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Abstract

The U.S. interbank market, a critical component of financial stability, has undergone significant
transformations over the past four decades, driven by regulatory reforms, technological
advancements, and economic shocks. This paper investigates the evolution of the interbank
network structure among mid-size and large U.S. banks from 1984 to 2024. We construct quarterly
interbank networks based on the cosine similarity of interbank exposure profiles derived from Call
Reports and analyze their topological properties, including density, centrality, community
structure, and modularity. A key focus is mapping major legislative and regulatory changes (e.g.,
the Riegle-Neal Act, GLBA, and Dodd-Frank Act) to observed shifts in network topology and
interconnectedness. Furthermore, we employ temporal graph neural networks (TGNNs), such as
EvolveGCN or TGN, to model the dynamic network and detect anomalies that may signal
heightened systemic risk or financial stress. Our findings reveal a trend towards increased
modularity and community size in the post-GFC period and demonstrate a discernible impact of
regulatory interventions on network architecture. The TGNN-based anomaly scores correlate with
historical periods of financial stress and bank failures, highlighting their potential as an early
warning tool. This research provides novel insights into the long-term dynamics of interbank
networks, the influence of regulation, and the application of advanced machine learning for
financial surveillance.

Keywords: Interbank network; systemic risk; financial regulation; temporal graph neural
networks; anomaly detection; US banking system; network analysis; financial stability

1. Introduction

Mid-size and large banks significantly impact the U.S. economy. We aim to highlight their role in

financial stability by examining historical trends, regulatory impacts, and employing advanced
machine learning models to analyze their interactions. To clarify, mid-size and large banks are
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defined as financial institutions (banks) with an asset composition of between $10 and $100
billion.

Firstly, the extant literature is limited on how the structure of the U.S. mid-size and large
interbank network has evolved from 1984 to 2024, a period spanning over 40 years. In addition,
key regulatory changes, such as the Dodd-Frank Wall Street Reform and Consumer Protection Act,
the Riegle-Neal Interstate Banking and Branching Efficiency Act, the Financial Institutions
Reform, Recovery, and Enforcement Act (FIRREA), the Federal Deposit Insurance Corporation
Improvement Act (FDICIA), and the Gramm-Leach-Bliley Act (GLBA), that have influenced this
evolution are also underexplored. Lastly, to our knowledge, there is a paucity of knowledge for the
use of advanced temporal graph machine learning methods to detect anomalies in response to
banking regulations, which may potentially indicate systemic stress (Acharya et al. 2017).

In this study, we tackle the aforementioned limitations in the theoretical and empirical literature
and investigate the following research questions: First, what are the long-term trends in the number
of active mid-size and large banks and their physical presence (branches)? Second, how have the
interbank market’s key network topological properties (density, centrality, community structure,
and modularity) evolved over this period? Third, is there a discernible correlation between major
U.S. banking legislation/regulation and shifts in these network properties? Fourth, can temporal
graph neural networks (TGNN5s) effectively model the temporal dynamics of the interbank network
and identify anomalous periods or bank behaviors? Lastly, do detected anomalies correlate with
known periods of financial stress or bank failures?

We make four contributions to the extant literature. First, we offer a comprehensive analysis
of the U.S. interbank network spanning approximately four decades. Second, our study
systematically maps regulatory changes to the structural evolution of the network. Third, we
leverage the application and evaluation of TGNNSs, such as evolving graph convolutional networks
(EvolveGCN) or temporal graph networks (TGN), for anomaly detection in dynamic financial
networks. Fourth, this study offers insights for policymakers and regulators on the structural
evolution of mid-size to large banks spanning 40 years, mapping various regulations to their
network activities, using a machine learning approach to detect anomalies in their network, and
facilitating systemic risk monitoring.

The remainder of the paper is structured as follows: Section 2 provides a comprehensive
literature review. Section 3 outlines the data and methodology, and Section 4 reports the results.
Section 5 presents the discussion. Finally, Section 6 concludes.

2. Literature review
2.1 Interbank networks and systemic risk

Interbank networks serve as the backbone of financial systems by linking banks through credit
exposures and liquidity interdependencies. The structure and dynamics of these networks critically
influence systemic risk, contagion, and financial stability. Acemoglu et al. (2015) demonstrate that
a dense financial network can enhance systemic stability when shocks are small, but the potential
for contagion grows as interconnectedness increases. Freixas et al. (2000) and Allen and Gale

2 https://www.fdic.gov/system/files/2024-06/2023-guidelines-establishing-standards-for-corporate-governance-3064-
af94-c-021.pdf. Accessed June 6, 2025.




(2000) highlight that financial contagion can propagate through direct insolvency or liquidity
shocks, with regional liquidity preferences influencing cross-regional exposures.

Diamond and Dybvig (1983) emphasize how deposit withdrawals can catalyze bank runs
through network channels, while Shin (2009) reveals that securitization creates indirect contagion
paths by linking banks’ loan exposures. Acemoglu et al. (2015) further explain contagion
amplification through heterogeneity in network structures, with financial institutions varying in
connectivity and systemic importance.

Alvarez and Barlevy (2015) analyze the welfare implications of mandatory loss disclosures,
linking transparency to contagion dynamics. Gai et al. (2011) argue that the concentration of
unsecured claims raises contagion risk, which can be mitigated by macroprudential policies.

At the individual bank level, Hu et al. (2012) use network-based systemic risk measures to link
asset correlations and interbank payments with systemic vulnerability during large shocks.
Eisenberg and Noe (2001) provide a theoretical foundation for clearing payments in interbank
systems, ensuring obligations are met uniquely under unsupervised conditions.

Recent empirical studies employ topological and causality analyses to identify systemic risk
precursors. Gong et al. (2019) utilize network connectedness to detect financial crises, while Wang
et al. (2024) apply Granger-causality tests to reveal risk spillovers primarily originating from the
real estate and banking sectors toward insurance and diversified finance firms.

A complex network of interbank credit poses two problems: 1) disruption and 2) influence
(Wang 2024). We follow his example that a disruption of the interbank credit network may occur
as a result of the failure of a bigger or more powerful bank, which will have a ripple effect on the
rest of the network in terms of liquidity flow, leading to systemic risk propagation and
amplification (Acemoglu et al. 2015). Regarding the influence problem, if the rationale is to
forestall systemic liquidity shortages, then the financially prudent approach is to lower the interest
rate, thereby facilitating the flow of liquidity from surplus banks, which are usually big banks. To
this end, it is reasonable for small regional or community banks to maintain low liquidity risk
through the interbank market. However, these two problems that plague interbank credit networks
often interact and co-exist in several situations.

As the lender of last resort, governments have provided bailouts to big banks to prevent
bankruptcy propagation, which is challenging in the current global financial network. For instance,
during the Global Financial Crisis (GFC) of 2008-2009, the federal government bailed out the big
banks, which prevented the government from raising interest rates and diminished the chances of
bankruptcy propagation in the short term (Miron 2009), but failed to eliminate systemic risk. In
sum, it is important to improve the structures of resilience to disruption in interbank credit
networks, where small banks have more resources for liquidity (Georg 2013).

Pu and Cui (2015) extensively studied the degree of vulnerabilities in social networks. The
growing body of knowledge from research on social and economic networks has laid the
foundation for understanding the nature and behavior of interbank credit networks (Munshi 2011).
As such, interbank activities, including but not limited to liquidity interdependence, financial
exposures, and payment systems, provide us with an avenue to model and simulate the behavior
of these types of complex networks in mid-size and large banks, mapping them to major U.S.
regulations. At the heels of this, Krause and Giansante (2012) noted that “too big to fail” and “too
interconnected to fail” banks in interbank credit networks can cause massive disruptions in cash
flows, leading to the spread of bankruptcy.



Together, these studies underscore that the topology and dynamics of interbank credit networks
are critical to understanding systemic risk and inform regulatory interventions aimed at promoting
resilience.

2.2 Financial regulation

Financial regulation has profoundly shaped banking structures, market dynamics, and
interconnectedness. Anderson et al. (2019) trace how the National Banking Act of 1863-1864
concentrated deposits, creating systemically important banks. Later reforms, such as the
Depository Institutions Deregulation and Monetary Control Act (DIDMCA) of 1980, deregulated
interest rates and fostered competition, with Allen and Wilhelm (1988) documenting its impact on
bank profitability and market risk.

Madura and Wiley (2000) examine the Financial Institutions Reform, Recovery, and
Enforcement Act (FIRREA) of 1989, noting its mixed effects on the risk profiles of savings and
loan institutions. Mansur and Elyasuani (1994) and Bryant and Martzoukos (1998) find that
FIRREA influenced firm values and stock returns, particularly among smaller thrifts.

The Riegle-Neal Interstate Banking and Branching Efficiency Act (IBBEA) of 1994 removed
geographic restrictions, promoting branching and competition. Carlson and Mitchener (2006) and
Johnson and Rice (2008) suggest these changes reduced systemic risk through diversification, and
Avery et al. (1999) and Rice and Davis (2007) note increases in branch offices per capita.

