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1. INTRODUCTION

Of the different subfields of mathematics, I am most fascinated by set theory, especially set-theoretic
topology, which is the subject of my doctoral dissertation. I plan to continue my research is this
subfield as well broaden my work, making contributions to other ares of set theory, as well as finite
combinatorics. I am also very open to the idea of advancing other areas of mathematical knowledge.

For the reader seeking a gentler, more informal introduction to set-theoretic topology and my
work therein, I have appended a slide presentation to this research statement.

2. MOTIVATING QUESTIONS

My highest-priority research goal has long been van Douwen’s Problem about large homogeneous
compacta. (Compactum is short for compact Hausdorff space). A compactum X is homogeneous
if and only if for every two points there is a homeomorphism from X to X sending one point to
the other. Now, what does “large” mean in this context? Every power 27 of the discrete two-point
space is a homegeneous compactum, and we can choose one with as large a cardinality as we wish.
Less trivially, all infinite powers [0, 1] of the unit interval are homogeneous compacta [3], and every
compactum can be embedded as a closed subspace of such a power. However, here “large” does
not refer to cardinality or embeddability, but to cellularity. The cellularity ¢(X) of a space X is
defined as the supremum of the cardinalities of its pairwise disjoint families of open subsets of X.
The spaces 2 and [0, 1]* are actually small by this measure: all their pairwise disjoint families of
open sets are countable, so their cellularity is only Ng. It was once unkown whether there was a
homogeneous compactum with uncountable cellularity, but thanks to a 1964 result of Maurice [8],
we now have a simple example of such a space. If the binary sequences of length w - w are ordered
lexicographically (and given the order topology), then the result a homogeneous compactum that
has a family of 2%0-many pairwise disjoint open sets. Van Douwen’s Problem [5], which is still open
in all models of the standard ZFC axioms of set theory, asks, “is there a homogeneous compactum
with cellularity exceeding 2%0?”

Definition 1. A local base at a point p in a space X is a family of neighborhoods of p such that
every neighborhood U of p contains a neighborhood in the local base. The character x(p, X) of p
is the least x such that p has a local base of size k. The character x(X) of X is sup,cx x(p, X).
We say X is first countable if x(X) < Vo, i.e., if every point has a countable local base.

Van Douwen’s Problem is hard because there are very few ways to construct homogeneous com-
pacta that even have more than 2%°-many points. There is a zoo of constructions of homogeneous
compacta which are first countable. However, all first countable compacta have at most 2X°-many
points by Arhangel’ski’s Theorem [1]. Moreover, | X| < 2X(X) for all infinite compacta X.

The other main class of known homogeneous compacta is the class of compact groups. These
groups can have an arbitrarily large number of points, but they cannot have an uncountable family
of pairwise disjoint open sets. To see this, note that each nonempty open subset of a compact group
has positive Haar measure, and that the whole group has finite Haar measure. More generally, every
compact groups is dyadic [6] (that is, a continuous image of a power of 2), and it is known that
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an uncountable family of open subsets of a dyadic compactum must strongly fail to be pairwise
disjoint: such a family has an uncountable subfamily with nonempty intersection.

Definition 2. A base of a space X is a family of open sets that includes a local base at every point.
The weight w(X) of X is the least k such that X has a base of size k.

Taking products of arbitrarily many first-countable compacta and dyadic compacta yields no
spaces with cellularity exceeding 2%, and it exhuasts almost all known examples of homogeneous
compacta. Only two other, relatively narrow classes of homogeneous compacta are known to exist.
They were discovered respectively by Jan van Mill [17] and myself [9] in last few years. (Actually,
in some models of ZFC, van Mill’s exception does not exist, leaving only my exception.) These
compacta also fail to have cellularity exceeding 280. In fact, all known homogeneous compacta
are continuous images of products of compacta each with weight at most 2%, and it is easy to
show (using calibers [13]) that such images can never have cellularity exceeding 2%°. To solve van
Douwen’s Problem positively, one would have to find an “exotic” homogeneous compacta that is
not such an image.

My progress to date on van Douwen’s Problem, besides the discovery of an exceptional class of
homogeneous compacta, has been indirect, investigating some order-theoretic invariants of topo-
logical spaces.

Definition 3. Given a cardinal k, we say a family F of open sets is xk°P-like if every U € F has
fewer than k-many supersets in F. Let the Noetherian type Nt(X) denote the least x such that X
has k°P-like base. Given p € X, let the local Noetherian type xNt(p, X ) of p denote the least x such
that p has a k°P-like local base. The local Noetherian type xNt(X) of X is sup,cx xNt(p, X).

