

ACE Study Resource – ASTR 1110

Syllabus:

To search for your course syllabus, follow these instructions.

- 1. Visit the following website: <u>https://info.tamiu.edu/</u>
- 2. Input your course (ex: ASTR 1110) into the "Search" box and make sure you are in the current term (ex: Spring 2022). Click "Search."
- 3. Scroll down until you find your specific course (ex: ASTR 1110.201) and professor's name.
- 4. Click on "Syllabus" under your course and the file will automatically download. You are done!

Textbook(s):

- Fraknoi, A., Morrison, D., & Wolf, S. C. (2016). Astronomy. Houston, Texas: OpenStax. [Free, open-source textbook from https://openstax.org/books/astronomy/pages/1- introduction]
- Palen, S., & Larson, A. M. (2015). Learning Astronomy by Doing Astronomy. New York, New York: W. W. Norton & Company, Inc.

Key Concepts:

- Mathematical and Scientific Methods
- Phases of the Moon
- Kepler's Laws
- Light and Spectra
- Spectral Classification of Stars
- The Hertzsprung-Russell Diagram

- Astronomical Measurements
- Altitudes of Objects on the Meridian
- Extraterrestrial Tourism
- Blackbody Curves
- Finding Distances to Stars (Parallax)

Tips and Strategies:

- Prepare at least two weeks in advance for your final term paper to be submitted toward the end of the semester.
- Schedule a tutoring appointment to outline your essay and/or review drafts.
- Review course topics every week by consistently studying to prepare for the quizzes.
- Visit your professor during their office hours to ask questions or clarify instructions.
- Write down due dates and deadlines for each assignment in a planner.

Resources:

- Khan Academy: Cosmology and Astronomy
- Academic Center for Excellence Tutoring: To book an appointment with visit our website, call (956) 326-4223, or send an email to academicsupport@tamiu.edu.

Practice and Application:

Absolute Magnitude Formula: $M_v = m_v - 5 \log d + 5$

1. Fill in the missing numbers in **Table 2.4** based on the given observed quantities for each star. The subscript v is attached to the absolute and apparent magnitudes indicates measurements in the visible portion of the spectrum.

TABLE 2.4

Observed and derived quantities for selected nearby stars.				
Star Name	Apparent	Parallax	Distance	Absolute
	Magnitude, m_v	(Arcseconds)	(Parsecs)	Magnitude, M_v
Sirius	-1.46	0.37921	2.64	1.43
Rigel	0.12	0.00378		
Betelgeuse	0.42	0.00655		
Deneb	1.25	0.00231		
Regulus	1.35	0.04113		
Bellatrix	1.64	0.01292		
Enif	2.40	0.00473		

Explanation:

It is important to know that we can find the distance, d by using the following formula,

$$d = 1/p$$

where p represents parallax.

Thus, for Rigel, we know that the distance is $1/_{0.00378} = 264.55$.

To find the absolute magnitude, M_v , we must plug in the information to the formula, as shown below.

$$M_v = m_v - 5 \log d + 5$$
$$M_v = -1.46 - 5 \log(264.55) + 5$$
$$M_v = -8.57$$

Repeat the process for each star.

Disclaimer:

- Please use this document as a supplemental resource. You must follow class instructions and expectations set by your professor.
 - This guide does not substitute your class.
 - This guide does not cover the entire syllabus or course.