ACADEMIC SUPPORT LEARNING TEAM Exponent Rules and Properties

Rules for Exponents	Definition	Examples
Zero-Exponent Rule	Anything raised to the zero power is	$3^0 = 1$
$a^0 = 1$	1.	$12154^0 = 1$
Power Rule	To raise a power to a power, you	$(x^5)^4 = 20$
$(\mathbf{a}^{\mathbf{m}})^{\mathbf{n}} = \mathbf{a}^{\mathbf{m}^{*}\mathbf{n}}$	need to multiply the exponents.	$(2x^4y^2)^3 = 2^3x^{12}y^6 =$
		$8x^{12}y^{6}$
Product Rule	To multiply two exponents with the	$x * x^5 = x^1 + x^5 = x^6$
$\mathbf{a}^{\mathbf{m}} \ast \mathbf{a}^{\mathbf{n}} = \mathbf{a}^{\mathbf{m}+\mathbf{n}}$	same base, you add the powers and	$y^4 * y^9 = y^{13}$
	keep the base.	
$\mathbf{a}^{\mathbf{m}} * \mathbf{b}^{\mathbf{m}} = (\mathbf{a}^{*}\mathbf{b})^{\mathbf{m}}$	When you have different bases but	$x^3 * y^3 = (x*y)^3$
	the same exponent, you can simply	$3^2 * 4^2 = (3*4)^2$
	multiply the bases and keep the same	
	exponent.	
Quotient Rule	To divide two exponents with the	x ⁵ 5 0 0
a^m m^n	same base, you subtract the powers	$\frac{1}{x^2} = x^{5-2} = x^3$
$\frac{1}{a^n} = a^{m-n}$	and keep the base.	$\frac{y^9}{z} = y^{9-5} = y^4$
		y^5
		r ⁶ r
a^m a_m	When you have different bases but	$\frac{\pi}{y^6} = (\frac{\pi}{y})^6$
$\overline{\boldsymbol{b}^m} = (\overline{\boldsymbol{b}})^m$	the same exponent, you can simply	
	divide the bases and keep the same	$\frac{4^3}{4} = (\frac{4}{3})^3$
	exponent.	2^{3} (2)

Texas A&M International University Dr. Billy F. Cowart Hall 205 956.326.4223 academicsupport@tamiu.edu

ACADEMIC SUPPORT LEARNING TEAM

Negative Evnopent Rule	Negative exponents in the numerator	1 1
$a^{-n} = \frac{1}{n}$	get moved to the denominator and	$5^{-2} = \frac{1}{5^2} = \frac{1}{25}$
a^n	become positive exponents. The	2 7
	same applies for negative exponents	$\frac{x^{-3}}{y^{-7}} = \frac{y^{7}}{x^{3}}$
	that are in the denominator which	y
	then get moved to the numerator and	
	become positive exponents.	
	Remember, only move the negative	
	exponents.	
One Rule	Any base raise to the one power is	$15^1 = 15$
$\mathbf{a}^1 = \mathbf{a}$	always itself.	$120^1 = 120$
$1^{m} = 1$	If one is the base, no matter what the	$1^7 = 1$
	exponent is, the result will always be	$1^{215} = 1$
	equal to 1.	

References:

Mesa Community College. (n.d.). *Rules for Exponents*. https://www.mesacc.edu/~scotz47781/mat120/notes/exponents/review.html

RapidTables (Ed.). (n.d.). *Exponent rules*. Exponent rules | Laws of exponents. https://www.rapidtables.com/math/number/exponent.html.