84 235.93 212.54 
4000-150-50-30-Hdend-SmFx-3 135090 136289 135533 135097 222.43 176.78 183.69 187.66 
4000-150-50-30-Ldend-LgFx-1 84948 88032 87999 84945 604.26 601.90 601.64 604.20 
4000-150-50-30-Ldend-LgFx-2 81317 82363 82189 81342 139.10 137.22 136.63 138.73 
4000-150-50-30-Ldend-LgFx-3 82540 82795 82644 82540 694.10 692.76 692.87 694.06 
4000-150-50-30-Ldend-MedFx-1 76294 77101 76816 76181 472.91 472.02 470.85 472.08 
4000-150-50-30-Ldend-MedFx-2 73613 74692 74580 73604 134.52 134.65 133.58 134.54 
4000-150-50-30-Ldend-MedFx-3 81556 82755 82031 81505 752.50 750.80 751.65 751.20 
4000-150-50-30-Ldend-SmFx-1 80637 81740 81145 80689 710.93 708.15 708.62 708.90 
4000-150-50-30-Ldend-SmFx-2 73529 74665 74167 73521 522.74 519.80 520.05 521.80 
4000-150-50-30-Ldend-SmFx-3 77185 79849 79605 77182 260.39 258.22 258.28 259.58 
4000-150-50-30-Mdend-LgFx-1 148423 159622 158510 148396 478.79 458.22 460.49 464.91 
4000-150-50-30-Mdend-LgFx-2 129456 135679 135126 127102 238.96 221.87 223.87 228.46 
4000-150-50-30-Mdend-LgFx-3 152378 163307 160447 153006 1214.70 1181.89 1187.64 1193.33 
4000-150-50-30-Mdend-MedFx-1 136152 138858 137970 136156 669.24 657.77 656.69 660.70 
4000-150-50-30-Mdend-MedFx-2 160547 167382 165509 159933 710.64 704.40 694.18 709.02 
4000-150-50-30-Mdend-MedFx-3 128098 145466 143543 128109 260.81 232.19 232.36 243.18 
4000-150-50-30-Mdend-SmFx-1 123517 138277 136997 123519 309.29 271.82 280.25 289.08 
4000-150-50-30-Mdend-SmFx-2 121252 126117 124998 121237 436.82 410.81 402.68 423.95 
4000-150-50-30-Mdend-SmFx-3 118064 122915 121221 118063 619.87 598.78 604.78 606.84 
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Table 1c. Computational results of four VND processes on 4-LFL instances of 5000 retailers. 
H=High, M=Medium, L=Low, Lg=Large, Med=Medium, Sm=Small (Dens=Density, Fx= Fixed Costs) 
R=# Retailers, D=# Dist Centers, W=# Warehouses, P=# Plants 
Problem ID Objective Function Time to Best (Seconds) 
(R-D-W-P-Density-Fixed Cost Size-#) BVND PVND CVND UVND BVND PVND CVND UVND 
5000-150-50-30-Hdend-LgFx-1 165209 165790 165369 165228 311.40 292.38 293.05 302.70 
5000-150-50-30-Hdend-LgFx-2 212370 214486 212124 211893 865.58 771.14 805.62 781.36 
5000-150-50-30-Hdend-LgFx-3 147921 169689 169670 147936 555.54 546.31 550.74 561.90 
5000-150-50-30-Hdend-MedFx-1 201505 202249 201523 201519 923.67 834.44 848.55 854.05 
5000-150-50-30-Hdend-MedFx-2 168430 170054 168760 168430 1795.55 1729.24 1741.30 1758.29 
5000-150-50-30-Hdend-MedFx-3 197495 198152 197498 197512 1118.70 1091.12 1096.34 1097.77 
5000-150-50-30-Hdend-SmFx-1 135116 157476 157285 135116 1281.75 1237.76 1229.08 1297.30 
5000-150-50-30-Hdend-SmFx-2 205700 209432 208485 205700 1075.55 995.81 985.64 1011.30 
5000-150-50-30-Hdend-SmFx-3 203097 222019 218951 203101 781.38 556.89 605.73 650.90 
5000-150-50-30-Ldend-LgFx-1 103976 103981 103976 103976 541.60 541.73 541.59 541.53 
5000-150-50-30-Ldend-LgFx-2 106521 107654 106970 106481 719.53 715.77 714.87 718.08 
5000-150-50-30-Ldend-LgFx-3 99511 100092 99548 99451 508.95 508.38 507.21 508.10 
5000-150-50-30-Ldend-MedFx-1 95877 97206 96822 95885 1012.71 1011.60 1011.04 1011.61 
5000-150-50-30-Ldend-MedFx-2 88235 89074 88428 88244 801.17 798.02 797.06 798.93 
5000-150-50-30-Ldend-MedFx-3 96004 97554 97350 96059 326.70 324.71 324.06 326.99 
5000-150-50-30-Ldend-SmFx-1 90998 91652 91121 91072 775.48 774.02 772.99 774.25 
5000-150-50-30-Ldend-SmFx-2 92268 92616 92387 92133 1054.15 1052.52 1051.58 1053.32 
5000-150-50-30-Ldend-SmFx-3 86461 87546 87086 86490 553.43 551.13 550.27 552.15 
5000-150-50-30-Mdend-LgFx-1 167206 183965 182350 167208 1250.08 1218.28 1227.12 1247.28 
5000-150-50-30-Mdend-LgFx-2 183179 203938 200599 181107 424.98 382.73 385.31 414.35 
5000-150-50-30-Mdend-LgFx-3 172385 180852 179326 172432 1062.48 1028.18 1034.57 1039.06 
5000-150-50-30-Mdend-MedFx-1 177003 195466 191273 178034 1119.24 1062.35 1069.11 1072.15 
5000-150-50-30-Mdend-MedFx-2 169550 180337 178808 169566 1318.56 1250.66 1272.73 1269.32 
5000-150-50-30-Mdend-MedFx-3 193137 201951 200787 192227 414.68 325.98 323.76 358.58 
5000-150-50-30-Mdend-SmFx-1 167334 173544 172463 167497 815.40 770.28 773.20 787.58 
5000-150-50-30-Mdend-SmFx-2 155656 176255 174320 155625 1566.87 1485.99 1492.47 1533.44 
5000-150-50-30-Mdend-SmFx-3 149553 161147 159245 149808 364.94 307.91 303.49 324.78 
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Table 1d. Computational results of four VND processes on 4-LFL instances of 8000 retailers. 
H=High, M=Medium, L=Low, Lg=Large, Med=Medium, Sm=Small (Dens=Density, Fx= Fixed Costs) 
R=# Retailers, D=# Dist Centers, W=# Warehouses, P=# Plants 
Problem ID Objective Function Time to Best (Seconds) 
(R-D-W-P-Density-Fixed Cost Size-#) BVND PVND CVND UVND BVND PVND CVND UVND 
8000-150-50-30-Hdend-LgFx-1 286710 287974 286970 286712 6151.77 6090.37 6092.19 6084.82 
8000-150-50-30-Hdend-LgFx-2 308767 315077 311141 3091136 2943.53 2909.41 2874.83 2965.03 
8000-150-50-30-Hdend-LgFx-3 247574 255382 255250 247581 1518.00 1507.69 1504.14 1534.80 
8000-150-50-30-Hdend-MedFx-1 290102 295803 293067 290112 740.91 541.49 559.88 582.32 
8000-150-50-30-Hdend-MedFx-2 290469 299441 297337 290606 1200.70 1020.87 1123.96 1003.45 
8000-150-50-30-Hdend-MedFx-3 328326 329411 328329 328357 962.72 567.95 758.02 579.47 
8000-150-50-30-Hdend-SmFx-1 272208 295780 293111 272221 1000.10 404.84 493.88 569.34 
8000-150-50-30-Hdend-SmFx-2 246276 246590 246354 246276 1114.02 1061.67 1070.72 1096.07 
8000-150-50-30-Hdend-SmFx-3 381493 385195 382142 381510 1478.04 1262.27 1288.34 1286.01 
8000-150-50-30-Ldend-LgFx-1 158772 160923 160715 158830 857.10 846.35 845.96 855.38 
8000-150-50-30-Ldend-LgFx-2 143288 143440 143445 143288 1147.32 1146.80 1146.13 1147.54 
8000-150-50-30-Ldend-LgFx-3 158978 160708 160287 158942 613.94 603.96 607.36 608.72 
8000-150-50-30-Ldend-MedFx-1 143892 145651 145237 144002 3381.92 3375.60 3372.98 3380.55 
8000-150-50-30-Ldend-MedFx-2 144136 147494 147337 144093 724.30 715.60 713.60 722.83 
8000-150-50-30-Ldend-MedFx-3 152146 152564 152217 152115 244.76 240.96 238.78 242.61 
8000-150-50-30-Ldend-SmFx-1 133503 135270 134117 133575 1046.20 1039.95 1040.04 1043.17 
8000-150-50-30-Ldend-SmFx-2 140496 143090 142734 140408 778.90 775.29 774.28 775.85 
8000-150-50-30-Ldend-SmFx-3 142819 146484 145582 142738 1457.02 1442.55 1443.12 1454.80 
8000-150-50-30-Mdend-LgFx-1 222168 247649 243531 223419 4175.72 4084.95 4097.18 4134.04 
8000-150-50-30-Mdend-LgFx-2 279576 296747 294166 279657 6167.65 6080.30 6078.07 6115.31 
8000-150-50-30-Mdend-LgFx-3 285159 299181 297137 285138 2710.06 2613.99 2618.81 2654.68 
8000-150-50-30-Mdend-MedFx-1 284920 298920 296919 284763 1118.66 970.73 996.28 1016.65 
8000-150-50-30-Mdend-MedFx-2 320007 341952 335765 319652 5150.24 4871.87 4926.04 4931.52 
8000-150-50-30-Mdend-MedFx-3 256300 259117 257165 257062 1038.47 963.42 970.94 975.63 
8000-150-50-30-Mdend-SmFx-1 239190 243659 241833 239265 502.92 401.59 419.89 423.74 
8000-150-50-30-Mdend-SmFx-2 270643 285783 281573 270628 2032.92 1867.06 1898.94 1898.20 
8000-150-50-30-Mdend-SmFx-3 255149 264036 260899 255142 4774.45 4634.19 4687.79 4657.68 
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Table 1e. Computational results of four VND processes on 4-LFL instances of 9000 retailers. 
H=High, M=Medium, L=Low, Lg=Large, Med=Medium, Sm=Small (Dens=Density, Fx= Fixed Costs) 
R=# Retailers, D=# Dist Centers, W=# Warehouses, P=# Plants 
Problem ID Objective Function Time to Best (Seconds) 
(R-D-W-P-Density-Fixed Cost Size-#) BVND PVND CVND UVND BVND PVND CVND UVND 
9000-150-50-30-Hdend-LgFx-1 390442 411536 406318 390132 659.46 314.92 374.93 383.77 
9000-150-50-30-Hdend-LgFx-2 318904 340494 339534 319112 473.23 328.34 323.12 485.47 