The Gramm-Leach-Bliley Act (GLBA) of 1999 repealed Glass-Steagall provisions, allowing
consolidation across banking, securities, and insurance sectors. Zhao and He (2014) report post-
GLBA expansion into market-sensitive businesses, weakening the value of accounting
information. Chen et al. (2018) find governance improvements post-GLBA, while Ghosh (2020)
links the act to shifts in bank risk and profitability.

The Dodd-Frank Act (DFA) of 2010, enacted after the Global Financial Crisis, introduced
stricter capital and liquidity rules, the Consumer Financial Protection Bureau, and proprietary
trading restrictions via the Volcker Rule. Acharya (2012) highlights the DFA’s macroprudential
regulation strengths but critiques Basel III’s shortcomings. Studies by Cho et al. (2017) and
Gangopadhyay and Yook (2022) explore the DFA’s limitations and market impacts, while Gao et
al. (2018) show that systemic institutions experienced more negative stock returns yet positive
bond returns post-DFA.

Additional research emphasizes how regulations influence bank size, mergers, and market
interconnectedness. Hassan and Giouvris (2021) find that large acquirers reduce systemic risk in
cross-border mergers, while Gao et al. (2018) note increased market reactions for more
interconnected banks.

In sum, regulation shapes the evolving structure and risk profile of banking networks,
balancing stability and competition.

2.3 Temporal networks and anomaly detection

Dynamic analysis of financial networks and anomaly detection are increasingly central to systemic
risk monitoring. Paschalidis and Smaragdakis (2009) introduce spatio-temporal network anomaly
detection, demonstrating the ability to detect short-lived anomalies, even within limited data
windows, using both model-free and model-based approaches.



Cai et al. (2021) propose STrGNN, a structural temporal graph neural network designed to
identify anomalies at graph edges in dynamic financial networks, showing promise in early threat
detection and incident response optimization. Similarly, Shen et al. (2020) develop temporal
hierarchical one-class (THOC) networks for capturing temporal dynamics in time series anomaly
detection, while Zhao and He (2014) utilize temporal convolutional networks (TCNs) for similar
purposes.

Ranshous et al. (2015) provide a comprehensive survey of graph-based anomaly detection
techniques, highlighting challenges unique to temporal and dynamic network data. Han et al.
(2022) review dynamic neural network architectures, emphasizing difficulties such as architecture
design, decision-making, and optimization in dynamic settings.

Rossetti and Cazabet (2018) explore dynamic community discovery, categorizing existing
methodologies and challenges in tracking evolving community structures over time. Mitra and
Paul (2025) further demonstrate how dynamic graph theory addresses noise, missing data, and
privacy issues in complex social and financial networks.

These temporal and graph-based approaches represent a frontier in systemic risk analytics,
enabling real-time monitoring and early warning capabilities that traditional static analyses cannot
provide. Their integration with regulatory frameworks offers potent tools for preemptive financial
supervision, improving the detection and management of emerging systemic threats.

3. Data and methodology
3.1 Data acquisition and preprocessing

To assist with the granularity of our study, we employ bank-level datasets sourced from a variety
of sources, such as the FDIC BankFind API and FFIEC Call Reports (Consolidated Reports of
Condition and Income). We utilize an expansive range of datasets from 1984 Q1 to 2024 Q1 for
mid-size and large banks in the U.S. The long and large data range will enhance deep analysis, but
it is limited in the extant literature. The selection of banks is based on their total assets and potential
dynamic thresholds as identified in the Congress whitepaper.> We address potential issues such as
mergers, acquisitions, and failures that have the potential to compromise our results.

The criteria for “mid-size” and “large” banks based on total assets, potentially dynamic
thresholds. We used a variety of variables in accordance with the extant literature (see Section 4.1).

We used data items from Call Reports to infer interbank assets/liabilities (e.g., Fed funds
sold/purchased, balances due from depository institutions). Interbank exposure profiles are created
by mapping the financial claims and obligations between banks, typically using data on loans,
deposits, and other credit instruments exchanged among them. This network representation
quantifies the extent and structure of each bank’s direct exposures to other banks within the system.

See Figures Al to A7 in Appendix A for the bank similarity network depicted by nodes and
edges.

3 https://www.fdic.gov/system/files/2024-06/2023-guidelines-establishing-standards-for-corporate-governance-3064-
af94-c-021.pdf



3.2 Major U.S. regulations from 2014 to 2024

We compile a comprehensive list of major U.S. banking laws and significant regulatory changes
from 1984 to 2024 with their enactment/effective dates in Table 1.

Table 1. Comprehensive list of major U.S. banking laws and significant regulatory changes, 1984
to 2024.

Major U.S. Regulations Main Purpose(s) Enforcement
Date

3.3.1 Financial Institutions Reform, Stricter oversight and capital 1989

Recovery, and Enforcement Act requirements

(FIRREA)

3.3.2 Federal Deposit Insurance Mandated risk-based deposit insurance 1991

Corporation Improvement Act (FDICIA) | premium

3.3.3 Riegle-Neal Interstate Banking and | Created efficient and competitive 1994

Branching Efficiency Act (IBBEA) banking

3.3.4 Gramm-Leach-Bliley Act (GLBA) | Modernize the financial services 1999

industry and promote competition
Dodd-Frank Wall Street Reform and Imposed stricter capital and liquidity 2010
Consumer Protection Act (DFA) requirements

Note: For further details on major U.S. regulations, refer to Appendix C.

3.3 Network construction and feature engineering

To avoid the uncertainty of estimating direct loans between banks, our primary method is to
construct the network by measuring how similar banks are to each other based on their financial
reports. The core idea is that banks with similar business strategies will likely compete for the
same customers and be vulnerable to the same economic shocks. This approach is more reliable
because it uses actual reported data rather than statistical guesses. Its key advantage is that it
captures a critical type of risk beyond direct contagion: the danger that a large group of similar
banks could all get into trouble at the same time if the market turns against them (Battiston et al.
2012; Kritzman et al. 2010). This method effectively identifies peer groups and indicates which
banks are systemically important, not just because of their size but because their business model
is shared by many others, meaning their distress could be felt widely across the system (Billio et
al. 2012; Hautsch et al. 2015). Building our network this way allows us to focus on how the
strategic landscape of the banking sector has evolved in response to new regulations.

3.4 Temporal analysis of embedding features

The objective of this study is to examine how embedding representations of entities or nodes
evolves over time, and to capture dynamic changes in their relationships, behaviors, or attributes.
This allows us to better understand temporal patterns, detect anomalies, or improve predictive
modeling in time-dependent data.

See Appendix C for detailed temporal analysis of embedding features.



3.5 Network embedding feature calculation (using NetworkX or similar)
We conducted network embedding feature calculations to show how nodes are transformed into

low-dimensional vector representations that capture the network’s structural properties and
relationships, enabling efficient analysis, visualization, and machine learning tasks.

Table 2: Network embedding feature calculation (using NetworkX or similar).

Embedding feature Formula
Network density _ 2m
n(n-—1)
Average triangles per node _ number of triangles connected to node i
" number of triples centered around node i’
Rich-club coefficient 2W.
" (s) = =
Zi|si>s Si (Tl — )
i 1
Normalized tree length L(t) = Z dr,
n—1 J
dit]-eTt
Average neighbors score(x,y) = |I'(x) N T'(y)|
Average degree m d\™
ke =|(22) 902
z z=1
Degree assortativity 2ij(Ai; — kik;/2m)kk;
r =
2ij(ki6ij — kik;/2m)k;k;
Network transitivity C = R;
Pk —1
Average C - (number of pairs of neighbors of i that are connected)
clustering coefficient b (number of pairs of neighbors of i)
Average community size A0 = ki in k?uf . ZZ} .+ kl!'n . Z%‘f
Q - -Y m2
Modularity i
0= Y EE-vGoy)
m 4 2m
c=1
Average degree centrality C,(v) =d,/(In] = 1)
Cosine similarity xy"
k(x,y) =
x|yl

4. Results

We provide the results of our study by first showing the summary statistics of all the variables.
Second, we present the trajectory of active mid-size and large banks as well as the average number
of branches from 1984 to 2024 per quarter. Next is the evolution of the interbank network amidst
major regulatory changes followed by the TGNN-based anomaly detection performance. Last, we
provide an analysis of anomalies and financial stress.



4.1 Summary statistics

Table 3. Summary statistics of the variables used.

Standard
Variable Mean Deviation (Std) Median
Total Assets 8.980E10 2.770E11 2.230E10
Equity Capital 8.830E9 2.690E10 2.170E9
Total Deposit 6.570E10 2.060E11 1.630
Return on Assets (ROA) 0.855 1.502 1.030
Return on Equity (ROEQ) 8.863 34.182 10.660
Interbank Assets (CHBAL) 8.560E9 3.950E10 1.050E9
Interbank Assets (CHBALNI) 1.760E9 4.390E9 5.110E8
Interbank Assets (CHNUS) 2.530E9 1.440 5.250
Interbank Assets (CHUS) 5.350E8 3.220E9 7.890E7
Interbank Assets (FREPO) 3.430E9 2.220E10 5.000E7
Interbank Assets (IFREPOQ) 2.360E7 1.580E8 2.950ES
Interbank Assets (LNDEPAC) 1.080E9 4.600E9 4.430E6
Interbank Liabilities (FREPP) 3.630E9 1.470E10 9.390E10
Interbank Liabilities (EFREPPQ) 2.990E7 1.250E8 4.830E6
Unused Commitments (ABCUBKR) 0.269 2.297 0.000
Unused Commitments (ABCUOTH) 1.070ES8 7.220E8 0.000
Unused Commitments (ABCXBK) 1.700E8 1.160E9 0.000
Unused Commitments (ABCXOTH) 1.470E7 2.500E8 0.000
Unused Commitments (LOCFPSBK) 1.330E9 7.680E9 9.020E6
Number of Domestic Offices 436.520 810.960 201.000

On average, the number of mid-size and large banks is 437, and the standard deviation is about
811. In our reported trend, the lowest number of branches/offices is 198, which occurred in 1989,
and the highest number of branches is 698, which occurred in 2011. We utilize core profitability
and financials, mainly total assets, equity capital, ROA, ROE, etc.

