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Abstract  
Due to the inherent variability of renewable energy sources, predicting renewable energy 
production requires robust approaches and prediction methods that can detect and derive 
complex patterns. Since deep learning (DL) models can capture complex, nonlinear 
relationships, they are preferred over traditional machine learning (ML) methods in the 
renewable energy sector. An examination of the extant literature suggests the need for 
comprehensive studies on key factors influencing the accuracy of DL techniques in predicting 
renewable energy production. We aim to provide more insights in this area. In this study, we 
evaluate seven machine learning methods - Long Short-Term Memory (LSTM), Stacked 
LSTM, Convolutional Neural Networks (CNN), CNN-LSTM, Deep Neural Networks (DNNs), 
Time-Distributed Multilayer Perceptron (TD-MLP), and Autoencoder (AE) - using a dataset 
combining weather and photovoltaic power output data from 12 locations in Spain. Four 
regularization techniques - early stopping, neuron dropout, and Lasso and Ridge (L1/L2) 
regularization - are also applied to address the overfitting issue commonly seen in DL models. 
The evaluation results demonstrate that with a more extensive training set, the combination of 
early stopping, neuron dropout, and L1 regularization provides the best performance in 
reducing overfitting problems in CNN and TD-MLP models, whereas with a smaller training 
set, the combination of early stopping, neuron dropout, and L2 regularization is most effective 
in reducing the overfitting issue in CNN-LSTM and AE models. 
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1. Introduction 
 
The rapid growth of renewable energy-generated electricity reflects society’s increasing 
environmental awareness (Ang et al. 2022; Aslam et al. 2021; B. 2023). Integrating renewable 
electricity into the traditional electrical grid requires reliable predictions of cost and production. 
Such predictions enable developers and investors to quantify economic benefits, secure project 
financing, and make informed decisions; they can also enhance grid resilience through 
optimized maintenance, improve power production forecasting, and ensure system stability. 
Due to the influence of geo-locations and constantly changing weather conditions, renewable 
electricity production is precarious and challenging to predict. For instance, solar energy is 
influenced by sunlight exposure, while wind energy relies on wind speeds and location (Wang 
et al. 2019). 

Machine learning (ML) technologies such as Neural Networks, Time Series Analysis, 
Ensemble Methods, Tree-based Methods, and Deep Learning (DL) have been applied to 
analyze historical data to produce more accurate energy output estimates. Among the different 
ML approaches applied, DL has demonstrated remarkable capabilities in identifying complex 
patterns in renewable energy-generated electricity data. However, complex models such as DL 
have been shown to have the issue of overfitting, impacting its generalization to unseen data. 
The effectiveness and widespread adoption of DL in the energy domain have faced other 
significant challenges, such as data scarcity, model interpretability, computational demands, 
generalization to unseen data, vulnerability to adversarial attacks and distribution shifts, etc. 
These issues demand innovative solutions to ensure the reliability and accessibility of DL in 
critical applications. Overcoming these obstacles requires hybrid approaches, access to high-
quality datasets, and advanced model architecture. Furthermore, regularization must be applied 
to address DL overfitting by adding a penalty term to the loss function. 

These challenges prompt us to investigate the following questions in this study: 
 
(1) RQ1: How do different DL architectures compare in terms of their susceptibility 

to overfitting? 
(2) RQ2: Are there architecture-specific regularization techniques that outperform 

general methods for certain types of neural networks? 
 

This study proposes an analytics framework integrating various DL algorithms with and 
without regularization approaches. The proposed framework aims to identify critical factors 
affecting the reliability and availability of renewable energy output forecasts. It combines DL 
with sampling techniques to mitigate methodology-driven bias, a common limitation of 
existing algorithms. The study also employs four regularization approaches to address 
overfitting in DL models and analyzes the trade-off between overfitting and accuracy. The 
proposed framework effectively captures the nonlinear relationships between energy 
production and various factors, including weather and seasonality. To our knowledge, this is 
the first study to evaluate multiple DL models in the domain of renewable energy output 
forecasts and examine various regularization approaches in tackling the overfitting issue of DL 
models. 