9000-150-50-30-Hdend-LgFx-3 367271 390719 387381 385050 1773.64 1576.77 1597.60 1565.60 
9000-150-50-30-Hdend-MedFx-1 349182 372814 368714 349224 6672.44 6228.07 6400.78 6308.50 
9000-150-50-30-Hdend-MedFx-2 347940 356658 347862 346429 3544.22 3033.01 3297.32 3099.96 
9000-150-50-30-Hdend-MedFx-3 364524 378008 372895 364516 2949.52 2585.90 2613.23 2728.91 
9000-150-50-30-Hdend-SmFx-1 246377 273784 273392 246377 1034.88 860.35 853.36 991.70 
9000-150-50-30-Hdend-SmFx-2 275550 278316 276224 275550 4276.80 4105.87 4124.20 4165.33 
9000-150-50-30-Hdend-SmFx-3 343131 363371 351337 343118 2657.10 2114.36 2242.05 2075.53 
9000-150-50-30-Ldend-LgFx-1 161461 165181 164801 161312 747.61 737.44 737.95 745.46 
9000-150-50-30-Ldend-LgFx-2 184900 185579 185122 184850 482.22 475.51 474.14 476.39 
9000-150-50-30-Ldend-LgFx-3 166494 174804 174409 166464 1698.78 1682.08 1681.02 1692.64 
9000-150-50-30-Ldend-MedFx-1 175197 175960 175653 174880 287.13 279.18 275.92 281.53 
9000-150-50-30-Ldend-MedFx-2 151682 153011 151811 151724 2322.94 2318.39 2315.97 2317.93 
9000-150-50-30-Ldend-MedFx-3 160917 164013 163042 160970 3667.90 3657.80 3657.32 3662.78 
9000-150-50-30-Ldend-SmFx-1 149633 153113 152299 149669 3851.04 3838.30 3839.81 3843.20 
9000-150-50-30-Ldend-SmFx-2 148940 154249 153723 148877 2571.52 2560.97 2557.90 2575.92 
9000-150-50-30-Ldend-SmFx-3 163000 166762 166024 162976 1018.69 1003.78 1003.06 1013.05 
9000-150-50-30-Mdend-LgFx-1 302000 347963 344931 301974 4782.90 4588.68 4637.00 4680.38 
9000-150-50-30-Mdend-LgFx-2 310059 327107 324182 310220 708.31 597.94 593.89 634.69 
9000-150-50-30-Mdend-LgFx-3 334976 351967 348056 335199 2614.49 2511.94 2509.76 2531.13 
9000-150-50-30-Mdend-MedFx-1 278898 303181 301665 279041 3753.53 3590.35 3608.75 3667.71 
9000-150-50-30-Mdend-MedFx-2 257541 263062 262050 257544 1474.90 1377.54 1378.82 1391.96 
9000-150-50-30-Mdend-MedFx-3 290489 359204 356493 298982 5992.55 5768.64 5767.68 5880.00 
9000-150-50-30-Mdend-SmFx-1 265834 285834 281615 266086 1783.06 1589.02 1646.48 1637.20 
9000-150-50-30-Mdend-SmFx-2 282574 309572 305118 282607 1253.98 1102.05 1125.95 1157.28 
9000-150-50-30-Mdend-SmFx-3 342723 361822 357501 342703 4649.82 4249.38 4384.29 4311.06 
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Table 1f. Computational results of four VND processes on 4-LFL instances of 10000 retailers. 
H=High, M=Medium, L=Low, Lg=Large, Med=Medium, Sm=Small (Dens=Density, Fx= Fixed Costs) 
R=# Retailers, D=# Dist Centers, W=# Warehouses, P=# Plants 
Problem ID Objective Function Time to Best (Seconds) 
(R-D-W-P-Density-Fixed Cost Size-#) BVND PVND CVND UVND BVND PVND CVND UVND 
10000-150-50-30-Hdend-LgFx-1 321566 323926 322505 321815 639.67 551.23 497.39 578.27 
10000-150-50-30-Hdend-LgFx-2 379082 383488 383735 379594 1690.76 1320.62 1313.88 1348.39 
10000-150-50-30-Hdend-LgFx-3 320632 352198 351363 319578 1406.69 1263.92 1221.20 1381.74 
10000-150-50-30-Hdend-MedFx-1 361291 370279 369371 361294 2303.12 2204.46 2190.18 2262.41 
10000-150-50-30-Hdend-MedFx-2 335514 339266 337369 335348 2765.08 2551.57 2614.85 2625.55 
10000-150-50-30-Hdend-MedFx-3 321362 333568 327664 321329 921.41 729.91 813.82 791.89 
10000-150-50-30-Hdend-SmFx-1 332991 345289 339160 333045 4372.67 4054.38 4104.60 4066.57 
10000-150-50-30-Hdend-SmFx-2 359455 370686 361198 359384 5858.61 5321.47 5482.52 5397.01 
10000-150-50-30-Hdend-SmFx-3 330040 337091 334763 330040 2824.08 2591.13 2652.53 2610.52 
10000-150-50-30-Ldend-LgFx-1 208777 209883 209766 208743 3899.71 3891.78 3889.88 3896.27 
10000-150-50-30-Ldend-LgFx-2 179812 180655 180744 179846 546.14 538.99 534.02 542.51 
10000-150-50-30-Ldend-LgFx-3 195325 198598 198030 195322 3219.56 3207.65 3206.80 3212.88 
10000-150-50-30-Ldend-MedFx-1 167132 168517 168252 167118 3514.88 3502.36 3500.17 3510.79 
10000-150-50-30-Ldend-MedFx-2 191287 195498 193375 191238 3860.14 3843.09 3839.75 3850.53 
10000-150-50-30-Ldend-MedFx-3 187463 193603 193471 187488 910.96 895.64 894.97 908.78 
10000-150-50-30-Ldend-SmFx-1 180076 184180 185628 180094 3182.96 3173.86 3159.89 3179.92 
10000-150-50-30-Ldend-SmFx-2 166020 173044 172237 166057 3895.22 3864.76 3863.71 3883.09 
10000-150-50-30-Ldend-SmFx-3 171613 175725 172520 171893 2312.89 2299.34 2298.64 2299.03 
10000-150-50-30-Mdend-LgFx-1 362394 372857 368330 362641 4808.75 4684.20 4721.71 4737.26 
10000-150-50-30-Mdend-LgFx-2 328630 340188 336855 328355 190.70 81.60 82.57 110.69 
10000-150-50-30-Mdend-LgFx-3 362394 372857 368330 362641 4380.88 4248.51 4287.62 4302.37 
10000-150-50-30-Mdend-MedFx-1 369488 377681 374475 369511 1060.09 782.66 798.33 808.85 
10000-150-50-30-Mdend-MedFx-2 332321 334136 332321 332321 8630.42 8529.22 8551.88 8530.94 
10000-150-50-30-Mdend-MedFx-3 362587 368086 364583 362516 7527.28 7279.72 7295.86 7301.94 
10000-150-50-30-Mdend-SmFx-1 308897 319490 316897 308894 5385.31 5228.19 5225.23 5262.53 
10000-150-50-30-Mdend-SmFx-2 343946 345068 343957 343961 6257.47 6040.22 6019.37 6054.05 
10000-150-50-30-Mdend-SmFx-3 370793 388874 381709 370787 1034.55 512.71 586.47 576.04 
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Table 2a. Computational results of four VND processes on 5-LFL instances of 2000 retailers. 
H=High, M=Medium, L=Low, Lg=Large, Med=Medium, Sm=Small (Dens=Density, Fx= Fixed Costs) 
R=# Retailers, D=# Dist Centers, W=# Warehouses, P=# Plants, S=# Suppliers 
Problem ID Objective Function Time to Best (Seconds) 
(R-D-W-P-Density-Fixed Cost Size-#) BVND PVND CVND UVND BVND PVND CVND UVND 
2000-150-50-50-100-Hdend-LgFx-1 127180 129392 133848 127020 1532.10 1819.50 2328.41 2697.78 
2000-150-50-50-100-Hdend-LgFx-2 131016 147501 156709 130646 1048.17 1233.28 2138.57 1891.16 
2000-150-50-50-100-Hdend-LgFx-3 129708 130546 139464 127778 725.87 2495.46 5133.46 4187.80 
2000-150-50-50-100-Hdend-MedFx-1 119217 119399 125171 119172 1374.84 2702.95 2142.58 4721.81 
2000-150-50-50-100-Hdend-MedFx-2 104083 105558 114242 102157 1693.83 1874.25 1833.02 2233.02 
2000-150-50-50-100-Hdend-MedFx-3 108347 105161 123306 102029 1619.39 3080.19 2080.40 3854.57 
2000-150-50-50-100-Hdend-SmFx-1 88575 90635 110244 87920 989.47 1135.67 1978.85 2397.26 
2000-150-50-50-100-Hdend-SmFx-2 103840 106741 119004 105105 1231.82 1501.53 1884.11 2628.80 
2000-150-50-50-100-Hdend-SmFx-3 84333 82403 85694 82589 864.18 1025.16 2691.49 1676.86 
2000-150-50-50-100-Ldend-LgFx-1 123531 128472 128979 111671 331.52 234.22 507.87 1138.07 
2000-150-50-50-100-Ldend-LgFx-2 127847 130257 133605 127971 638.95 616.27 676.31 793.06 
2000-150-50-50-100-Ldend-LgFx-3 128693 128809 131974 125444 463.33 506.85 588.02 1010.13 
2000-150-50-50-100-Ldend-MedFx-1 102544 103234 115655 96479 493.41 819.55 777.84 1223.59 
2000-150-50-50-100-Ldend-MedFx-2 102246 102280 119321 102241 367.36 924.08 819.71 1367.53 
2000-150-50-50-100-Ldend-MedFx-3 100115 100740 112246 90659 288.88 660.87 573.91 772.63 
2000-150-50-50-100-Ldend-SmFx-1 103094 107937 112919 104700 557.78 936.14 665.24 1212.30 
2000-150-50-50-100-Ldend-SmFx-2 86687 90362 114823 85569 923.04 1330.40 1022.91 1797.37 
2000-150-50-50-100-Ldend-SmFx-3 87611 88629 93278 82495 504.37 748.80 702.74 910.61 
2000-150-50-50-100-Mdend-LgFx-1 133450 134299 142980 134235 1050.54 927.73 1296.05 2541.49 
2000-150-50-50-100-Mdend-LgFx-2 130008 140061 141766 129883 765.22 827.62 1210.80 1094.91 
2000-150-50-50-100-Mdend-LgFx-3 141132 142844 148292 141220 1223.29 1487.47 1498.24 2290.16 
2000-150-50-50-100-Mdend-MedFx-1 107333 109648 116862 106968 1161.83 2052.24 1418.20 2751.46 
2000-150-50-50-100-Mdend-MedFx-2 115833 115557 117425 109747 536.47 673.40 983.72 822.49 
2000-150-50-50-100-Mdend-MedFx-3 119481 108682 126895 115650 741.21 1290.15 1455.34 2400.86 
2000-150-50-50-100-Mdend-SmFx-1 91442 93979 111419 90700 1143.57 1824.61 1423.73 2659.35 
2000-150-50-50-100-Mdend-SmFx-2 89198 91327 103848 86695 309.41 625.61 643.16 886.67 