According to the summary statistics, the total assets (TA) of the banks’ mean (standard
deviation) is 8.980e10 (2.770el1), the mean (standard deviation) of the equity capital (EC) is
8.830e09 (2.69¢10), the mean (standard deviation) of return on assets (ROA) is 0.855 (1.502), and
the mean (standard deviation) of return of equity (ROE) is 8.86 (34.182), respectively.

We handled data cleaning and transformation by handling the variables’ missing values,
normalization, and time alignment (quarterly frequency).

Figure 1 shows that the average number of branches per big bank grew enormously from the
early 1990s until 2011. This is mainly because large banks bought smaller ones nationwide,
absorbing all their locations and creating huge national networks. After 2011, however, this trend
flipped dramatically. As people started using online and mobile banking more, banks began closing
thousands of their physical branches to save money, causing the average number of locations to
drop sharply. Meanwhile, the orange dotted line tells a different story: the total number of banks
considered “mid-size and large” has increased slowly. This is because even as some banks merged,
others grew big enough organically to join this category, thus leading to more large players today,
even if each has fewer branches than they did at their peak. By closing expensive physical branches
and moving customers to digital platforms, banks aim to hold onto their massive deposit base and,



thus, their strong liquidity while significantly cutting operational costs. This modernizes their
liquidity management, making them less dependent on a physical footprint and more reliant on the
strength and appeal of their digital banking services.

Figure 1. Number of active mid-size and large banks and average number of branches
(1984-2024, quarterly).
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Notes: This graph reports the growth trajectory of mid-size and large banks in the U.S. from 1984 to
2024. The blue line represents active banks, and the orange line represents the average number of bank
branches.

4.2 Evolution of the interbank network structure

We show how the various connections and relationships of the interbank network shift in the face
of regulatory enforcement and over time. See Appendix B, Figures B1 to B3, for quarterly network
trends. Also refer to Figures Al to A7 in Appendix A for bank similarity structures per quarter.

Table 4 shows that the total number of connections often fluctuated wildly, with certain years
experiencing a massive spike in interconnectedness that pulled the long-term average up
significantly. Despite this volatility in activity, the network’s underlying organizational pattern was
very stable. The system consistently broke down into distinct and tightly-knit communities or
clusters. In other words, banks didn't just connect randomly; they formed clear groups, a feature
that held true across the entire period. Within these groups, the network was very “cliquey”—
meaning if two banks were linked to a common third bank, it was highly probable they were also
linked to each other. Furthermore, the analysis reveals a “rich-club” effect: the most influential
banks (those with the most connections) had a strong tendency to connect amongst themselves,
forming a highly interconnected core at the center of the financial system. While the strength of
this “rich-club” core dipped in some years, it remained a persistent feature of the network’s
architecture.



Table 4. Summary statistics for network structures: Network density, average community size,
average degree centrality, modularity, and other key metrics.

Standard
Network Metrics Mean Median Deviation Kurtosis Skewness
Number of banks in network 77.713 78 24.836 -0.124 0.003
Number of edges 485.494 411 336.492 0.773 1.203
Average community size 10.318 7.414 5.994 -0.314 0.930
Modularity 0.538 0.551 0.150 -1.122 0.054
Network density 0.168 0.160 0.086 0.465 0.890
Network transitivity 0.800 0.807 0.081 -0.611 -0.214
Average clustering coefficient 0.634 0.628 0.102 -0.903 -0.007
Average neighbors 11.799 11.357 5.161 -0.575 0.336
Degree assortativity 0.673 0.684 0.115 0.636 -0.675
Rich club coefficient 0.192 0.190 0.108 -0.798 0.207
Normalized tree length 0.469 0.446 0.141 -1.017 0.261

Note: The level of activity between these banks was extremely volatile.

Figure 2. Average degree centrality mapped to major U.S

(1984 to 2024).
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when they were enacted.

The average degree centrality in Figure 2 measures how connected banks are within the
interbank network on average, each quarter. Higher values indicate more interconnectedness, while
lower values reflect fewer connections or sparser connections.
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FIRREA was promulgated in 1989 to stabilize and restructure overnight activities (interbank
transactions) in the savings and loan sector after the sector’s crisis. Before this regulation, this
network topology exhibited moderate fluctuations but trended upward, reflecting gradual increases
in interbank connections amid deregulation momentum in the 1980s. After the regulation came
into force, there was a slight increase in network connections, indicating the affected banks were
gradually building ties while maintaining a tinge of caution under the new overnight structures.

In 1991, FDICIA was enacted with the aim of imposing tighter capital requirements for banks
in addition to establishing prompt corrective actions. Before this regulation, the average centrality
network displayed a modest upward trend, indicating increasing interconnectivity among banks.
However, after the passage of this regulation, the degree of centrality took a nosedive, illustrating
that banks maintain interbank linkages while adapting to stricter oversight activities, possibly to
manage liquidity more actively under capital pressures.

IBBEA, which came into force in 1994, allows interstate branching, thus removing geographic
barriers. Before this regulation, there was moderate centrality with gradual increases. After the act,
there was a marked increase in degree centrality, aligning with expanded interbank connections as
banks operate across states, taking advantage of branching flexibility to diversify funding sources
and liquidity channels.

The GLBA, implemented in 1999, permitted the consolidation of banks, securities, and
insurance companies into a single financial institution. Before the regulation, there was steady,
higher centrality post-IBBEA, reflecting active network growth. After, centrality remained high
with continued mild increases, consistent with further network expansion as banks diversified
activities and funding channels under GLBA flexibility.

Dodd-Frank Act of 2008 was enacted to reduce systemic risk post-Global Financial Crisis
(post-GFC). Before, there was high and stable centrality, reflecting high interbank connectedness
in a low-regulation and high-leverage environment. After, there was a clear decline in degree
centrality, consistent with deleveraging, risk aversion, and regulatory tightening, leading to
reduced interbank connections as banks became cautious about counterparty exposures under
stricter oversight.

Figure 3 illustrates the modularity in interbank networks, measuring the strength of the division
of a network of mid-size and large banks into communities. Higher modularity indicates a network
of banks with well-defined, dense communities that are sparsely connected.

FIRREA aimed to stabilize and restructure the overnight activities of the savings and loan
sector during the sector’s crisis. Before this regulation, this network feature, modularity, exhibited
lower stability, generally fluctuating between 0.3 and 0.5. After the regulation, there was an initial
brief increase in modularity, followed by variability, and finally settling into a higher range
(approximately 0.4 to 0.5), suggesting that FIRREA likely contributed to a more structured
network topology.

FDICIA imposed tighter capital requirements for banks, thus putting in place prompt corrective
actions. Before the regulation, modularity remained somewhat variable (0.4 to 0.5). After the
passage of the regulation, a marked and sustained increase in modularity occurred, surpassing 0.5.
This implies that the FDICIA facilitated greater segmentation within interbank networks, likely
through stricter capital requirements and oversight.

IBBEA regulation spearheaded interstate branching, removing geographic barriers. Before the
enactment of the regulation, modularity displayed volatility within a moderate range (0.4 to 0.6).
After its passage, modularity initially declined briefly, then stabilized between 0.4 and 0.5,

11



Figure 3. Modularity mapped to major U.S. regulations within the sample period (1984 to 2024).
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reflecting an increased interconnectedness and reduced segmentation as geographic restrictions
eased.

GLBA regulation allowed banks, securities, and insurance companies to combine as one
financial institution. Before the regulation, this network feature, modularity, was comparatively
stable at around 0.4 to 0.5. Once enacted, there was a pronounced and sharp increase in modularity
exceeding 0.7, showing substantial community structuring or fragmentation within the interbank
networks. This rise likely reflects the diversification and structural changes in banks’ activities as
permitted by the GLBA.

The Dodd-Frank regulation was enacted after the 2008-2009 Global Financial Crisis reduced
systemic risk. Before the passage of this landmark regulation, modularity was high but fluctuated
significantly (0.6 to 0.8), possibly due to the financial crisis dynamics. Once the regulation came
into force, modularity displayed a sharp, immediate decline (below 0.6) before recovering
somewhat. It maintained high volatility, suggesting continued adjustments and restructuring in
response to the comprehensive regulatory changes.