The study employs a diverse array of deep learning models, including Recurrent Neural 
Network (RNN)-Long Short-Term Memory (LSTM), Stacked LSTM, Convolutional Neural 
Networks (CNN), CNN-LSTM, Deep Neural Networks (DNN), Time-Distributed Multilayer 
Perceptron (TD-MLP), and Autoencoder (AE), each chosen for its specific strengths in 
handling sequential data, spatial hierarchies, or complex pattern recognition (Kong et al. 2019; 
Wang et al. 2023; Chan et al. 2023; Oluleye, Chan, and Antwi-Afari 2023).  
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The remainder of this paper proceeds with a review of DL’s applications in the renewable 
energy sector, followed by an overview of DL methods and experimental analyses comparing 
various DL techniques, and concludes with findings and future research directions. 

 
 

2. Literature review 
  
ML methods have proven effective in energy system planning, reliability, and security. Deep 
learning, a subset of ML, has gained prominence in adoption. DL methods are widely adopted 
in the renewable energy industry for infrastructure design, demand forecasting, anomaly 
detection, failure prediction, production forecasting, and distribution network optimization 
(Ang et al. 2022; Aslam et al. 2021; Ying et al. 2023; Bansal 2022; Khan et al. 2022; 
Sharifzadeh, Sikinioti-Lock, and Shah 2019). These applications utilize weather conditions, 
satellite data, production and consumption data, and expected market prices. By applying 
multilayered neural networks (NN) to model complex patterns in datasets, DL can capture 
nonlinear patterns and adapt them to evolving datasets. Its ability to learn behavioral patterns 
and detect anomalies makes it particularly suitable for complex problems such as the prediction 
of renewable energy production. 

Renewable energy systems, particularly solar and wind, require accurate forecasting 
models to manage variability. DL’s NN-based models have been developed to predict energy 
outputs over short timescales, enabling more reliable grid integration (Rangel-Martinez, 
Nigam, and Ricardez-Sandoval 2021; Syed et al. 2021). DL models have been successfully 
applied to predict solar power generation, demonstrating their large-scale data processing 
capabilities and accuracy under variable weather conditions (Chang, Bai, and Hsu 2021; Phan 
et al. 2023). Convolutional and recurrent NN have effectively predicted solar energy output 
using weather and historical data, outperforming traditional statistical methods in 
computational efficiency and accuracy (Kong et al. 2019; Arora et al. 2023).  

Because of the different techniques applied, comparative analyses of forecasting techniques 
are crucial for evaluating algorithm efficacy. Studies have explored quantile estimation of 
renewable energy production using deep neural networks (DNN) to predict regional outputs 
(Alcántara, Galván, and Aler 2023). Such investigations highlight the importance of model 
choice and customization based on specific energy systems and datasets.  

Despite DL’s remarkable success, challenges such as computational requirements, data 
quality, and model interpretability persist. Researchers have proposed novel frameworks 
incorporating data preprocessing and postprocessing techniques to address these issues. Hybrid 
models such as CNN-LSTM frameworks have shown promise in capturing spatiotemporal 
dependencies in energy data for photovoltaic power forecasting (Phan et al. 2023; Agga et al. 
2022).  

 
2.1 DL applications in solar, wind, and tidal renewable energy  

 
2.1.1 Solar energy 
Solar energy has become a leading source added to the grid due to its abundant availability and 
decreasing installation costs (Kabir et al. 2018). The global capacity of solar power applications 
supports development in both energy supply and the labor market (Ortega et al. 2020). As 
reliance on solar energy increases, accurate output prediction becomes essential. Zhang et al. 
(2018) utilized deep learning techniques for solar energy production forecasting, showing that 
DL models outperform traditional ML methods in capturing nonlinear patterns. Similarly, Phan 
et al. (2023) proposed a novel forecasting framework that integrates data preprocessing and 
postprocessing to enhance prediction performance. Asghar et al. (2023) introduced a demand-
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side management approach based on machine learning, highlighting how DL techniques 
optimize energy consumption alongside production forecasting. 
 
2.1.2 Wind and tidal energy 
Despite its uncertain nature, wind power benefits from DL applications focus on increasing 
reliability through wind behavior prediction (Wang et al. 2021). Several studies have compared 
the efficacy of DL-based approaches in improving forecast accuracy. Wind energy forecasting 
accuracy relies on successfully predicting wind speed and power generation patterns (Hu et al. 
2024). Chen et al. (2020) utilized heterogeneous feature learning to improve forecast accuracy 
in their deep end-to-end framework for multi-step wind power prediction. To increase the 
reliability of short-term wind forecasting, Du (2019) suggested an ensemble ML approach, 
combining local weather station data with numerical weather prediction (NWP) outputs. 
Furthermore, to improve forecasting models, Khodayar and Wang (2019) presented a 
spatiotemporal graph deep neural network that efficiently captures spatial correlations in wind 
data. Comparing different DL models is essential to identify the best methods for forecasting 
renewable energy. A comparison study on wind turbine power curve monitoring using data 
mining techniques offered insights into various model performances (Schlechtingen, Santos, 
and Achiche 2013). 