2000-150-50-50-100-Mdend-SmFx-3 80569 84387 101457 81435 578.40 1337.62 1148.89 1465.98 
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Table 2b. Computational results of four VND processes on 5-LFL instances of 3000 retailers. 
H=High, M=Medium, L=Low, Lg=Large, Med=Medium, Sm=Small (Dens=Density, Fx= Fixed Costs) 
R=# Retailers, D=# Dist Centers, W=# Warehouses, P=# Plants, S=# Suppliers 
Problem ID Objective Function Time to Best (Seconds) 
(R-D-W-P-Density-Fixed Cost Size-#) BVND PVND CVND UVND BVND PVND CVND UVND 
3000-150-50-50-100-Hdend-LgFx-1 177143 181279 188765 177171 1730.51 2774.29 2855.76 3317.83 
3000-150-50-50-100-Hdend-LgFx-2 185687 181059 216072 185317 2557.96 3712.22 3452.67 4547.93 
3000-150-50-50-100-Hdend-LgFx-3 226165 229090 234020 209822 1575.09 1718.28 2555.89 6453.75 
3000-150-50-50-100-Hdend-MedFx-1 155601 143283 174113 151073 3102.29 5227.15 3224.85 8061.98 
3000-150-50-50-100-Hdend-MedFx-2 162708 181873 206139 170701 1801.24 4322.82 3228.67 6592.10 
3000-150-50-50-100-Hdend-MedFx-3 165688 168593 175312 165719 2594.15 3338.00 3202.92 5285.76 
3000-150-50-50-100-Hdend-SmFx-1 148823 154034 161306 141953 2054.82 2787.82 5039.54 5244.57 
3000-150-50-50-100-Hdend-SmFx-2 125141 127389 137693 125123 1748.31 2596.58 3565.00 4622.17 
3000-150-50-50-100-Hdend-SmFx-3 119312 120421 139086 118029 2051.55 2954.15 3483.59 4265.77 
3000-150-50-50-100-Ldend-LgFx-1 169606 181739 188606 169814 1155.88 1211.17 1245.18 1586.68 
3000-150-50-50-100-Ldend-LgFx-2 183923 181877 196333 172949 1596.45 1958.97 2159.86 2237.93 
3000-150-50-50-100-Ldend-LgFx-3 165942 169482 191824 165498 1603.40 2130.76 1663.86 2826.26 
3000-150-50-50-100-Ldend-MedFx-1 143168 133492 158848 129467 994.58 1947.49 975.56 2355.73 
3000-150-50-50-100-Ldend-MedFx-2 152122 150776 154927 138277 608.50 1178.65 728.49 1612.80 
3000-150-50-50-100-Ldend-MedFx-3 139154 140911 154228 134399 1636.26 1975.74 1460.27 2385.93 
3000-150-50-50-100-Ldend-SmFx-1 149072 151165 154243 144555 1489.77 2823.59 1566.15 4249.35 
3000-150-50-50-100-Ldend-SmFx-2 131108 137822 151672 131870 797.18 1442.17 851.93 1994.85 
3000-150-50-50-100-Ldend-SmFx-3 123340 129105 163749 118981 814.33 1595.61 983.17 1933.13 
3000-150-50-50-100-Mdend-LgFx-1 201766 202385 219455 201890 1147.99 1695.32 1743.13 2189.42 
3000-150-50-50-100-Mdend-LgFx-2 200961 202491 211892 201378 2878.33 3390.62 3622.60 4608.55 
3000-150-50-50-100-Mdend-LgFx-3 210361 209517 220199 210284 1136.45 2181.45 2158.88 2948.50 
3000-150-50-50-100-Mdend-MedFx-1 157920 153900 162390 157980 1308.13 2323.04 1405.11 2309.58 
3000-150-50-50-100-Mdend-MedFx-2 186210 190493 203165 170739 1748.24 2765.20 1384.80 3176.68 
3000-150-50-50-100-Mdend-MedFx-3 137290 139402 172374 135231 1314.72 2252.12 2039.26 3187.55 
3000-150-50-50-100-Mdend-SmFx-1 126919 128570 138260 125620 2388.45 3446.25 2865.53 4990.77 
3000-150-50-50-100-Mdend-SmFx-2 147877 149180 149946 148057 734.46 1124.48 1752.31 3194.35 
3000-150-50-50-100-Mdend-SmFx-3 148726 154574 161357 147700 1921.16 3371.77 1957.44 4269.02 
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Table 2c. Computational results of four VND processes on 5-LFL instances of 4000 retailers. 
H=High, M=Medium, L=Low, Lg=Large, Med=Medium, Sm=Small (Dens=Density, Fx= Fixed Costs) 
R=# Retailers, D=# Dist Centers, W=# Warehouses, P=# Plants, S=# Suppliers 
Problem ID Objective Function Time to Best (Seconds) 
(R-D-W-P-Density-Fixed Cost Size-#) BVND PVND CVND UVND BVND PVND CVND UVND 
4000-150-50-50-100-Hdend-LgFx-1 250322 255850 293675 245746 4784.90 5895.74 5270.13 8884.54 
4000-150-50-50-100-Hdend-LgFx-2 249491 252572 264465 249410 3299.39 4922.62 5532.07 4923.97 
4000-150-50-50-100-Hdend-LgFx-3 312969 300518 293565 301348 3644.90 5780.33 6871.76 6377.05 
4000-150-50-50-100-Hdend-MedFx-1 241640 235244 252694 229504 5714.65 12607.79 7976.43 15501.11 
4000-150-50-50-100-Hdend-MedFx-2 195071 199395 228603 194101 2018.72 6839.02 4256.44 8104.99 
4000-150-50-50-100-Hdend-MedFx-3 240578 251823 259403 239200 5801.16 9854.55 7012.48 12639.69 
4000-150-50-50-100-Hdend-SmFx-1 159181 167744 194203 159469 3210.56 5498.01 3838.97 9474.06 
4000-150-50-50-100-Hdend-SmFx-2 222856 227498 234632 221096 3180.44 5331.01 5627.42 7754.41 
4000-150-50-50-100-Hdend-SmFx-3 190958 191280 193857 181928 3453.02 5982.70 5133.84 10205.69 
4000-150-50-50-100-Ldend-LgFx-1 187355 188975 212454 187193 807.58 947.11 1122.42 1474.65 
4000-150-50-50-100-Ldend-LgFx-2 200560 204187 224145 200237 1452.09 2205.28 2472.19 2479.21 
4000-150-50-50-100-Ldend-LgFx-3 209885 213684 232702 210091 1827.84 2285.93 1577.39 2560.29 
4000-150-50-50-100-Ldend-MedFx-1 192514 197223 236585 183226 2156.44 2937.75 2830.92 3437.66 
4000-150-50-50-100-Ldend-MedFx-2 220348 200020 234815 190991 2063.87 2955.56 2439.38 3674.91 
4000-150-50-50-100-Ldend-MedFx-3 206992 201915 236051 192946 2895.13 4523.59 2737.84 5101.41 
4000-150-50-50-100-Ldend-SmFx-1 164835 167148 190134 162773 2762.72 4170.86 2754.89 4547.10 
4000-150-50-50-100-Ldend-SmFx-2 164886 168507 192300 164179 1015.01 2294.03 1326.23 3166.26 
4000-150-50-50-100-Ldend-SmFx-3 174047 171087 190750 171942 3171.29 4197.75 2680.87 5961.77 
4000-150-50-50-100-Mdend-LgFx-1 207110 209461 217585 207206 2822.33 2887.98 3620.69 3908.46 
4000-150-50-50-100-Mdend-LgFx-2 259007 259314 262621 257541 2311.42 2392.37 2963.21 3560.05 
4000-150-50-50-100-Mdend-LgFx-3 205937 207658 256148 202064 1974.51 3472.08 2630.59 4477.17 
4000-150-50-50-100-Mdend-MedFx-1 227464 223909 259425 212093 4851.74 10925.84 3933.99 12634.54 
4000-150-50-50-100-Mdend-MedFx-2 199662 197979 237652 189764 2623.72 3993.71 3472.93 5343.94 
4000-150-50-50-100-Mdend-MedFx-3 237735 221130 273895 230915 1570.35 4076.80 2939.10 2555.40 
4000-150-50-50-100-Mdend-SmFx-1 158717 162377 206016 159200 2670.78 4978.39 2834.21 7641.99 
4000-150-50-50-100-Mdend-SmFx-2 150733 145308 175914 141209 1957.93 2910.38 2509.98 4787.07 
4000-150-50-50-100-Mdend-SmFx-3 178686 181847 200345 179126 3147.32 4336.45 3606.06 6628.40 
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Table 2d. Computational results of four VND processes on 5-LFL instances of 5000 retailers. 
H=High, M=Medium, L=Low, Lg=Large, Med=Medium, Sm=Small (Dens=Density, Fx= Fixed Costs) 
R=# Retailers, D=# Dist Centers, W=# Warehouses, P=# Plants, S=# Suppliers 
Problem ID Objective Function Time to Best (Seconds) 
(R-D-W-P-Density-Fixed Cost Size-#) BVND PVND CVND UVND BVND PVND CVND UVND 
5000-150-50-50-100-Hdend-LgFx-1 268947 276512 297434 268887 3761.39 5433.48 6809.43 5335.40 
5000-150-50-50-100-Hdend-LgFx-2 279601 287671 307109 276429 5806.98 6224.42 8866.12 10636.43 
5000-150-50-50-100-Hdend-LgFx-3 245074 245245 250646 244790 2581.77 3593.95 5116.11 4985.79 
5000-150-50-50-100-Hdend-MedFx-1 271725 273315 330750 271971 9682.94 21701.61 8731.48 21718.32 
5000-150-50-50-100-Hdend-MedFx-2 278547 281093 290523 278039 8337.45 11630.52 4723.23 15719.49 
5000-150-50-50-100-Hdend-MedFx-3 221034 202497 335217 192316 4435.51 11194.44 4382.31 12814.57 
5000-150-50-50-100-Hdend-SmFx-1 206043 219826 263292 206468 3488.80 5877.63 4492.62 7620.25 
5000-150-50-50-100-Hdend-SmFx-2 228559 241498 245041 228941 4958.44 9709.47 4698.77 11913.70 
5000-150-50-50-100-Hdend-SmFx-3 226301 242429 270806 218908 5892.36 11834.95 7856.14 16263.07 
5000-150-50-50-100-Ldend-LgFx-1 279697 289762 294586 272549 2505.48 2329.37 3252.98 3903.00 
5000-150-50-50-100-Ldend-LgFx-2 293944 282869 306636 293751 4002.84 4481.35 4636.14 5959.44 
5000-150-50-50-100-Ldend-LgFx-3 320792 327720 362256 285965 3418.14 4958.07 3255.28 6335.93 
5000-150-50-50-100-Ldend-MedFx-1 248485 251232 284234 244833 2791.12 4775.07 3204.98 5150.11 
5000-150-50-50-100-Ldend-MedFx-2 249046 232645 283852 225577 2787.85 4544.13 2813.65 5456.14 