It is worth noting that after analyzing the behavior of banks in the context of these major
regulations, we observe the following: First, regulations introducing increased oversight, stricter
capital requirements, or greater risk management measures (e.g., FDICIA, GLBA) generally
correlated with increases in network modularity, indicating segmentation and clearly delineated
community structures. Second, regulations easing geographic and operational restrictions (e.g.,
IBBEA) tended to initially decrease modularity due to enhanced interconnectedness, though the
impact stabilizes over time. Third, comprehensive regulatory changes following financial crises
(e.g., FIRREA, Dodd-Frank) demonstrate mixed or volatile effects, suggesting periods of
transition and adaptation within interbank networks.
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Figure 4: Average community size mapped to major U.S. regulations within the sample period
(1984 to 2024).
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Average community size, as shown in Figure 4, is a network metric representing the mean
number of nodes (e.g., banks) within identified clusters or groups (communities) in a network. It
measures how large, on average, the groups of closely connected banks are. It provides insight into
the network’s cohesiveness or fragmentation. A high average community size indicates larger,
more interconnected groups, whereas lower values suggest smaller, more fragmented clusters.

FIRREA (1989): Before the regulation, the average community size experienced fluctuations
with an increasing trend, indicating a growing interconnectedness among banks before FIRREA’s
enforcement. After its adoption, the average community size showed initial instability, but later a
clear increase. This might be due to stricter oversight and capital requirements prompting banks to
form more cohesive and stable communities for better risk management.

FDICIA (1991): Before the regulation, the average community size was elevated, reflecting
high interconnectedness. Once implemented, a noticeable dip occurred, suggesting tighter
regulatory constraints on interbank activities which temporarily reduced community cohesion.
Gradually, however, banks adapted, restoring the community size to earlier or even slightly higher
levels.

IBBEA (1994): Before this regulation, the average community size was moderately stable,
suggesting an established network structure. After its enactment, the average community size
surged significantly, indicating that removing interstate banking restrictions enabled banks to more
extensively integrate across states, thus increasing network cohesion.

GLBA (1999): Before the regulation, the network was fairly stable with a consistent average
community size. Once it entered into force, the average community size increased and exhibited
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greater fluctuations, indicating that reduced restrictions on banking, securities, and insurance
activities led to dynamic reshaping and greater interconnectedness among banks.

Dodd-Frank (2010): Before this regulation, there was significant volatility in the average
community size, likely due to the global financial crisis leading up to the regulation. After its
passage, there was a sharp initial decrease in community size, consistent with tighter regulatory
scrutiny and increased capital requirements. Eventually, banks adjusted, stabilizing at slightly
lower levels, suggesting that regulation aimed at reducing systemic risk effectively diminished
overly dense network linkages.

Network transitivity, depicted in Figure 5, measures how interconnected groups within the
network are.

Figure S. Network transitivity mapped to major U.S. regulations within the sample period (1984
to 2024).
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FIRREA (1989): Before the regulation, network transitivity was very high (~0.90 to 0.95),
indicating a highly interconnected and clustered banking network. After its passage, there was a
significant drop in the network, falling to around 0.80, reflecting the impact of stricter oversight
and restructuring that reduced tightly-knit interbank clusters.

FDICIA (1991): Before the regulation (after FIRREA), transitivity stabilized but remained
lower than pre-1989 levels (~0.80). After, FDICIA led to a further decline (~0.75), showing
increased regulatory pressure constrained interbank clustering, likely due to enhanced capital
requirements and risk controls.
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IBBEA (1994): Before, transitivity hovered around 0.75, reflecting a modestly clustered
network. After IBBEA enforcement, there was a modest recovery or stabilization in clustering,
suggesting that the removal of interstate branching restrictions allowed some re-expansion of
network connectivity.

GLBA (1999): Before the regulation, network transitivity was relatively stable at around 0.75.
After GLBA implementation, the metric fluctuated but generally declined, reaching around 0.65,
reflecting dynamic restructuring as banks adapted to new consolidations (freedoms) and
competitive pressures in integrated financial markets.

Dodd-Frank (2010): Before, transitivity was moderately low (~0.65 to 0.70), indicating
reduced local clustering relative to earlier decades. Post-Dodd-Frank, a further decline occurred
with short-term volatility, dipping below 0.65 at times, indicating that enhanced post-crisis
regulations caused banks to significantly reduce tightly clustered connections for risk
management.

In all, the figure shows that major regulatory events typically led to a reduction in network
clustering immediately after enforcement, reflecting a tightening of interbank connections to
comply with stricter rules. Some regulations, like IBBEA, temporarily stabilized or slightly
increased clustering by easing restrictions, while others, like Dodd-Frank, caused sharp declines
and volatility, illustrating adaptive restructuring in response to systemic risk concerns.

In Figure 6, the average clustering coefficient indicates local interconnectedness among banks.

Figure 6: Average clustering mapped to major U.S. regulations within the sample period (1984 to
2024).
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FIRREA (1989): Before this regulation, the average clustering coefficient was high,
approximately around ~0.75 to 0.85, indicating strong local interconnections among banks. After,
there was a notable decline, dropping to ~0.60, reflecting the effect of regulatory restructuring and
heightened oversight, thus reducing tight local bank clusters.

FDICIA (1991): Before this regulation, the average clustering coefficient had somewhat
stabilized around ~0.60 after the enforcement of FIRREA (post-FIRREA). After FDICIA, the
average clustering coefficient decreased further to ~0.50, reflecting more restrictive capital
requirements and a trend toward more cautious interbank relationships.

IBBEA (1994): Before the passage of this regulation, the average clustering coefficient
remained low and stable (~0.50). Once enforced, the metric showed a mild rebound, suggesting
interstate banking liberalization allowed banks to rebuild some local clustering within the
expanded network.

GLBA (1999): Before 1999, the average clustering coefficient hovered around ~0.55 to 0.60.
After the passage of the GLBA, the coefficient increased modestly, reflecting enhanced integration
across financial sectors after deregulation and consolidation.

Dodd-Frank (2010): Before the global financial crisis, the average clustering coefficient was
relatively high (~0.60). After the crisis and enforcement of the Dodd-Frank Act, the metric dropped
sharply to ~0.40, highlighting banks’ reactions to increased regulatory stringency post-crisis and
leading to significant network restructuring as well as less tight local clustering. Some partial
recovery followed, but it remained below pre-Dodd-Frank levels.

Degree assortativity is the extent to which similar banks connect to each other (see Figure 7).

Figure 7. Degree assortativity mapped to major U.S. regulations within the sample period (1984
to 2024).
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FIRREA (1989): Before this act, degree assortativity was moderately volatile, fluctuating
roughly between 0.4 and 0.7, indicating inconsistent patterns in how similar banks connected. Post-
FIRREA, assortativity trends stabilized and increased slightly, suggesting banks began preferring
connections with others of similar connectivity or size, possibly reflecting risk management
responses to new regulations.

FDICIA (1991): Before the passage of this regulation, degree assortativity was on a rising
trajectory and relatively stable near 0.6 to 0.7. After, the metric continued to increase and stabilize
at around 0.7, implying that banks strengthened their homophilous connections, aligning more
closely with similar peers under enhanced regulatory frameworks.

IBBEA (1994): Before its enactment, degree assortativity remained elevated and stable around
0.7. After, there was a slight increase and stabilization at higher values (~0.7 to 0.75), reflecting
more homogenous interbank connections, possibly due to interstate expansion enabling more
strategic, similarity-based ties.

GLBA (1999): After the expansionary regulation of IBBEA in 1994, degree assortativity was
high and stable (~0.7 to 0.75). After, the metric maintained high levels with some fluctuations,
indicating a persistent preference for similar banks to connect, consistent with consolidation and
sector integration trends.

Dodd-Frank (2010): Before the passage of this regulation, degree assortativity remained
relatively high but volatile, averaging around 0.7. After, the metric showed increased volatility
with occasional sharp dips (below 0.4 at times), indicating a significant restructuring of bank
linkages as institutions adapted to the stringent post-crisis regulatory environment. The pattern
reflects a period of instability with banks reassessing traditional connectivity preferences.

At this juncture, we examine the social network of mid-size and large banks in terms of the
trends at the node level. The topologies we focus on to explain the behaviors of these financial
institutions in the context of major U.S. bank regulations are average neighbor, rich club
coefficient, and normalized tree length.

Figure 8 maps average neighbors, which is the average number of direct connections each bank
has in the network. This is identical to the “Avg. Degree” from the system-level trend and reflects
overall network connectivity.

FIRREA (1989): Before the regulation, average neighbors hovered around 7 to 8, indicating
moderate connectivity among banks. After, there was a distinct drop in the average neighbors,
reflecting banks reducing direct links, likely due to regulatory tightening and risk management.

FDICIA (1991): Before its passage, the metric remained low following FIRREA’s impact.
After the regulation, further reduction took place, suggesting increased caution and regulatory
constraints continued to limit interbank connections.

IBBEA (1994): Before IBBEA, average neighbors were low but stable. After the regulation,
the metric stabilized and even showed a slight upward trend, indicating that easing interstate
banking restrictions facilitated more network connections.

GLBA (1999): Before the GLBA, average neighbors hovered around 5 to 6. After its
enactment, a gradual increase followed, reflecting deregulation’s effect in promoting interbank
integration and network expansion.