In addition to solar and wind energy, DL is also utilized to predict other types of renewable 
energies, such as tidal power, offering a reliable alternative for growing energy needs. DNN 
approaches have been used to forecast design values of tidal power plants based on stream 
regimes (Shadmani et al. 2023).  

 
2.1.3 Hybrid approach 
Hybrid renewable energy systems present more significant challenges due to their 
unpredictable nature, leading to increased interest in DL applications (Zahraee, Assadi, and 
Saidur 2016). Researchers have also introduced leading performance indicators to compare 
machine learning workflows in energy research, evaluating their application in harvesting, 
storing, and converting energy (Yao et al. 2023). Additionally, advancements in Artificial 
Neural Network (ANN) have been applied to hydrogen production research 
(Thirunavukkarasu, Sawle, and Lala 2023). 

Recent advances in DL have focused on hybrid architectures, combining multiple DL 
methods to improve prediction performance. A recurrent neural network (RNN) for short-term 
residential load forecasting has been applied, demonstrating its capability to model sequential 
dependencies (Kong et al. 2019). A clustering-based DL approach for short-term load 
forecasting in smart grids with integration of consumption pattern recognition has shown 
enhanced model robustness (Syed et al. 2021). LSTMs and CNNs have also been applied to 
predict energy consumption, further illustrating the advantages of hybrid DL models (Abraham 
et al. 2022).   

 
2.2 Overfitting and regularization strategies  
 
Overfitting remains a critical challenge in DL applications for renewable energy forecasting. 
Various studies have addressed this issue through regularization techniques. Wang et al. 
discussed ML-based methods for sustainable energy systems, highlighting the importance of 
model generalization (Wang et al. 2023). Percy, Aldeen, and Berry (2018) studied residential 
demand forecasting with solar-battery systems, proposing data-driven methods to mitigate 
overfitting. Harrou et al. (2021) demonstrated a soft sensor-based approach to forecasting 
energy consumption in wastewater treatment plants, incorporating regularization methods to 
enhance model stability. 
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Data overfitting is a major problem in DL. To avoid overly complicated models and 
improve the generalization of the models to unseen datasets, regularization strategies and 
various techniques are adopted to apply a penalty to the loss function. Regularization strategies 
such as L1/L2 regularization, neuron dropout, and early stopping are utilized to address 
overfitting. According to the findings, CNN-LSTM and AE models with smaller training sets 
benefit the most from early stopping, dropout, and L2 regularization, whereas CNN and TD-
MLP models with larger training sets benefit the most from these strategies. 

 
2.3 Summary of DL in renewable energy forecasting 
 
The following models collectively represent a comprehensive approach to addressing various 
aspects of renewable energy forecasting, from temporal dependencies to spatial correlations 
and feature extraction (See Table A1 in the Appendix).  

While LSTM and its stacked variant excel at modeling sequential dependencies, CNN is 
more suited for spatial feature extraction, and hybrid models like CNN-LSTM bridge the gap 
between spatial and temporal modeling. DNNs and TD-MLPs offer versatility and efficiency 
but lack temporal awareness, while Autoencoders provide unique capabilities for data 
compression and anomaly detection, albeit with some sensitivity to noise. Each model offers 
specific strengths and weaknesses, making them suitable for different data types and tasks. This 
study combines meta-learning and DL for multivariate time series prediction of renewable 
energy production. Spatial aggregation and decomposition methods have also been suggested 
to maintain computational feasibility. 

 
 

3. Data source and DL models   
 
The dataset comprises power output data from solar panels installed in 12 cities in Spain over 
14 months. It includes 17 features and 21,045 samples, with independent variables such as 
panel power output, wind speed, date, season, sampling time, location, latitude, longitude, 
altitude, ambient temperature, humidity, visibility, pressure, and cloud ceiling (Williams and 
Wagner 2019). This dataset forecasts photovoltaic panel power output (Table A2 in the 
Appendix).  