5000-150-50-50-100-Ldend-MedFx-3 227814 212717 248618 231710 3023.70 4814.99 3081.34 4939.87 
5000-150-50-50-100-Ldend-SmFx-1 207160 212101 237825 200998 4006.85 5428.53 3834.05 6305.15 
5000-150-50-50-100-Ldend-SmFx-2 224958 226515 263278 223008 2582.18 5077.92 2149.58 5752.48 
5000-150-50-50-100-Ldend-SmFx-3 247893 247679 265141 240354 4673.47 5704.33 4289.94 5734.73 
5000-150-50-50-100-Mdend-LgFx-1 342111 346407 365131 339762 3910.67 13969.66 3288.19 14615.31 
5000-150-50-50-100-Mdend-LgFx-2 313128 316014 321843 313308 4836.85 6858.35 5865.27 8489.50 
5000-150-50-50-100-Mdend-LgFx-3 299188 296278 315600 298995 4342.93 5757.15 6738.68 5328.56 
5000-150-50-50-100-Mdend-MedFx-1 248908 240800 325411 227999 5879.65 9970.59 5492.00 10023.12 
5000-150-50-50-100-Mdend-MedFx-2 249029 258083 294296 255775 6179.88 9984.09 7496.14 12630.46 
5000-150-50-50-100-Mdend-MedFx-3 270201 273845 330514 242249 2049.76 3460.07 2739.98 5503.08 
5000-150-50-50-100-Mdend-SmFx-1 205491 209016 238292 196062 4182.37 5773.55 3916.20 7953.54 
5000-150-50-50-100-Mdend-SmFx-2 207958 215717 267263 208563 3457.46 7494.63 2792.22 9684.29 
5000-150-50-50-100-Mdend-SmFx-3 199180 212104 254877 198394 2604.59 4328.23 3750.37 5646.27 
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Table 2e. Computational results of four VND processes on 5-LFL instances of 6000 retailers. 
H=High, M=Medium, L=Low, Lg=Large, Med=Medium, Sm=Small (Dens=Density, Fx= Fixed Costs) 
R=# Retailers, D=# Dist Centers, W=# Warehouses, P=# Plants, S=# Suppliers 
Problem ID Objective Function Time to Best (Seconds) 
(R-D-W-P-Density-Fixed Cost Size-#) BVND PVND CVND UVND BVND PVND CVND UVND 
6000-150-50-50-100-Hdend-LgFx-1 293008 300028 319771 271939 7518.29 7752.59 8788.95 15675.96 
6000-150-50-50-100-Hdend-LgFx-2 393936 400790 433530 392230 6817.73 9325.12 7131.65 11823.88 
6000-150-50-50-100-Hdend-LgFx-3 331602 349018 354894 312272 6512.04 7133.33 8750.93 10520.74 
6000-150-50-50-100-Hdend-MedFx-1 309084 315475 339472 309267 13910.61 23165.08 10432.06 22768.38 
6000-150-50-50-100-Hdend-MedFx-2 321685 328873 370244 294956 5233.25 7595.34 5378.63 13408.95 
6000-150-50-50-100-Hdend-MedFx-3 306137 312871 344676 276489 11065.63 17483.96 10824.81 23178.23 
6000-150-50-50-100-Hdend-SmFx-1 298367 304797 320097 298511 4744.46 8680.57 9825.08 9010.65 
6000-150-50-50-100-Hdend-SmFx-2 276283 284867 309814 271278 9608.96 14602.37 11752.54 23380.67 
6000-150-50-50-100-Hdend-SmFx-3 233352 256432 294902 234922 5538.64 8062.13 12111.97 11105.01 
6000-150-50-50-100-Ldend-LgFx-1 297336 305185 320026 297697 4015.26 5390.77 2969.21 6951.39 
6000-150-50-50-100-Ldend-LgFx-2 320940 332249 389929 320309 3010.60 4941.23 3112.37 5173.45 
6000-150-50-50-100-Ldend-LgFx-3 383004 383836 419718 382987 854.67 4519.03 63.18 2642.41 
6000-150-50-50-100-Ldend-MedFx-1 271278 234922 297697 320309 9608.96 5538.64 4015.26 3010.60 
6000-150-50-50-100-Ldend-MedFx-2 248552 255533 349898 245610 5953.86 9490.38 6630.76 10870.23 
6000-150-50-50-100-Ldend-MedFx-3 286315 288274 323095 258663 2285.24 3177.12 2570.81 4689.73 
6000-150-50-50-100-Ldend-SmFx-1 239486 245162 292851 230756 4734.46 8507.50 2910.73 10239.04 
6000-150-50-50-100-Ldend-SmFx-2 271974 274030 315028 267892 5862.15 9991.21 5813.19 11675.50 
6000-150-50-50-100-Ldend-SmFx-3 266301 267334 301369 253206 2144.32 4919.35 2499.02 6916.76 
6000-150-50-50-100-Mdend-LgFx-1 360112 394691 403522 359874 3986.33 7790.15 4217.82 10627.67 
6000-150-50-50-100-Mdend-LgFx-2 377857 384473 399858 344081 3123.52 2665.16 4604.86 7212.37 
6000-150-50-50-100-Mdend-LgFx-3 321651 328403 366359 322146 5392.56 6033.74 5172.69 7447.67 
6000-150-50-50-100-Mdend-MedFx-1 324842 318890 346186 289247 5945.23 10348.75 7156.49 14427.86 
6000-150-50-50-100-Mdend-MedFx-2 318968 291904 330334 282535 8925.05 13132.62 8354.21 15052.72 
6000-150-50-50-100-Mdend-MedFx-3 307249 289231 313039 299443 5874.64 15787.05 4672.66 11380.20 
6000-150-50-50-100-Mdend-SmFx-1 289793 283423 305845 279657 7945.99 15302.42 8741.47 15444.77 
6000-150-50-50-100-Mdend-SmFx-2 216721 224010 300369 216542 5189.52 10202.04 5511.24 12777.54 
6000-150-50-50-100-Mdend-SmFx-3 303470 311863 325223 303353 6194.88 13501.47 4643.48 18602.30 
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Table 2f. Computational results of four VND processes on 5-LFL instances of 8000 retailers. 
H=High, M=Medium, L=Low, Lg=Large, Med=Medium, Sm=Small (Dens=Density, Fx= Fixed Costs) 
R=# Retailers, D=# Dist Centers, W=# Warehouses, P=# Plants, S=# Suppliers 
Problem ID Objective Function Time to Best (Seconds) 
(R-D-W-P-Density-Fixed Cost Size-#) BVND PVND CVND UVND BVND PVND CVND UVND 
8000-150-50-50-100-Hdend-LgFx-1 460043 512460 580678 459786 5149.86 9977.25 7275.21 12243.60 
8000-150-50-50-100-Hdend-LgFx-2 387970 400420 489917 387969 8819.33 17220.76 10960.60 12918.66 
8000-150-50-50-100-Hdend-LgFx-3 481098 483133 495038 480988 6206.11 7531.56 10709.55 10433.51 
8000-150-50-50-100-Hdend-MedFx-1 403368 412470 474116 403122 16824.32 25967.07 15196.93 28814.66 
8000-150-50-50-100-Hdend-MedFx-2 309120 325281 480938 310566 16897.69 28653.49 17992.02 31458.59 
8000-150-50-50-100-Hdend-MedFx-3 348911 328797 388588 320849 6766.82 9356.48 10818.30 12112.75 
8000-150-50-50-100-Hdend-SmFx-1 322998 328336 439910 319933 7232.40 16204.02 8777.54 18275.64 
8000-150-50-50-100-Hdend-SmFx-2 356273 361349 382524 336157 9029.71 21010.80 11851.64 24648.14 
8000-150-50-50-100-Hdend-SmFx-3 329781 333136 354270 330067 9131.13 20176.41 9936.22 24549.03 
8000-150-50-50-100-Ldend-LgFx-1 436168 439563 462480 435383 6078.60 11017.90 4954.90 15366.45 
8000-150-50-50-100-Ldend-LgFx-2 338560 351882 380284 338346 3217.08 3795.77 3264.54 5143.09 
8000-150-50-50-100-Ldend-LgFx-3 404454 408439 443446 393934 6219.02 6657.13 6497.89 9748.62 
8000-150-50-50-100-Ldend-MedFx-1 398400 399903 428327 379651 9199.84 13199.69 9416.97 13769.74 
8000-150-50-50-100-Ldend-MedFx-2 376643 380956 410772 353777 8778.36 13618.16 6957.65 15815.32 
8000-150-50-50-100-Ldend-MedFx-3 462088 468267 506080 462155 7801.79 8852.34 6081.72 14368.71 
8000-150-50-50-100-Ldend-SmFx-1 294810 304183 368753 294360 8152.99 11967.96 7991.52 12275.05 
8000-150-50-50-100-Ldend-SmFx-2 346083 342947 387215 329934 7002.97 12752.58 5589.84 12973.57 
8000-150-50-50-100-Ldend-SmFx-3 337552 349742 407553 320960 5832.42 10282.20 3876.65 12390.54 
8000-150-50-50-100-Mdend-LgFx-1 544783 559126 636860 543943 9532.67 14818.14 10711.08 18589.10 
8000-150-50-50-100-Mdend-LgFx-2 422654 429948 460233 417468 6241.39 10765.83 5411.63 12349.77 
8000-150-50-50-100-Mdend-LgFx-3 441001 442948 443705 441232 5948.38 9164.54 8584.71 11328.28 
8000-150-50-50-100-Mdend-MedFx-1 400289 375619 406227 365818 2847.80 8144.00 4882.62 9706.31 
8000-150-50-50-100-Mdend-MedFx-2 429118 426793 487408 390742 8374.05 14886.71 8762.91 25737.91 
8000-150-50-50-100-Mdend-MedFx-3 411866 414954 425643 405364 9995.88 13812.95 9548.09 16999.94 
8000-150-50-50-100-Mdend-SmFx-1 396622 403721 424452 409841 11948.44 20194.12 11669.24 27102.25 
8000-150-50-50-100-Mdend-SmFx-2 334539 339190 363120 331733 11790.59 13732.46 11633.42 19720.01 
8000-150-50-50-100-Mdend-SmFx-3 332512 340180 417354 329292 16513.92 28054.14 12889.34 28668.03 
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that can arise from so many simultaneous comparisons. In other cases, where we were more 
interested in direct head-to-head contests between two specific algorithms, the Wilcoxon signed-
rank test was a better fit. This approach is useful because it considers the direction and magnitude 
of the performance differences. When running multiple Wilcoxon tests, we adjusted our 
significance levels using methods like the Bonferroni correction to avoid drawing faulty 
conclusions due to repeated testing. 