Dodd-Frank (2010): Before the regulation, average neighbors were moderately high (~7 to 8),
reflecting a relatively interconnected network. After Dodd-Frank, a sharp decline ensued, showing
that post-crisis regulations led banks to substantially reduce direct interbank relationships for
safety and compliance. The network connectivity partially recovered afterward, but it remained
cautious.
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Overall, the figure illustrates that regulatory changes strongly influenced how interconnected
banks were, with initial tightening phases causing declines in connections and deregulation phases
encouraging growth in network connectivity.

Figure 8. Average neighbors mapped to major U.S. regulations within the sample period (1984 to
2024).
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The rich club coefficient in Figure 9 measures the tendency of high-degree nodes (“rich”
nodes) or systemically important banks to be more densely connected amongst themselves than to
lower-degree nodes or smaller or less important banks. A high coefficient indicates a “rich club”
phenomenon where the most connected banks form a tight core.

FIRREA (1989): Before the regulation, the rich club coefficient was relatively high (~0.4 to
0.45), indicating strong interconnections among the most connected banks, implying a tightly-knit
elite core. A noticeable decline occurred soon after FIRREA, suggesting that regulatory pressures
weakened the dominance or connectivity concentration among the top-tier banks.

FDICIA (1991): Before its enactment, the rich club coefficient was stable but lower than pre-
FIRREA levels (~0.4). After FDICIA, a further decline ensued (~0.35), consistent with the ongoing
regulatory tightening that disrupted concentrated core banking ties.

IBBEA (1994): Before, the coefficient had stabilized somewhat near ~0.35. After the
regulation, it remained stable or increased slightly, implying that easing interstate banking
restrictions may have supported some reformation or stabilization of core bank connectivity.
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Figure 9. Rich club coefficient mapped to major U.S. regulations within the sample period (1984
to 2024).
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GLBA (1999): Before the act, the metric showed a modest recovery, around ~0.35 to 0.4. After
this regulation, the rich club coefficient fluctuated but generally trended downward, reflecting a
more dynamic, competitive environment with less concentrated core banking networks.

Dodd-Frank (2010): Before its passage, the rich club coefficient was moderately low and
variable (~0.3 to 0.4). Once the act entered into force, a sharp drop followed, going below 0.3 at
times, indicating a substantial weakening of concentrated connectivity among the elite banks,
likely due to post-crisis regulatory reforms aimed at reducing systemic risk.

Figure 10 tracks the normalized tree length. “Tree length” in network analysis refers to
characteristics of spanning trees or path lengths within tree-like substructures. A lower normalized
tree length implies more efficient connections or a more compact core structure. Large banks are
at the core and connected to smaller banks in the periphery.

FIRREA (1989): Before this regulation, the normalized tree length was relatively low and
stable, indicating a compact and efficient network with shorter average paths between nodes.
Following FIRREA, there was a gradual increase in tree length, suggesting the network became
less compact and possibly more fragmented as banks adjusted to tighter regulations.

FDICIA (1991): Before this act, tree length continued to increase post-FIRREA, reflecting
growing fragmentation. After 1991, the upward trend continued, implying a further loosening of
the tight network structure and longer average paths, likely due to additional regulatory constraints.
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Figure 10. Normalized tree length mapped to major U.S. regulations within the sample period
(1984 to 2024).
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Note: The green line represents the normalized tree length among banks from 1984 to 2024. The red vertical dotted
lines are the mapped regulations. Refer to Section 3.2 and Appendix D for the definitions of the regulations and when
they were enacted.

IBBEA (1994): Before this expansionary regulation, the normalized tree length was
moderately high, showing a more spread-out network. After, there was a slight stabilization or
modest decrease, indicating that easing interstate banking restrictions may have allowed some
network consolidation.

GLBA (1999): Before this consolidation regulation, the metric remained stable or showed
minor declines. After the GLBA, tree length fluctuated but generally increased, consistent with
ongoing network restructuring due to deregulation and expansion.

Dodd-Frank (2010): Before the global financial crisis, tree length had increased significantly,
reflecting a fragmented, less efficient network. After the metric peaked near the Dodd-Frank
enforcement date, it gradually declined, suggesting an initial network disruption followed by a
reorganization as banks adapted to stringent post-crisis rules.

4.3 TGNN-based anomaly detection performance

The objective of TGNN-based anomaly detection performance is that using TGNN helps detect
anomalies more accurately by leveraging their network structures and time dynamics. The model’s
anomaly detection performance reveals a high score for large banks, particularly JPMorgan Chase
(Bank CERT # 628). The bank appears multiple times in the anomaly detection from 2014 Q1 to
2024. See Table 5 for details of the scores and their corresponding bank certificates.
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Table 5. TGNN-based anomals

y detection performance.

Highest Highest

Anomalous Bankid Anomalous Bankid
Quarter Score (CERT) Quarter Score (CERT)
2014 Q1 0.1828 628 2019 Q3 0.1592 3510
2014 Q2 0.193 13074 2019 Q4 0.2403 9396
2014 Q3 0.1557 6548 2020 Q1 0.1727 6989
2014 Q4 0.1752 31628 2020 Q2 0.2251 28088
2015 Q1 0.0904 12441 2020 Q3 0.2193 28892
2015 Q2 0.1939 8728 2020 Q4 0.1686 12368
2015 Q3 0.1721 867 2021 Q1 0.1735 628
2015 Q4 0.1719 7946 2021 Q2 0.2118 17838
2016 Q1 0.1327 7888 2021 Q3 0.1486 803
2016 Q2 0.1341 4297 2021 Q4 0.1916 7230
2016 Q3 0.1652 18221 2022 Q1 0.1855 628
2016 Q4 0.1356 24045 2022 Q2 0.1432 4988
2017 Q1 0.1402 6672 2022 Q3 0.1742 6600
2017 Q2 0.1834 6989 2022 Q4 0.1903 803
2017 Q3 0.1743 110 2023 Q1 0.1966 20234
2017 Q4 0.1899 35583 2023 Q2 0.1354 7946
2018 Q1 0.2004 8273 2023 Q3 0.2001 27237
2018 Q2 0.1636 7213 2023 Q4 0.2437 11813
2018 Q3 0.2242 628 2024 Q1 0.1747 803
2018 Q4 0.1441 3510 2024 Q2 0.1995 628
2019 Q1 0.2536 58978 2024 Q3 0.174 17491
2019 Q2 0.1364 57053 2024 Q4 0.2006 12368

Note: For brevity and limited space, we limited the TGNN-based anomaly score to this range from 2014Q1 to 2024Q4.

4.3.1 Analysis of anomalies and financial stress

Many factors could have driven the high anomaly score of JP Morgan. The chief factor is
regulatory pressures because of fines and financial settlement agreements reached with regulators
by JPMorgan. Also, the bank is a globally systemically important financial institution with many
connections and plays a central role in the global interbank market of lending and derivatives.
Hence, any unusual position in the interbank market, for example, large overnight positions, will
require substantial collateral, which will in turn create liquidity issues in the network and
significantly amplify the anomaly detection score. This connotes the idea of too-big-to-fail
(Acharya et al. 2014) and the core-periphery model (Craig and von Peter 2014; Fricke and Lux
2015).

Another bank that recorded the highest anomaly score is First Horizon, and this is because it
acquired Iberiabank Corporation (the parent company of IberiaBank) in a merger that closed
on July 1, 2020. After the merger, all IberiaBank branches in Louisiana were rebranded as First
Horizon Bank. This significantly expanded First Horizon’s footprint in the state, making it one of
the largest banks operating in Louisiana.
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4.4 Robustness checks

Table 6: Summary of robustness tests of the TGNN model for mid-size
and large U.S. banks from 1984 to 2024 anomaly detection in interbank
network on system-level consistency (Pearson correlation coefficients)
and node-level consistency (average Jaccard index).

run Hyperparameters Interbank Network
hd od Ir epochs pce p_value aji
1 32 16 0.01 50 0.830  3.17E-12 0.800
2 32 16 0.005 30 0918  1.86E-18 0.844
3 32 16 0.005 50 0.843  7.46E-13 0.828
4 32 8 0.01 30 0.883  2.21E-15 0.831
5 32 8 0.01 50 0.896  2.02E-16 0.829
6 32 8 0.005 30 0.822  8.22E-12 0.823
7 32 8 0.005 50 0911  8.63E-18 0.842
8 32 32 0.01 30 0.847  4.49E-13 0.811
9 32 32 0.01 50 0.860  7.34E-14 0.817
10 32 32 0.005 30 0.862  5.79E-14 0.843
11 32 32 0.005 50 0.815  1.71E-11 0.793
12 16 16 0.01 30 0.856  1.27E-13 0.827
13 16 16 0.01 50 0.894  2.87E-16 0.828
14 16 16 0.005 30 0.867  2.93E-14 0.824
15 16 16 0.005 50 0.869  2.00E-14 0.826
16 16 8 0.01 30 0.854  1.80E-13 0.825
17 16 8 0.01 50 0.895  2.65E-16 0.852
18 16 8 0.005 30 0.744  7.05E-09 0.762
19 16 8 0.005 50 0.865  3.73E-14 0.821
20 16 32 0.01 30 0.848  3.94E-13 0.834
21 16 32 0.01 50 0.867  2.86E-14 0.813
22 16 32 0.005 30 0.760  2.18E-09 0.763
23 16 32 0.005 50 0.854  1.68E-13 0.813
24 64 16 0.01 30 0.876  7.15E-15 0.835
25 64 16 0.01 50 0.881  2.96E-15 0.842
26 64 16 0.005 30 0.774  6.94E-10 0.774
27 64 16 0.005 50 0.667  7.68E-07 0.708
28 64 8 0.01 30 0.785  2.85E-10 0.797
29 64 8 0.01 50 0.712  6.01E-08 0.667
30 64 8 0.005 30 0.816  1.56E-11 0.832
31 64 8 0.005 50 0914  4.66E-18 0.843
32 64 32 0.01 30 0913  6.35E-18 0.846
33 64 32 0.01 50 0.818  1.22E-11 0.828
34 64 32 0.005 30 0.906  2.88E-17 0.861
35 64 32 0.005 50 0.846  5.12E-13 0.810

Notes: hd—hidden dimension of the TGNN model; od—output dimensions of the TGNN
model; Ir—Ilearning rate of the TGNN model; pce—Pearson correlation coefficients;
aji—average Jaccard index value.