Skewness and kurtosis values indicate varying asymmetry and tail behavior across 
variables. The Autoregressive (AR) model is a commonly used statistical ML model that 
predicts future values in time series analysis, assuming that the data are stationary. However, 
variables in renewable energy datasets, such as pressure and location, are likely non-stationary, 
potentially challenging the strict stationarity assumption in time series analysis using 
autoregressive models. Therefore, DL is preferred over the AR model. 

Sample size plays a crucial role in the performance and efficiency of DL models, involving 
a complex balance between prediction accuracy and computational requirements. Larger 
training samples improve model generalization and robustness, resulting in better predictive 
accuracy and reduced overfitting, particularly for complex tasks or high-dimensional data. 
However, increased sample sizes come with trade-offs, including higher computational 
resource demands and longer training times. On the other hand, smaller training samples can 
lead to challenges such as overfitting and biased models due to insufficient data diversity and 
incomplete representation of the underlying data distribution. Finding the right balance 
between sample size, model performance, and computational efficiency is crucial for 
developing effective DL models. To assess the impact of sample size on DL models, 10% to 
50% of the sample is selected as the test set, and the number of rows for training, validation, 
and test sets is provided in Table 1.   
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 Table 1. Sample size of training, validation, and test sets. 
Sample Set 10% 20% 30% 40% 50% 
Training 17046 13469 10312 7576 5261 
Validation 1894 3367 4419 5051 5261 
Test 2105 4209 6314 8418 10523 

 
 

Advances in computational power and data availability have significantly improved 
predictive modeling efficiency. This study employs seven DL models for power generation 
prediction, chosen for their ability to manage non-linear relationships and high-dimensional 
data, which are common in time series analysis. Regularization techniques in deep learning are 
essential to prevent overfitting, improve generalization, and enhance model performance on 
unseen data. Table 2 lists the four regularization techniques used in this study.  
 
 

Table 2. Notation of models and regularization techniques. 
Model Name Regularization Techniques 
Baseline (B1) None 
Regularized 1(R1) Early stopping 
Regularized 2(R2) Early stopping and dropout 
Regularized 3(R3) Early stopping, dropout, and L1 regularization 
Regularized 3(R4) Early stopping, dropout, and L2 regularization 

 
 
3.1 Early stopping  
 
Early stopping is a simple and effective method where training is halted once the model’s 
performance on a validation set deteriorates, preventing overfitting by selecting the model from 
the epoch with the best validation performance (Prechelt 1998). Although it is computationally 
efficient and easy to implement, early stopping requires careful tuning and patience to avoid 
halting the training process prematurely.  

 
3.2 Neuron dropout 

  
Another widely used method is neuron dropout, where a random subset of neurons is “dropped 
out” during each training iteration, reducing co-adaptation between neurons and encouraging 
robust feature learning (Srivastava et al. 2014). This stochastic approach is efficient in complex 
models such as CNN and RNN. However, it increases training time and requires fine-tuning of 
the dropout rate.  

 
3.3 L1 regularization 
 
L1 regularization penalizes the absolute value of model weights by adding a term 𝜆∑ ∣ 𝑤 ∣ to 
the loss function, encouraging sparsity by forcing some weights to zero (Tibshirani 1996). This 
method benefits feature selection in high-dimensional datasets but may inadvertently discard 
valuable information if not carefully calibrated. In contrast, L2 regularization, or ridge 
regression, penalizes the squared magnitude of weights, expressed as 𝜆∑𝑤ଶ, which prevents 
large weight values and stabilizes the learning process (Hoerl and Kennard 1970). While L2 
regularization does not enforce sparsity, it effectively improves model generalization and is 
especially useful when all input features contribute meaningfully to the output.  
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Comparatively, early stopping is the most straightforward and computationally efficient 
method, though it cannot control model complexity directly. Neuron dropout is highly effective 
for deep networks but requires additional computational resources and careful hyperparameter 
tuning. L1 regularization is advantageous when interpretability through feature selection is 
needed, while L2 regularization is suitable for applications when reducing model complexity 
without eliminating features is desired. Each technique addresses different aspects of model 
overfitting and is chosen based on the dataset’s specific characteristics and model architecture. 