Key statistics are reported in Tables 3, 4, 5, and 6 for the primary omnibus test, including the 
test statistics, degrees of freedom, and the p-value, so the overall findings are clear. Next, we 
specify exactly which pairs of algorithms showed statistically significant differences based on the 
follow-up methods we applied, making it easy to identify where the meaningful distinctions lie. 
 
 
Table 3. Results of Friedman’s Test, Nemenyi’s Post-Hoc Test, and Pairwise Wilcoxon Test on 
the OFV of 4-LFL instances. 
Friedman’s Test for BVND, PVND, CVND, and UVND 
Number of complete experiments (blocks/rows): 162 
Number of algorithms (groups/columns): 4 
Friedman chi-squared statistics: 397.855 
P-value: 6.454e-86 
Note: The Friedman test was conducted to determine if there were any statistically significant differences in the median
Objective Function Values (OFVs) achieved by the four algorithms (BVND, PVND, CVND, and UVND) across the 162 
experiments. With a chi-squared statistic of 397.855 and an extremely low p-value (6.454e-86), far below the significance 
level of 0.05, the null hypothesis that all algorithms perform equally well (i.e., have similar median OFVs) was rejected.
This indicates that at least one algorithm’s typical OFV performance is statistically different from the others, necessitating
post-hoc analysis to identify specific pairwise differences. 
--- Post-Hoc Analysis --- 
Nemenyi's Post-Hoc Test Results (pairwise p-values): 
 BVND PVND CVND UVND 
BVND  0 0 0.931 
PVND 0  1.02E-11 0 
CVND 0 1.02E-11  0 
UVND 0.931 0 0  
Note: Following the significant Friedman test, Nemenyi’s post-hoc test was used for pairwise comparisons of algorithm
performance based on their OFVs, with a significance level of 0.05. The results indicate that the OFVs achieved by
algorithms BVND and UVND are not statistically distinguishable from each other (p = 0.931). However, all other pairwise
comparisons yielded p-values less than 0.05, signifying statistically significant differences in their OFV performance.
Specifically, PVND and CVND each have OFV distributions that are significantly different from each other, and both are
significantly different from the BVND/UVND pair, suggesting three distinct tiers of OFV performance among the
algorithms. 
Pairwise Wilcoxon Test with Bonferroni Correction (p-values) 
 BVND PVND CVND UVND 
BVND  1.48E-27 1.29E-26 1.00 
PVND 1.48E-27  3.39E-26 2.95E-26 
CVND 1.29E-26 3.39E-26  2.05E-25 
UVND 1.00 2.95E-26 2.05E-25  
Note: The pairwise Wilcoxon signed-rank tests, with a Bonferroni correction applied to maintain a family-wise error rate of 
0.05, were also conducted to compare the OFV performance between each pair of algorithms. These results corroborated
the findings from Nemenyi’s test: no statistically significant difference in the OFVs produced by BVND and UVND (p = 
1.00). Conversely, all other pairwise comparisons (BVND vs. PVND, BVND vs. CVND, PVND vs. CVND, PVND vs. 
UVND, and CVND vs. UVND) showed highly statistically significant differences in their OFV distributions (all adjusted
p-values < 0.05, many << 0.001). This reinforces the conclusion that PVND and CVND perform differently from each other
and that the BVND/UVND pair is statistically similar in terms of their resulting OFVs. 
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Table 4. Results of Friedman’s Test, Nemenyi’s Post-Hoc Test, and Pairwise Wilcoxon Test on 
the computing time of 4-LFL instances. 
Friedman’s Test for BVND, PVND, CVND, and UVND 
Number of complete experiments (blocks/rows): 162 
Number of algorithms (groups/columns): 4 
Friedman chi-squared statistic: 332.556 
P-value: 8.926E-72 
Note: The Friedman test was employed to assess whether there were statistically significant differences in the median
computing times among the four algorithms (BVND, PVND, CVND, and UVND) across the 162 experiments. The test
yielded a chi-squared statistic of 332.556 and a small p-value of 8.926E-72. Since this p-value is less than the pre-defined 
significance level (α = 0.05), the null hypothesis (H₀), stating that all algorithms have the same median computing time,
is rejected. This indicates strong evidence that at least one algorithm’s computing time distribution differs significantly from
the others, warranting post-hoc analysis to identify specific pairwise differences. 
--- Post-Hoc Analysis --- 
Nemenyi’s Post-Hoc Test Results (pairwise p-values): 
 BVND PVND CVND UVND 
BVND  0 0 1.14E-10 
PVND 0  0.678 0 
CVND 0 0.678  5.22E-15 
UVND 1.14E-10 0 5.22E-15  
Note: Nemenyi’s post-hoc test was conducted to perform pairwise comparisons of algorithm computing times following the
significant Friedman test, using α = 0.05. The results show that the computing times for PVND and CVND algorithms are 
not statistically distinguishable (p = 0.678). However, all other pairwise comparisons yielded p-values well below 0.05 (e.g., 
BVND vs. PVND, p=0.00; BVND vs. UVND, p=1.14e-10; PVND vs. UVND, p=0.00; and CVND vs. UVND, p=5.22e-
15). This suggests that algorithms BVND and UVND each have computing times significantly different from all other
algorithms. At the same time, PVND and CVND form a group with similar computing times. 
Pairwise Wilcoxon Test with Bonferroni Correction (p-values) 
 BVND PVND CVND UVND 
BVND  4.74E-27 3.34E-27 2.68E-20 
PVND 4.74E-27  1.13E-02 5.75E-24 
CVND 3.34E-27 1.13E-02  3.31E-10 
UVND 2.68E-20 5.75E-24 3.31E-10  
Note: A more detailed analysis, carefully adjusted for multiple comparisons to ensure reliability, examined the computing
time differences between every pair of algorithms (BVND vs. PVND, BVND vs. CVND, etc.). This analysis found a real,
meaningful difference in computing time between all pairs of algorithms. This means BVND’s computing time differed 
from PVND’s, CVND’s, and UVND’s. Similarly, PVND’s computing time was different from CVND’s (though this 
difference, while real, was less strongly evident than others), and UVND’s and CVND’s computing time was also different
from UVND’s. 
 