A series of robustness tests was conducted to evaluate the stability and reliability of the TGNN
model for identifying anomalous nodes in the quarterly U.S. interbank networks. The primary goal
of these tests was to ensure that the model’s ability to detect anomalies is consistent and not overly
sensitive to the choice of hyperparameters. The evaluation was performed on two levels: system-
level consistency and node-level consistency. The model was trained 35 times with varying
hyperparameters, including hidden dimension (hd), output embedding dimension (od), learning
rate (Ir), and the number of training epochs.

The stability of the results was measured in two ways. First, the overall ranking of anomalous
banks was compared between runs, showing a strong agreement with an average Pearson
correlation (pce), often exceeding 0.85 and sometimes reaching as high as 0.918. The statistical
significance of these high correlations is confirmed by the extremely low p-values (e.g., 1.86E to
18), meaning the consistency is not due to chance. Second, the groups of top anomalous banks
identified in each run were compared, revealing a high degree of overlap. The average Jaccard
index (aji), which measures this overlap, was consistently above 0.80, with several runs achieving
0.844 and 0.842, respectively. This means that, on average, over 84% of banks flagged as the most
vulnerable were the same across different model configurations. This result confirmed that the
TGNN model is a robust and reliable tool, repeatedly identifying similar systemic risk patterns and
the same specific institutions as potential vulnerabilities, regardless of minor changes in its setup.

S. Discussion
5.1 Implications of network structure on systemic risk

The structural properties of interbank networks—density, modularity, and centrality—play pivotal
roles in shaping systemic risk and financial stability. High network density and average degree
indicate tightly interconnected banks, which can enhance liquidity distribution and operational
efficiency. Such interconnectedness facilitates rapid liquidity transmission and capital allocation,
critical for normal functioning. However, this same connectivity increases systemic vulnerability
by enabling faster contagion of financial distress across institutions (Allen and Gale 2000;
Eisenberg and Noe 2001; Gai et al. 2011).

Conversely, lower density reduces the likelihood of contagion by limiting interbank exposures,
but at the cost of potential inefficiencies in liquidity allocation (Acemoglu et al. 2015). Modularity,
which measures the segmentation of the network into distinct communities, is a critical factor for
resilience. Networks with higher modularity localize shocks within communities, reducing
systemic spillovers and mitigating contagion risk (Battiston et al. 2012; Craig and von Peter 2014).
Decreasing modularity signals increased interconnectedness across clusters, which may amplify
the spread of financial shocks (Elliott et al. 2014; Glasserman and Young 2016).

Centrality measures identify banks that serve as key hubs within the network. High centrality
nodes facilitate efficient liquidity flows but simultaneously represent points of systemic
vulnerability. Distress or failure of these core banks can disproportionately trigger contagion, given
their extensive connections (Dasgupta 2004; Freixas et al. 2000). Lower centrality can reduce
individual bank risk but might impair overall market efficiency and liquidity distribution
(Acemoglu et al. 2015).

Additional network features like the rich club coefficient highlight core-periphery structures
where highly connected banks form elite clusters. While this can improve transactional efficiency,
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it concentrates systemic risk within a small group, necessitating careful regulatory oversight
(Dasgupta 2004; Elliott et al. 2014) . Overall, the interplay between these network metrics suggests
that both excessive interconnectedness and fragmentation pose risks, requiring a balanced network
topology for systemic resilience.

5.2 Regulation impacts

Major U.S. banking regulations from 1984 to 2024 have significantly influenced interbank
network structures. The enactment of FIRREA in 1989 and FDICIA in 1991, with their emphasis
on stricter capital requirements and regulatory oversight, corresponded with a reduction in direct
interbank connections and network density, while modularity increased. These changes reflect
banks’ more cautious liquidity management in response to heightened regulatory scrutiny
((Madura and Wiley 2000; Mansur and Elyasuani 1994).

In 1994, the Riegle-Neal Interstate Banking and Branching Efficiency Act (IBBEA) relaxed
geographic restrictions, enabling interstate banking and branch expansion. This deregulation
increased network centrality, community sizes, and interconnectedness, promoting efficiency and
diversification of liquidity sources (Carlson and Mitchener 2006; Johnson and Rice 2008).

The Gramm-Leach-Bliley Act (GLBA) in 1999 further deregulated the banking sector by
allowing financial conglomerates via the combination of banking, securities, and insurance
activities. This deregulation induced higher modularity and clustering, reflecting the fragmentation
of the network into distinct but concentrated financial groups (Chen et al. 2025; Zhao and He
2014).

In contrast, the 2010 Dodd-Frank Act, enacted post-Global Financial Crisis, aimed to reduce
systemic risk through stringent oversight and increased capital requirements. Its implementation
led to lower network centrality and interconnectivity, signaling a shift towards a more cautious and
less dense interbank environment (Acharya 2012; Gao et al. 2018).

These regulatory cycles demonstrate how periods of stringent oversight tend to fragment
network structures, raising modularity and lowering density, while deregulation periods encourage
integration and network centrality. The interbank network’s adaptive responses highlight the need
for regulations that balance risk containment with liquidity efficiency.

5.3 Policy implications

Our findings underscore the importance of regulatory frameworks that maintain an optimal level
of interconnectedness within interbank networks. Regulators should aim to foster diversified
network connections that mitigate systemic vulnerabilities without compromising liquidity
efficiency (Allen and Gale 2000; Gai et al. 2011). Policies should discourage an excessive
concentration of exposures within a “rich club” of systemically important banks, which can
amplify contagion risk.

Dynamic regulatory assessments informed by network analytics can help ensure regulations
evolve alongside structural market changes, preventing unintended consequences such as risk
concentration or network fragility (Acharya 2012; Madura and Wiley 2000). Transparent and
detailed reporting of interbank exposures enhances the fidelity of systemic risk models and
supports proactive risk management (Battiston et al. 2012; Eisenberg and Noe 2001).

Furthermore, promoting modular network structures, characterized by distinct communities,
can localize shocks and prevent widespread contagion. Encouraging diversification in banks’
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business models and funding sources contributes to this resilience (Battiston et al. 2012; Craig and
von Peter 2014; Haldane and May 2011).

5.4 Significance of detected anomalies and TGNN potentials

The application of temporal graph neural networks (TGNNs) in this study highlights their
significant potential in systemic risk surveillance. TGNN-based anomaly scores detect structural
and behavioral irregularities in interbank networks that traditional risk metrics, such as value-at-
risk (VaR), may miss or detect only ex post (Acemoglu et al. 2015; Battiston et al. 2012).

These models identify critical nodes exhibiting abnormal temporal patterns, enabling
regulators to monitor systemically important banks and mitigate the risk of “too-big-to-fail”
scenarios (Acharya et al. 2014). The TGNN approach facilitates near-real-time monitoring of
dynamic interbank interactions, providing early warning signals and actionable insights to support
timely supervisory interventions (Cai et al. 2021; Jiang et al. 2023).

Scalability and adaptability make TGNNs well-suited for the evolving financial landscape,
capable of integrating with regulatory frameworks to automate systemic risk detection and reduce
reliance on reactive measures (Faloutsos 2009; Ranshous et al. 2015).

Figure 11. TGNN-based anomaly score time series for top active banks (1984 to 2024).
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6. Limitations and future research directions

This study relies on inferred interbank relationships using the cosine similarity of balance sheets
due to limited granular exposure data, which may affect network accuracy and anomaly detection.
Additionally, focusing on mid-size and large banks excludes smaller institutions, limiting the
generalizability of the findings. Finally, while causal links between regulations and network
changes are challenging to establish definitively, the associations identified provide valuable
insights into evolving interbank dynamics.