Model performance in this study is measured by a set of metrics, including Root Mean 
Square Error (RMSE), Mean Squared Error (MSE), Huber Loss, Mean Absolute Error (MAE), 
Mean Squared Logarithmic Error (MSLE), and R-squared score (Aldajani 2008; Chai and 
Draxler 2014; Willmott and Matsuura 2005; Draper and Smith 1998; Huber 1992). The 
formulations of these metrics are presented in the Appendix. These metrics measure the 
differences between actual and predicted values, guiding model training and evaluation. The 
TensorFlow library is used to implement all DL models and error metrics in this study.   

 
 

4. Results and discussion 
 
Applying DL techniques to forecast power output from photovoltaic panels at 12 locations in 
Spain yields similar accuracy and test ratios across methods. Overfitting was observed across 
the DL baseline models. Table 3 reports the overfitting of seven DL baseline models using 
error metrics at different sample sizes.  

Our analysis shows that the selection of the test set sample size significantly influences 
overfitting in DL models. With a 20% test set size, five out of seven DL models exhibited 
reduced overfitting, suggesting that an 80-20 train-test split may offer a good balance between 
sufficient training data and adequate model evaluation. However, when the test set size was 
increased to 50%, all baseline models demonstrated clear signs of overfitting, as evidenced by 
diverging error metrics between training and test sets. This observation underscores the critical 
role of data sampling in model performance and generalization.  
 
 
Table 3. Overfitting of DL baseline models at different ratios based on error metrics. 
Model RMSE MSE HUBER 

LOSS 
MAE MSLE 

RNN-LSTM 10%, 30%, 
40%, 50% 

10%, 30%, 
40%, 50% 

10%, 30%,  
40%, 50% 

10%, 30%,  
40%, 50% 

10%, 30%,  
40%, 50% 

Stacked- 
LSTM 

10%, 30%, 
50% 

10%, 30%,  
50% 

10%, 30%,  
50% 

10%, 30%,  
50% 

10%, 30%,  
40%, 50% 

CNN 10%, 30%, 
40%, 50% 

10%, 30%, 
40%, 50% 

10%, 30%,  
40%, 50% 

10%, 30%,  
50% 

10%, 30%,  
40%, 50% 

CNN-LSTM 30%, 50% 30%, 50% 30%, 50% 30%, 50% 30%, 50% 
DNN 10%, 20%, 

30%, 40%, 
50% 

10%, 20%, 
30%, 40%,  
50% 

10%, 20%,  
30%, 40%,  
50% 

10%, 20%,  
30%, 40%,  
50% 

10%, 20%,  
30%, 40%,  
50% 

TD-MLP 10%, 20%, 
30%, 40%, 
50% 

10%, 20%, 
30%, 40%,  
50% 

10%, 20%, 
30%, 40%, 
50% 

10%, 20%, 
30%, 40%, 
50% 

10%, 20%, 
30%, 40%, 
50% 

AE 50% 50% 50% 50% 30%, 50% 
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Figure 1. Illustration of overfitting in a DNN model with a 10% 
sample for test data. 

 
 

The findings in this study highlight the importance of carefully selecting train-test split 
ratios, as larger test sets can provide more robust evaluation metrics but may compromise 
model generalization, especially when limited data is available. Furthermore, the varying 
sensitivities of different DL architectures towards split ratios call for future research to explore 
the relationship between model complexity, dataset characteristics, and optimal split ratios. 
The results also underscore the importance of a balanced approach to dataset partitioning, 
considering both comprehensive model evaluation and effective learning and generalization. 
For instance, we examine the DNN model at a 10% sample size for overfitting in regard to the 
best performance in training error metrics. Figure 1 illustrates the learning process for this 
model, revealing a clear overfitting trend. As the number of epochs increases, the model’s 
accuracy on the training set improves significantly, as evidenced by a consistent decrease in 
error metrics and an increase in R-squared scores (yellow solid line). On the other hand, the 
model’s accuracy on the validation set deteriorates over time, as indicated by an increase in 
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error metrics and a decrease in R-squared scores (blue dashed line). The gap between training 
and validation set accuracy widens progressively throughout the learning process, a clear 
indicator of overfitting as the model becomes increasingly tailored to the training data at the 
expense of generalization. This overfitting phenomenon becomes more pronounced with 
increasing epochs, suggesting that early stopping may be an effective regularization technique.    