 

The four algorithms present distinct performance profiles when considering solution quality 
(OFV) and computing speed on 4-LFL instances. Algorithms BVND and UVND achieve 
statistically similar solution qualities, but their computing times are significantly different from 
each other and from the other two algorithms. In contrast, PVND and CVND each deliver unique 
solution qualities, different from each other and also different from the BVND/UVND pair; their 
computing speeds are relatively close to one another (though a stricter test suggests a slight 
difference) but distinct from the speeds of BVND and UVND. This indicates clear trade-offs, with 
no single algorithm definitively outperforming others on both criteria based solely on statistical 
significance, necessitating an examination of actual performance values (mean OFVs and times) 
and problem-specific priorities to select the most suitable algorithm. 
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Table 5. Results of Friedman’s Test, Nemenyi’s Post-Hoc Test, and Pairwise Wilcoxon Test on 
the OFV of 5-LFL instances. 
Friedman’s Test for BVND, PVND, CVND, and UVND 
Number of complete experiments (blocks/rows): 162 
Number of algorithms (groups/columns): 4 
Friedman chi-squared statistic: 370.926 
P-value: 4.387E-80 
Note: The Friedman test was conducted to determine if there were any statistically significant differences in the median
Objective Function Values (OFVs) achieved by the four algorithms (BVND, PVND, CVND, and UVND), specifically on 
the 162 5-LFL problem instances. The resulting high chi-squared statistic of 370.926 and an extremely low p-value (4.387E-
80), well below the 0.05 significance level, led to the rejection of the null hypothesis that all algorithms produce similar
median OFVs. This indicates significant variations in OFV performance among the algorithms when applied to the 5-LFL
problem set, justifying further post-hoc analysis to identify which specific algorithms differ in their OFV results. 
--- Post-Hoc Analysis --- 
Nemenyi’s Post-Hoc Test Results (pairwise p-values): 
 BVND PVND CVND UVND 
BVND  7.0E-06 0 3.0E-05 
PVND 7.0E-06  0 0 
CVND 0 0  0 
UVND 3.0E-05 0 0  
Note: Following the significant Friedman test, Nemenyi’s post-hoc test was used to perform all pairwise comparisons of the
algorithms’ OFV performance on the 5-LFL problems, using an alpha of 0.05. The p-values for all comparisons (e.g., BVND
vs. PVND, p=0.000007; PVND vs. CVND, p=0.0) were well below this threshold. This signifies that statistically significant
differences in the OFVs achieved exist between every pair of algorithms. Consequently, for the 5-LFL problems, each 
algorithm—BVND, PVND, CVND, and UVND—demonstrates a level of OFV performance that is statistically distinct
from all the others. 
Pairwise Wilcoxon Test with Bonferroni Correction (p-values) 
 BVND PVND CVND UVND 
BVND  8.48E-07 5.10E-27 1.43E-14 
PVND 8.48E-07  2.44E-27 6.03E-20 
CVND 5.10E-27 2.44E-27  6.73E-27 
UVND 1.43E-14 6.03E-20 6.73E-27  
Note: The pairwise Wilcoxon signed-rank tests, with a Bonferroni correction applied to control the family-wise error rate at 
0.05, were also conducted to compare the OFV performance between each pair of algorithms on the 5-LFL problems. These 
results robustly confirmed Nemenyi’s findings, as all Bonferroni-adjusted p-values (e.g., BVND vs. PVND, p=8.478E-07; 
CVND vs. UVND, p=6.726E-27) were exceptionally small and significantly below the 0.05 alpha level. This provides
strong, conservative evidence that statistically significant differences in OFV exist between all pairs of the four algorithms, 
reinforcing that each algorithm achieves a unique distribution of OFVs when tackling the 5-LFL problem set. 
 