7. Conclusion

Our study sheds light on a comprehensive exploration of the U.S. mid-size and large interbank
network evolution from 1984 to 2024. Our key findings include significant structural shifts in the
interbank network driven by major regulatory events, including FIRREA (in 1989), FDICIA (in
1991), IBBEA (in 1994), GLBA (in 1999), and Dodd-Frank (in 2010). We show that the interbank
network exhibited adaptive behaviors, which are revealed as fluctuations in centrality, modularity,
and clustering metrics in response to regulatory changes. Regulatory constraints generally
increased network modularity and decreased interbank centrality, suggesting a distinct and
fragmented market structure to mitigate systemic risks. Conversely, expansionary regulation led
to enhanced interconnectedness, creating highly centralized “rich club” structures, thereby
increasing efficiency but potentially heightening systemic vulnerability (Acharya 2012; Battiston
et al. 2012; Carlson and Mitchener 20006).

Moreover, temporal graph neural networks (TGNNs) effectively detected anomalies that
correlated significantly with historical periods of financial distress and bank-specific stress events.
Our study also shows that TGNN anomaly scores provided valuable early-warning signals of
financial stress, identifying vulnerabilities on the horizon, specifically several quarters ahead of
traditional metrics. This provides insights into the utility of TGNN-detected anomalies as a
proactive monitoring tool (Battiston et al. 2012; Eisenberg and Noe 2001; Gong et al. 2019).

Our research makes several novel contributions to extant literature. First and foremost, to the
best of our knowledge, this study offers an extensive temporal analysis of the interbank network
across four decades, bridging a significant gap in historical and systemic risk literature. Second,
our research provides empirical insights into key financial regulations’ effectiveness and
unintended consequences as we systematically mapped significant U.S. regulations on interbank
network topologies. Third, we expanded the application of machine learning techniques in
financial stability research, as shown in our usage of advanced TGNN methods, such as
EvolveGCN or TGN, in anomaly detection within financial networks.
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Figure 12. Flowchart of the interbank analysis research on mid-size and large

banks.
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Appendix A: Bank similarity network

Bank Similarity Network (NetworkX) - 1991 Q4 (51 N, 241 E)
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Figure A1l. Network reveals a segmented but interconnected interbank system during this period.
It involves 51 banks (nodes) and 241 connections.

Bank Similarity Network (NetworkX) - 1999 Q4 (80 N, 473 E)
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Figure A2. The network reflects an expanded and more integrated interbank system with richer
connectivity and evolving structural complexity by 1999. It involves 80 banks (nodes) and 473
connections.
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Bank Similarity Network (NetworkX) - 2008 Q4 (77 N, 396 E)
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Figure A3. The network shows a modular and less densely interconnected system. It involves 77
banks (nodes) and 396 connections.

Bank Similarity Network (NetworkX) - 2010_Q4 (76 N, 288 E)
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Figure A4. The network exhibits multiple distinct clusters with relatively strong internal
connectivity and sparse links between groups. It involves 76 banks (nodes) and 288 connections.
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Bank Similarity Network (NetworkX) - 2018 Q4 (109 N, 1172 E)

® ®
® ‘o ‘o -
e
gdetes® s
& e ©
®

Figure AS. The network displays multiple large, densely connected clusters with strong intra-
cluster connectivity, indicating groups of banks with high similarity in their balance sheets. It
involves 109 banks (nodes) and 1172 connections.

Bank Similarity Network (NetworkX) - 2020_Q4 (120 N, 1156 E)
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Figure A6. The network features several large, densely connected clusters with strong internal
cohesion, reflecting groups of banks with similar balance sheet profiles. It involves 120 nodes
(banks) and 1156 connections.
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Bank Similarity Network (NetworkX) - 2024 Q4 (120 N, 1145 E)
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Figure A7. The network appears highly integrated with dense connections spanning most nodes,
resulting in less distinct clustering and fewer isolated groups. It involves 120 banks (nodes) and
1145 connections.

Appendix B: Evolution of the interbank network structure

Quarterly Network Trends
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Figure B1. Quarterly network trends — modularity, average community, and network density.
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Initially, the network was a dense, interconnected web, but the Riegle-Neal Act of 1994 began
encouraging mergers. The most dramatic transformation came with the Gramm-Leach-Bliley Act
of 1999, which allowed for the creation of financial “supermarkets.” This is visible in the charts
as a sudden, massive spike in modularity, where the system abruptly reorganized from a single
tangled web into a collection of distinct and separate banking communities. In the modern era,
following the 2008 financial crisis, the Dodd-Frank Act and the Volcker Rule further solidified this
structure while making the communities themselves much larger. As crisis-driven consolidation
continued and stricter rules favored the largest institutions, these powerful ecosystems grew by
absorbing more firms, causing the average community size to skyrocket in recent years. This
transformed the banking system from a broadly interconnected network into a landscape
dominated by a few massive, internally focused banking groups.
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Figure B2. Quarterly system-level trends — degree assortativity, average clustering coefficient, and
network transitivity (1984 to 2024).

This figure illustrates how banking regulations reshaped the very fabric of how banks interact,
essentially creating and then solidifying a “rich club” of powerful institutions. In the early years,
before major deregulation, the banking system was highly “cliquey,” with many local banks
forming tight-knit groups, as shown by the very high network transitivity and clustering. The
Riegle-Neal Act of 1994, which allowed for interstate mergers, began to change this by breaking
up those local cliques, causing the overall “cliquey-ness” to drop. At the same time, this
consolidation started building a “rich club” effect, where the newly powerful banks connected
more among themselves, a trend visible in the rising degree assortativity. This was supercharged
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by the Gramm-Leach-Bliley Act, where the network was extremely tight-knit, but the savings and
loan (S&L) crisis (Wang 2025) and subsequent regulations like FIRREA and FDICIA in the early
1990s temporarily broke down these close relationships, as seen in the clear dip in both transitivity
and clustering. As the system recovered and the Riegle-Neal Act of 1994 fueled a wave of mergers,
the network “re-clustered” into new, stable groups. The Gramm-Leach-Bliley Act of 1999 then
strengthened the “rich club” effect, allowing for the creation of massive financial conglomerates
that became even more central and interconnected with each other, pushing assortativity to a new,
higher level. The most dramatic event is the 2008 financial crisis, which caused all three metrics
to plunge as trust evaporated and relationships shattered; the especially sharp drop in assortativity
shows the “rich club” itself fracturing under the strain. The subsequent Dodd-Frank Act reshaped
the system, and as it recovered, a new, more heavily regulated version of this “cliquey,” “rich club”
structure re-emerged, demonstrating a resilient but sensitive architecture that bends during crises
but ultimately returns to its core form.
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Figure B3. Quarterly node-level trends — average neighbors, rich club coefficient, and normalized
tree length (1984 to 2024).

This figure illustrates how regulations and crises directly impacted the power dynamics of the
banking system, particularly the formation and behavior of a “rich club” of the most connected
banks. In the early 1990s, the S&L crisis (Wang 2025) and regulations like FIRREA caused a
temporary breakdown in relationships, seen in the sharp dip in both the average number of bank
connections and the internal cohesion of the “rich club.” The subsequent Riegle-Neal and Gramm-
Leach-Bliley Acts then fueled the creation of massive, centralized “super-banks.” This is clearly
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visible as the network’s efficiency increased (a lower “tree length™), but it also led to a more insular
system where these giants focused inward, causing a temporary drop in the “rich club” coefficient
as they reorganized. The 2008 financial crisis is marked by a dramatic shattering of the system:
trust evaporated, banks disconnected from each other (plummeting “average neighbors”), the “rich
club” itself fractured (a collapsing coefficient), and the network’s structure became highly
inefficient (a spiking “tree length™). In the post-crisis era, the heavy compliance costs of the Dodd-
Frank Act favored the largest institutions, making them more central than ever. This is shown by
the steady and dramatic rise in the average number of connections per bank, as smaller firms
increasingly had to link up with the few remaining behemoths to operate, cementing the dominance
of a reformed, but highly sensitive, “rich club.”

Appendix C: Temporal analysis of embedding features

Node level: Examples of the network structure at the node-level are degree centrality, betweenness
centrality, closeness centrality, PageRank, local clustering coefficient, and initial node embeddings
(if used as an input to TGNN). The node-level analysis will assist regulators with their oversight
responsibilities of monitoring the temperature of the financial system and fashioning policy
interventions to curtail any systemic risk and identify individual bank vulnerabilities in assessing
localized systemic risks.

Metric Description in banking

Degree centrality Measures how many direct lending/borrowing relationships a bank has in the
interbank network. This topology is used in Cont, Moussa, and Santos (2013),
which explores how this network topology plays a role in shock propagation.
Betweenness Measures how often a bank acts as a bridge in interbank transactions or payment
centrality flows. A high level of this topology indicates a potential channel or a stymie to
liquidity flow, which is important in systemic risk analysis. In the literature,
Soraméki et al. (2007) find that this network topology has a low average path
length and low connectivity.

Closeness centrality | Measures how quickly a bank can reach all other banks through interbank
connections. High closeness indicates efficient access to liquidity and
information within the network. According to Minoiu and Reyes (2013),
financial connectedness expands and contracts with the cycle of global capital
flow. It emphasizes that the 2008-2009 global financial crisis is the largest
unusual perturbation to the global banking network.

PageRank Measures the importance of a bank in the network, accounting for the quality of
counterparties. It indicates key providers of liquidity or vulnerable nodes that go
beyond the simple degree. Battiston et al. (2012) introduce debt rank as a new
measure of systemic impact motivated by the feedback-centrality. They find that
banks (22) that received the FED emergency loans formed a strongly connected
graph where each node became systemically important at the height of the global
financial crisis.