While the DNN model demonstrated the best performance among the seven baseline 
models, overfitting all models indicates a systemic issue requiring attention. Overfitting 
becomes more pronounced with a smaller training set and a larger test set as the sample size 
ratio for the test set increases. The graphical results and detailed reports of different DL models 
with various ratios and regularization techniques can be accessed from this repository: 
https://figshare.com/s/381a00d86b9dc42460b5. 
 
 

 
Figure 2. Illustration of regularization technique for DNN model 
with a 10% sample for test data. 
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In addition to early stopping, we report three additional regularization techniques to address 
overfitting in DL models. For instance, the combination of early stopping, dropout, and L1 
regularization provides the best solution for overfitting in the DNN model, as illustrated in 
Figure 2. 

Table 4 reports the outcomes of regularization techniques in the DNN model as an example. 
Combining early stopping, dropout, and L1 regularization in R3 offers the best approach to 
reducing overfitting in DNN models. Early stopping prevents the model from learning noise in 
the training set by halting training when validation performance degrades, effectively 
decreasing training time and acting as an implicit regularization technique. Randomly dropping 
neurons (10% dropout) during training creates multiple sub-networks and reduces co-
adaptation. This forces the network to learn more robust features and emulates ensemble 
learning within a single model. L1 regularization promotes sparsity by forcing some weights 
to zero, aiding in feature selection and reducing model complexity. These techniques address 
overfitting from multiple angles: early stopping prevents prolonged exposure to training set 
noise, dropout introduces beneficial randomness, and L1 regularization simplifies the model 
structure. Using these techniques together, DNNs can better balance model complexity and 
generalization ability, resulting in more reliable and robust performance across diverse sample 
sizes.  

 
 

Table 4. The best regularization technique to reduce overfitting at different ratios based on 
error metrics. 
Ratio RMSE MSE HUBER 

LOSS 
MAE MSLE 

10% R3 R3 R3 R4 R3 
20% R3 R3 R3 R3 R3 
30% R3 R3 R3 R3 R3, R4 
40% R3 R3 R3 R3 R3 
50% R3 R3 R3 R4 R3 

 
 

Table 4 reports the best performance among the DL models with regularization techniques 
under different ratios. R3 is the most effective technique for reducing overfitting at lower ratios, 
and R4 is the best for mitigating overfitting at higher ratios, especially in hybrid models such 
as CNN-LSTM and AE. R3 is more effective for DL baseline models, such as CNN and MLP, 
to reduce overfitting, where L1 regularization simplifies the model structure of CNN and MLP 
by identifying the most critical filters/kernels in CNNs and selecting the most relevant time 
steps or features in Time-Distributed MLPs. Additionally, for CNNs dealing with high-
dimensional image data or Time-Distributed MLPs processing long sequences, L1 
regularization can be particularly effective in reducing the impact of irrelevant or redundant 
information. R4 is more effective on hybrid models such as CNN-LSTM and AE in reducing 
overfitting, whereas L2 regularization provides a consistent shrinkage of weights. L2 
regularization offers significant advantages in addressing overfitting for complex hybrid 
models like CNN-LSTM and Autoencoders, especially when dealing with limited training data. 
Adding a penalty term proportional to the square of weights, L2 regularization encourages 
smaller, more balanced weights across the network, promoting smoother decision boundaries 
and improved generalization. 

This approach is particularly beneficial for the CNN-LSTM architecture, as it helps 
stabilize LSTM training by mitigating vanishing/exploding gradients and enhancing CNN’s 
aaa  
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 Panel A. Time vs. RMSE_diff Panel B. Time vs. MSE_diff 

Panel C. Time vs LOSS_diff Panel D. Time vs MAE_diff 

Panel E. Time vs. MSLE_diff Panel F. Time vs R2S_diff 

Figure 3. Computing time vs. metrics for the RNN-LSTM model with different 
regularization techniques and sample ratios. 
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ability to learn generalizable spatial features. L2 regularization provides a more distributed 
representation in the latent space for the AE model. Unlike L1 regularization, L2 maintains all 
features but reduces their impact proportionally, preserving important spatial and temporal 
relationships crucial in hybrid models. It also improves robustness to noise and adapts well to 
features of different scales, making it ideal for processing diverse inputs in the CNN-LSTM 
model. Furthermore, L2 regularization’s compatibility with standard optimization algorithms 
enhances its practicality in complex architectures. When carefully tuned and combined with 
other techniques such as dropout or early stopping, L2 regularization provides a powerful tool 
for balancing model complexity and performance in these hybrid neural network structures. 