 
Table 6. Results of Friedman’s Test, Nemenyi’s Post-Hoc Test, and Pairwise Wilcoxon Test on 
the computing time of 5-LFL instances. 
Friedman’s Test for BVND, PVND, CVND, UVND 
Number of complete experiments (blocks/rows): 162 
Number of algorithms (groups/columns): 4 
Friedman chi-squared statistics: 334.778 
P-value: 2.948E-72 
Note: The Friedman test was applied to assess whether there were statistically significant differences in the median
computing times among the four algorithms (BVND, PVND, CVND, and UVND) when solving the 162 5-LFL problem 
instances. With a high chi-squared statistic of 334.778 and an exceptionally low p-value (2.941E-72), far below the 0.05 
significance level, the null hypothesis that all algorithms exhibit similar median computing times was decisively rejected.
This result strongly indicates significant variations in computational speed among the algorithms for the 5-LFL problem set, 
necessitating post-hoc analysis to pinpoint specific pairwise differences in their computing times. 
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Table 6. (continued) 
--- Post-Hoc Analysis --- 
Nemenyi’s Post-Hoc Test Results (pairwise p-values): 
 BVND PVND CVND UVND 
BVND  0 1.70E-07 0 
PVND 0  5.51E-05 7.98E-14 
CVND 1.70E-07 5.51E-05  0 
UVND 0 7.98E-14 0  
Note: Following the Friedman test’s indication of overall differences, Nemenyi’s post-hoc test was employed to conduct all
pairwise comparisons of the algorithms’ computing times, specifically for the 5-LFL problems, using an alpha of 0.05. The
p-values for all pairs (e.g., BVND vs. PVND, p < 1.0E-07; PVND vs. CVND, p = 5.51E-05) were well below this 
significance threshold. This outcome demonstrates that statistically significant differences in computing time exist between
every single pair of algorithms. Therefore, for the 5-LFL problems, each algorithm—BVND, PVND, CVND, and UVND—
operates at a statistically distinct speed from all the others. 
Pairwise Wilcoxon Test with Bonferroni Correction (p-values) 
 BVND PVND CVND UVND 
BVND  4.73E-26 1.47E-07 1.53E-26 
PVND 4.73E-26  9.78E-12 2.28E-22 
CVND 1.47E-07 9.78E-12  5.95E-24 
UVND 1.53E-26 2.28E-22 5.95E-24  
Note: The pairwise Wilcoxon signed-rank tests, adjusted with a Bonferroni correction to maintain a family-wise error rate 
of 0.05, were also utilized to compare the computing times between each pair of algorithms for the 5-LFL problem set. 
These more conservative tests strongly corroborated Nemenyi’s findings, with all Bonferroni-adjusted p-values (e.g., BVND
vs. CVND, p = 1.47E-07; CVND vs. UVND, p = 5.95E-24), which were extremely small and significantly below the 0.05
alpha level. This provides robust evidence that the computing time for each of the four algorithms is statistically
distinguishable from that of every other algorithm when applied to the 5-LFL problems. 
 