Local clustering Measures the tendency of a bank’s counterparties to also trade among
coefficient themselves. High clustering indicates a localized liquidity pool or risk of
concentration. lori et al. (2008) studied network topology, such as clustering
coefficients and centrality, on the Italian overnight interbank market.
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Community level: Detection algorithm (e.g., Louvain), number of communities, average
community size, and distribution of community sizes. This level of analysis provides insights into
how regulators identify troubled banks for interventions and prevent systemic risk. Similarly, it
facilitates policy design and interventions tailored to specific banking community structures,
enhancing financial stability.

Community metric

Explanation and literature

Community detection

It efficiently identifies communities within large networks and optimizes
modularity, a measure that quantifies the density of connections within
communities compared to connections between communities. Battiston et al.
(2012) used the Louvian algorithm on the interbank network to uncover
community structures that show systemic vulnerabilities. They also identify a
cluster of financial institutions with similar risk profiles, which assist regulators
in detecting potential contagion pathways.

Number of
communities

It refers to the total clusters in a community network structure, providing
insights into the network's fragmentation and integration, showing
organizational patterns and interdependence among the nodes. Empirical
support for this community structure is the work of Craig and von Peter (2014),
who provide evidence of a tiered structure in the interbank market of the German
banking system.

Average community
size

It is the mean number of nodes per community. It indicates how network entities
organize themselves, informing whether interactions typically occur within
small, tightly-knit groups or larger, loosely-connected clusters. Fricke and Lux
(2015) studied interbank lending networks using community detection
algorithms and highlighted the average community size. Smaller community
sizes corresponded to a fragmented interbank market, whereas larger sizes
suggested greater systemic interdependencies.

Distribution of
community sizes

Examining how community sizes vary across a network reveals the
heterogeneity of network structures. It indicates whether a network comprises
similarly sized communities or exhibits skewed distributions (many small
communities with a few large ones). PACrez (2014) examined community size
distributions in interbank payment networks in Colombia. They found highly
skewed distributions indicating a few large communities dominated by major
financial institutions and numerous smaller peripheral communities.

System level (global): System-level analysis is essential for capturing interbank relationships’
complex interdependencies and feedback loops, enabling more effective risk management and
policymaking to safeguard financial stability. Examples are below: network density, average
degree, global clustering coefficient, modularity, characteristic path length, and diameter.

Feature

Description

Network density

Measures how connected the network of mid-size and large banks is relative to
the maximum possible connections.

Average community
size

If the network of mid-size and large banks is divided into communities, this is
the average number of banks per community.
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Modularity Measures the strength of dividing a network of mid-size and large banks into
communities. Higher modularity indicates a network of banks with well-
defined, dense, sparsely connected communities.

Network transitivity | Measures the overall tendency for nodes (active mid-size and large banks) to
cluster together. Higher transitivity means a more “cliquish” or tightly knit
network of banks.

Average clustering For each node (active bank), it measures how connected its neighbors are to each
coefficient other. It’s a local measure of cliquishness.

Degree assortativity | Measures the preference for nodes (active banks) to attach to others similar in
degree (number of connections).

Average neighbors The average number of direct connections each bank has in the network. This is
identical to the “average degree” from the system-level chart and reflects overall
network connectivity.

Rich club coefficient | It measures the tendency of high-degree nodes (“rich” nodes) or systemically
important banks to be more densely connected amongst themselves than lower-
degree nodes or smaller or less important banks. A high coefficient indicates a
“rich club” phenomenon where the most connected banks form a tight core.
Normalized tree “Tree length” in network analysis refers to characteristics of spanning trees or
length path lengths within tree-like substructures. A lower normalized tree length
implies more efficient connections or a more compact core structure. Large
banks are at the core and connected to smaller banks at the periphery.

Appendix D: Major U.S. regulations from 2014 to 2024
D1. Financial Institutions Reform, Recovery, and Enforcement Act (FIRREA) - 1989

This regulation was promulgated in response to the savings and loan crisis. FIRREA restructured
the federal savings and loan regulatory system. It established the Resolution Trust Corporation to
manage insolvent thrifts and transferred regulatory authority to the Office of Thrift Supervision.
The act also introduced stricter oversight and capital requirements for savings institutions, and the
enforcement date was 1989.

D2. Federal Deposit Insurance Corporation Improvement Act (FDICIA) -1991

FDICIA enhanced the FDIC’s authority, mandated risk-based deposit insurance premiums, and
introduced prompt corrective action provisions. It also imposed stricter capital requirements and
limited certain activities of insured state banks, and its enforcement date was 1991.

D3. Riegle-Neal Interstate Banking and Branching Efficiency Act (IBBEA) - 1994

This act allowed bank holding companies to acquire banks in any state and permitted interstate

branching. It aimed to create a more efficient and competitive banking system by reducing
geographic restrictions and came into force in 1994.
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D4. Gramm-Leach-Bliley Act (GLBA) - 1999

GLBA repealed parts of the Glass-Steagall Act, allowing commercial banks, investment banks,
and insurance companies to consolidate. It aimed to modernize the financial services industry and
promote competition. The enforcement date was 1999.

D5. Dodd-Frank Wall Street Reform and Consumer Protection Act - 2010

Dodd-Frank introduced comprehensive financial regulatory reforms in response to the 2008
financial crisis. It established the Consumer Financial Protection Bureau, imposed stricter capital
and liquidity requirements, and introduced the Volcker Rule, which restricted proprietary trading
by banks.

The Volcker Rule is a key provision of the Dodd-Frank Wall Street Reform and Consumer
Protection Act of 2010, enacted in response to the 2007-2009 financial crisis. Named after former
Federal Reserve Chairman Paul Volcker, the rule aims to reduce excessive risk-taking by banks
and safeguard the financial system from speculative activities that do not benefit customers or the
broader economy. It was enforced in 2010.

Appendix E: Significance of detected anomalies and TGNN capacity to provide rarly
warning signals

E1. Significance of detected anomalies

The bank behavior and events captured by the temporal graph neural network (TGNN)-detected
anomalies are first, regulatory pressure, and legal events. To explain, banks under significant
regulatory scrutiny or involved in major financial settlements and compliance issues exhibit high
anomaly scores. For instance, JP Morgan recorded a high anomaly score associated with regulatory
pressures, fines, and settlements due to its central role in interbank lending and derivatives markets,
amplifying its interbank risk exposure (Acharya et al. 2014; Strahan 2013).

Another important TGNN-detected anomaly is eventful and significant mergers and
acquisitions within the interbank relationships. The anomalies captured by TGNN include periods
of substantial organizational restructuring, such as mergers or acquisitions. First Horizon Bank,
which exhibited a notably high anomaly score, reflects such an event due to its acquisition of
IberiaBank Corporation. This significantly changes its interbank market footprint and connectivity
(Carlson and Mitchener 2005; Hassan and Giouvris 2021; Johnson and Rice 2008).

Moreover, the TGNN-detected anomaly captures systemically important financial activities
such as large overnight interbank positions or other alternative market transactions indicative of
potential liquidity stress or systemic risks. Banks labeled as “too-big-to-fail” or involved in
substantial interconnectedness record an elevated anomaly score (Battiston et al. 2012; Craig and
von Peter 2014; Fricke and Lux 2015).

Lastly, the anomalies detected by TGNN reflect significant expansions or contractions in a
bank's geographic or market footprint. This causes shifts in their position and interconnectedness
in the interbank network. This can arise from strategic expansions when there is regulatory
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relaxation or contraction due to regulatory tightening (Avery et al. 1999; Chen et al. 2025; Rice
and Davis 2007).

E2. How early can TGNN-detected anomalies provide warning signals?

TGNN-generated anomaly scores offer proactive early warning signals of financial stress, often
several quarters in advance: Anomaly signals consistently precede recognized financial stress or
distress events several quarters ahead. Historical anomalies that identified JP Morgan and First
Horizon emerged significantly prior to known mergers, regulatory events, and/or publicly reported
financial stress. This implies, therefore, that the model’s ability to provide timely early warnings
is plausible.

Moreover, this dynamic time-series model (TGNN) has the capacity to identify nuance changes
in banks’ interbank relationships that precede broader financial stress and invariably provides
crucial lead-time advantages. This helps regulators proactively intervene to mitigate systemic risks
and manage potential contagion (Acemoglu et al. 2015; Eisenberg and Noe 2001; Gai and Kapadia
2010).

Lastly, it has been shown that high anomaly scores strongly correlate with elevated financial
stress periods documented. This correlation enhances the credibility and usage of TGNN-based
anomaly detection as a surveillance tool. This emphasizes the model’s efficacy in preemptively
signaling financial vulnerabilities (Battiston et al. 2012; Gong et al. 2019; Wang et al. 2017).

In summary, the anomalies detected by TGNN provide valuable and timely signals concerning
bank behaviors associated with regulatory pressures, significant mergers, systemic financial
activities, and shifts in banking footprint. Also, these anomalies offer substantial advance warning
signals (often several quarters ahead) regarding potential systemic risks or financial distress,
emphasizing TGNN’s utility as a proactive regulatory monitoring tool.
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