We examine the performance metrics with different sample ratios across regularization 
techniques for sensitivity analysis and report the findings of the RNN-LSTM model (see Figure 
3). Panel A in Figure 3 shows that the RNN-LSTM model achieves the best balance between 
computing time and the testing/training RMSE difference at a 20% ratio when using 
Regularization Technique 3, which combines early stopping, dropout, and L1 regularization. 
A negative RMSE_diff value indicates that the RMSE of the testing dataset is lower than that 
of the training dataset. We observed similar trends for MSE_diff, LOSS_diff, MAE_diff, and 
MSLE_diff. Additionally, the highest R2S_diff value at the 20% ratio suggests that the testing 
dataset achieves a higher R² score than the training dataset when applying Regularization 
Technique 3. We find the same results in other models such as the Stacked LSTM, CNN, CNN-
LSTM, DNN, TD-MLP, and AE, and our results are reported in https://figshare.com/s/ 
381a00d86b9dc42460b5. 

 
 

5. Conclusion 
 
This study’s primary contribution is the comparative application of various DL methods to 
renewable energy. The regularization techniques on seven DL models were evaluated on a 
public dataset using five different training/test split ratios, demonstrating their relative 
performance. This research addresses the need for robust DL methods applicable to multiple 
renewable energy-related scenarios. Prediction models performed exceptionally well when 
regularization techniques were used. The test set sample size selection has been shown to 
significantly address overfitting in DL models. Findings from this study suggest that the 
combination of early stopping, dropout, and L1 regularization can provide the best performance 
to reduce overfitting in the CNN and TD-MLP models with a larger training set. In contrast, 
the combination of early stopping, dropout, and L2 regularization is most effective in reducing 
overfitting in the CNN-LSTM and AE models with a smaller training set. The study highlights 
the importance of selecting regularization techniques and DL models tailored to dataset 
characteristics and prediction tasks.  
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Appendix: DL performance metrics 
 
Performance metrics are essential for evaluating model accuracy and generalization across 
different tasks in machine learning. Each metric provides unique insights into model 
performance. This appendix includes six major performance metrics used in this study.  

Root Mean Squared Error (RMSE) measures the square root of the average squared 
differences between predicted and actual values. Since this measure penalizes errors more 
heavily, although it provides interpretable results, it is particularly sensitive to outliers (Chai 
and Draxler 2014). 

 𝑅𝑀𝑆𝐸 = ටଵ௡∑ (𝑦௜ − 𝑦పෝ)ଶ௡௜ୀଵ                                                  (1) 

 
Mean Squared Error (MSE) is widely used as a performance metric in regression models. 

It is similar to RMSE but without the square root, helping optimize model performance through 
gradient-based algorithms; however, it shares the same sensitivity to significant errors 
(Willmott and Matsuura 2005).  

 
MSE=ଵ௡ ∑ (𝑦௜ − 𝑦పෝ)ଶ௡௜ୀଵ                                    (2)  

      
Mean Absolute Error (MAE) is another commonly used performance metric that calculates 

the average absolute difference between actual and predicted values. It is more robust to 
outliers than MSE. However, it does not penalize significant errors as severely, making it useful 
when uniform error importance is desired (Willmott and Matsuura 2005).  

 
MAE=ଵ௡ ∑ |𝑦௜ − 𝑦పෝ |௡௜ୀଵ                          (3) 

 
Huber Loss blends MAE and MSE by employing a quadratic function for small errors and 

a linear function for large ones, offering robustness against outliers while maintaining the 
differentiability needed for optimization (Huber 1992). 

 ℒఋ(𝑎) = ቐ ଵଶ (𝑦 − 𝑦ො)ଶ               𝑓𝑜𝑟 |𝑦 − 𝑦ො| ≤ 𝛿𝛿 ቀ|𝑦 − 𝑦ො| − ଵଶ 𝛿ቁ     𝑓𝑜𝑟 |𝑦 − 𝑦ො| > 𝛿         (4) 

   
Mean Squared Logarithmic Error (MSLE) evaluates the squared difference between the 

logarithmic predictions and actual values. It is effective when relative errors are more 
meaningful, especially in scenarios involving exponential growth or positive-valued 
predictions (Aldajani 2008). 