 

When we analyzed the results for the 5-LFL problem set, a distinct performance hierarchy 
emerged among the four algorithms tested: BVND, PVND, CVND, and UVND. Regarding 
solution quality, we found that each algorithm produced an Objective Function Value (OFV) 
statistically different from all the others. The same was true for how fast they ran. Each algorithm 
settled into a unique and statistically significant computing time when solving these problems. 
What this complete separation in performance suggests is a classic trade-off. This forces us to look 
beyond the statistics alone and examine the actual mean OFVs and run times to make a practical 
decision tailored to the specific demands of a 5-LFL challenge. 
 
 
7. Managerial Implications 
 
When we think about a company’s supply chain, it is easy to picture a simple line from a single 
factory to a single store. The reality, especially for large retailers, is much more complicated. Their 
success often depends on designing a multi-level network, which might involve structuring 
operations across four or even five distinct layers. For a typical retail business, this could mean 
moving products from manufacturing plants to massive central warehouses, then out to regional 
distribution centers, and finally onto the shelves of local stores where customers shop. The real 
puzzle is figuring out the best place to put each facility and how big it should be, all while juggling 
transportation costs, holding inventory, and running the retail stores. 

The sheer scale of this challenge becomes clear when you look at a giant like Walmart, which 
serves around 255 million customers weekly, managing over 100,000 different products from 
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thousands of suppliers across over 10,000 stores. Making that system work is not magic; it is the 
result of decades of careful decisions regarding where to place their plants, warehouses, and 
distribution centers. These strategic choices have been key in keeping transport costs low and 
ensuring products are delivered on time. 

This complexity can go even deeper. A five-level system is common in e-commerce, where 
getting a package to someone’s front door is everything. Amazon’s network, for instance, seems 
to follow this model: goods move from suppliers to initial sorting hubs, then to enormous 
fulfillment centers, on to smaller regional sortation centers, and finally to local stations for last-
mile delivery. Each step represents its unique puzzle with its own set of trade-offs. 

Owning every piece of the puzzle is not the only path to success. While Amazon invests heavily 
in its distribution infrastructure, apparel companies like Zara and Benetton have succeeded with a 
different approach. They maintain agility by working with a wide network of small, independent 
manufacturers. This allows them to manage the first stage of their supply chain for rapid adaptation 
to changing fashion trends. Researchers like Soshko, Merkuryev, and Chakste (2007) have pointed 
out that selecting the correct facility location can lead to tangible benefits like lower transportation 
costs and better service.  
 
 
8. Conclusion 
 
This study focused on single-assignment MFL problems, specifically for 4- and 5-level locations. 
All customers (i.e., retail stores) at Level 1 must be served. Single-assignment from upper-level 
facilities to lower-level facilities is considered. Furthermore, each retail store also prefers products 
from a specific set of plants. The flow of a bundle of products from an upper-level facility to a 
lower-level facility incurs some costs each time it is moved. The selection of each facility also 
incurs a one-time fixed cost, and the number of facilities selected at each level is limited to an 
upper bound. We considered large-scale problems and provided four variants of VND meta-
heuristics. Extensive computational experiments with heuristics are provided for randomly 
generated problems, and sensitivity analyses, supported by appropriate statistical methods, are 
used to validate the effectiveness of the heuristics’ results.  
Further research may be considered as follows: 
 

• There are different methods to embed sequences within heuristics, as demonstrated by 
Alidaee and Wang (2017) and Wang and Alidaee (2019, 2023). In this study, we employed 
the l-Opt strategy adapted from a traveling salesman type application. However, it would 
be valuable to compare these approaches to determine which performs best for these 
problems.  

• We also used hierarchical problems; however, retailers (also intermediate facilities) often 
order directly from upper-level facilities. This situation requires further attention, and we 
are addressing it for future research. In such cases, it is appropriate to consider a 
multimodal situation, which we are also considering. 

• Each time a product bundle is transferred from one facility to the next, it incurs a cost. This 
cost is independent of the retail store, similar to the problem in Ortiz-Astorquiza, Contreras, 
and Laporte (2018). However, it makes sense to consider such costs when they depend on 
the retail store, similar to Ortiz-Astorquiza, Contreras, and Laporte (2019). In such cases, 
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the number of variables significantly increases, and the use of computer storage also 
increases significantly. 

• We did not include capacity constraints for the selected facilities. However, practical 
problems often require capacity consideration, including opening, closing, and expanding 
facilities. It makes sense to consider such situations for single-assignment problems, 
although for multi-assignment problems, such cases have been considered in the past 
(Melo, Nickel, and Saldanha da Gama 2006).  
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Appendix B 
 
 
Table B1. Parameters used for data generation. 
Parameters: 
R, number of retail stores (Level 1), 2000, 3000, 4000, 5000, 6000, 8000, 9000, 10000 
        For 4-LFL, 2000, 4000, 5000, 8000, 9000, 10000 
        For 5-LFL, 2000, 3000, 4000, 5000,6000,  8000 
D, number of distribution centers (Level 2), 150 
W, number of warehouses (Level 3), 50 
P, number of plants (Level 4), 30, 50 
S, number of suppliers (Level 5), 100 
r, a retail store 
d, a distribution center 
w, a warehouse 
p, a plant 
s, a supplier  

P-R, P by R binary matrix, pr-th element 1 means plant p is eligible to ship products to a retail store r, 
0 otherwise. 
D-R, D by R matrix, positive dr-th element means distribution center d is eligible to ship products to 
retail store r with cost or distance equal to value of dr-th element , and 0 means ineligible. 
W-D, W by D matrix, positive wd-th element means warehouse w is eligible to ship products to 
distribution center d with cost or distance equal to value of wd-th element , and 0 means ineligible. 
P-W, P by W matrix, positive pw-th element means plant p is eligible to ship products to warehouse w 
with cost or distance equal to value of pw-th element , and 0 means ineligible. 
S-P, S by P matrix, positive sp-th element means supplier s is eligible to ship products to plant p with 
cost or distance equal to the value of the sp-th element , and 0 means ineligible.  

L_DR (U_DR), lower (upper) value for elements of cost matrix D-R, (L_DR, U_DR) = (5, 50) 
L_WD (U_WD), lower (upper) value for elements of cost matrix W-D, (L_WD, U_WD) = (100, 500) 
L_PW (U_PW), lower (upper) value for elements of cost matrix P-W, (L_PW, U_PW) = (5, 500) 
L_SP (U_SP), lower (upper) value for elements of cost matrix S-P, (L_SP, U_SP) = (5, 150)  

Ldense, low density, for 4-FLP 20%, for 5-FLP 40% 
Mdense, medium density, for 4-FLP 40%, for 5-FLP 50% 
Hdense, high density, for 4-FLP 60%, for 5-FLP 60%  

L_FD (U_FD), lower (upper) value for distribution center fixed costs 
L_FW (U_FW), lower (upper) value for warehouse fixed costs 
L_FP (U_FP), lower (upper) value for plant fixed costs 
L_FS (U_FS), lower (upper) value for supplier fixed costs 
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Table B1. (continued) 
SmFx, small fixed costs. (L_FD, U_FD) = (50, 100), (L_FW, U_FW) = (100, 200), (L_FP,U_FP) =  
                                         (200, 400), (L_FS, U_FS)= (20, 100) 
MedFx, medium fixed costs, (L_FD, U_FD) = (100, 200), (L_FW, U_FW) = (200, 400),  
                                        (L_FP, U_FP) = (400, 800), (L_FS, U_FS) = (50, 200)  
LgFx, Large fixed costs, (L_FD, U_FD) = (200, 400), (L_FW, U_FW) = (400, 800),  
                                        (L_FP, U_FP) = (800, 1600), (L_FS, U_FS) = (200, 400)   

UB_D, upper bound for number of distribution centers to be opened, density*D 
UB_W, upper bound for number of warehouse centers to be opened, density*W 
UB_P, upper bound for number of plants to be opened, density*P 
UB_S, upper bound for number of suppliers to be opened (considered), density*S  

Max_Local, the number of multi-start. For low-density 70, medium-density 50, and high-density 30  

Variables: 
D_Upper, number of distribution centers opened 
W_Upper, the number of warehouses opened 
P_Upper, number of plants opened 
S_Upper, the number of suppliers opened 
(p, w, d, r), schedule of receiving a bundle of products to retailer r, via plant p, warehouse w, and 
distribution center d in 4-FLP 
(s, p, w, d, r), schedule of receiving a bundle of products to retail store r, via supplier s, plant p, 
warehouse w, and distribution center d in 5-FLP  

Objective function: 
Find a schedule of shipments satisfying all retailers, minimizing the total cost of shipment, and opening 
facilities 
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