 
MSLE==ଵ௡ ∑ (log(1 + 𝑦௜) − log(1 + 𝑦పෝ))ଶ௡௜ୀଵ                (5) 

 
Meanwhile, the R-squared (R²) score, or coefficient of determination, measures the 

proportion of variance explained by the model, with values ranging from 1, indicating perfect 
prediction, to negative values, suggesting that the model performs worse than using the mean 
prediction (Draper and Smith 1998). 
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𝑅ଶ = 1 − ∑ (௬೔ି௬ഢෝ )మ೙೔సభ∑ (௬೔ି௬ത)మ೙೔సభ                                                                  (6) 
 

Each of these metrics has specific use cases: RMSE and MSE are ideal for tasks where 
more significant errors must be penalized more severely, though RMSE is more 
straightforward to interpret due to its unit consistency. Huber Loss is useful when balancing 
sensitivity to small errors and robustness against outliers. MAE is preferable when all errors 
are equally important without emphasizing outliers. MSLE is beneficial when modeling data 
with wide value ranges or when under-predictions should be penalized more than over-
predictions. Finally, the R² score is a useful comparative measure for assessing the model fit 
across different datasets and scales. The choice of metric depends on the problem 
characteristics and the desired balance between sensitivity to large deviations, interpretability, 
and model robustness.  

 
Table A1. DL in renewable energy forecasting. 

Names Approaches Strengths Weakness 
Long Short-
Term Memory 
(LSTM) 
(Kong et al. 
2019; Agga et 
al. 2022; 
Abraham et al. 
2022) 

Capturing long-term 
dependencies and sequence 
information in datasets by 
addressing the vanishing 
gradient problem through 
memory cells and gating 
mechanisms. 

Effective for time-series 
prediction and natural 
language processing 
(NLP). 

Computationally 
intensive and slower to 
train. 

Stacked LSTM 
(Kong et al. 
2019; Ying et al. 
2023; Abraham 
et al. 2022) 

Multi-layered LSTM.  Capturing higher-level 
temporal features. 

Increases model 
complexity and the risk 
of overfitting. 

Convolutional 
Neural Network 
(CNN) (Agga et 
al. 2022; 
Abraham et al. 
2022) 

Suitable for spatial data and 
employing convolutional layers 
to find local patterns such as 
edges and textures. 

Excel in feature 
extraction and are 
robust against noise. 

Struggle to capture 
long-term dependencies. 

CNN-LSTM 
(Agga et al. 
2022; Abraham 
et al. 2022) 

Local pattern extraction and 
modeling temporal 
dependencies. 

Combination of 
strength from both 
CNN and LSTM. 
Practical for 
spatiotemporal data like 
video analysis. 

A hybrid approach, 
requiring more 
computational resources 
and careful tuning. 

Deep Neural 
Network (DNN)  
(Chan et al. 
2023; Alcántara, 
Galván, and 
Aler 2023) 

Fully connected feedforward 
model with multiple hidden 
layers. 

Offering versatility 
across various tasks. 

Lacking the ability to 
capture temporal 
relationships efficiently. 

Time-distributed 
MLP (TD-MLP) 
 

Independent application of a 
multi-layer perceptron to each 
time step of a sequence while 
maintaining the sequence’s 
structure. 

Allows parallel 
processing of time-
series data. 

Cannot directly model 
temporal dependencies. 

Autoencoder 
(AE) 

An unsupervised learning 
model that compresses and 
reconstructs data through an 
encoder-decoder framework. 

Useful for 
dimensionality 
reduction, noise 
removal, and anomaly 
detection. 

Noise-sensitive and 
require careful tuning to 
prevent information 
loss. 
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Table A2. Descriptive statistics of the dataset on main variables. 

Variable 
Power 
output 
(Watt) 

Humidity 
(%) 

Ambient 
temp 
(C) 

Wind 
speed 
(km/h) 

Visibility 
(km) 

Pressure 
(millibar) 

Cloud 
ceiling 
(km) 

Mean 12.9785 37.1219 29.2851 10.3183 9.7000 925.9447 515.9668 
Median 13.7987 33.1237 30.2891 9 10 961.1 722 
Std Dev 0.0491 0.1642 0.0852 0.0440 0.0093 0.5874 2.0811 
Skewness -0.0353 0.6652 -0.3264 0.6270 -5.1447 -0.3588 -0.8224
Kurtosis -1.0822 -0.2626 0.16133 0.5282 27.2766 -1.5580 -1.2527

18