Consider a simple example. Every compact metric space X satisfies Nt(X) < Ny because if for
each n € N we choose a finite cover F,, of X by open balls of radius 27", then | J,, ., F» is a base
of X and every ball B € |J,,, Fn has only finitely many supersets in (J,,., Fn. (Why? If B has
radius 27", then every proper superset of B has diameter at least 27", and is therefore not in

Um>n F, m)
Next are some highlights from my results in [10] about Noetherian type.

Theorem 4. All known homogeneous compacta satisfy xNt(X) < Rg. Moreover, GCH implies
that xNt(X) < ¢(X) for all homogeneous compacta X (known and unknown).

I also constructed a nonhomogeneous compactum satisfying yNt(X) > ¢(X) = Vg (without
assuming GCH).

Theorem 5. Suppose x is an uncountable reqular cardinal and X is a homogeneous compactum
and a continuous image of a product [[;c; Y of compacta such that w(Y;) < k for alli € I. Then
Nt(X) < k. In particular, every known homogeneous compactum X satisfies Nt(X) < (2N0)+.

Additionally, I showed that if X is the double-arrow space ([0, 1] with each interior point expanded

to two points), then Nt(X) = (2N0)Jr (so every base has an element with 280-many supersets in the
base). It is easy to show that the double-arrow space is a homogeneous compactum. It is also easy
to build nonhomogeneous spaces with arbitarily large Noetherian type: given an infinite cardinal
K, if we choose a point from 2% and identify it with a point from Q'ﬁ, then the resulting quotient
of 2% & 25" has Noetherian type xt7.

If X is a dyadic compactum, homogeneous or not, then yNt(X) = Xy. If X is a homogeneous
dyadic compactum (for example, a compact group), then Nt(X) = N,.

Definition 6. A local m-base at a point p in a space X is a family of nonempty open sets such that

every neighborhood U of p contains a member of the local w-base. The m-character mx(p, X) of p is

the least # such that p has a local 7-base of size x. The 7-character mx(X) of X is sup,e x mx(p, X).
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Definition 7. A w-base of a space X is a family of nonempty open sets that includes a local m-base
at every point. The m-weight m(X) of X is the least x such that X has a 7m-base of size k. The
Noetherian 7m-type mNt(X) of X is the least x such that X has a xk°P-like m-base.

I also showed that every known homogeneous compactum X satisfies 7N#(X) < ®;. Thus, van
Douwen’s Problem now has three cousins:

Question 8. Is there a homogeneous compactum X satisfying c(X) > 2%? Nt(X) > (2NO)+?
XNt(X) > Ng? WNt(X) > Ny 7?7

In proving Theorem 5, the use of elementary substructures, a powerful technique of logic, was
the crucial tool. Interestingly, it did not suffice to work with a single elementary chain. The desired
k°P-like base for Theorem 5 was constructed one countable piece at a time, with each piece being a
certain countable base of the metrizable quotient space naturally induced by a countable elementary
substructure. More specifically, I used a sequence (My)a<y of countable elementary substructures
of Hy, the set of all sets with transitive closure of size less than 6, where 0 is a sufficiently large
regular cardinal. Requiring only that (Mg3)g<q € M, for all «, I generalized a technique of Jackson
and Mauldin [4] to construct a sequence (Xq)a<y of finite sets of (possibly uncountable) elementary
substructures of Hy such that |J X, = U,@<a Mpg and £, C M, for all a.

I believe that if van Douwen’s Problem has a negative solution, then elementary substructures
will be heavily used in the first proof of this. Order-theoretic properties of local bases, such as local
Noetherian type, are also promising candidate techniques for a negative solution to the problem
because they provide a new way to show that a space has two points sufficiently different that the
space cannot be homogeneous.

In fact, Tukey classes can be used to make even finer distinctions than those made by local
Noetherian type. Given any two directed sets P and @), we say that P is Tukey reducible to @
and write P <p @ if there exists a map f: P — @ such that every set bounded above in ) has
f-preimage bounded above in P. We say P and @ are Tukey equivalent and write P =7 @ if
P <7t @Q <r P. Tukey showed that P = @ if and only if P and @ embed as cofinal subsets
of a common directed set [16]. Getting back to topology, it is easy to see that h: X — Y is a
homeomorphism and p € X, then (A, D) =p (B,D) for every local base A at p and every local
base B at h(p). Moreover, we have xNt(p, X) < & if and only if every local base A at p satisfies
(A, D) >7 {[x(p, X)]<F, C). In particular, every known homogeneous compactum X only has local
bases Tukey equivalent to [y (X)]<“.

It is known that if X is a compactum such that every point has a local base that is linearly
ordered (equivalently, well ordered) by 2, then some point in X has countable character. I proved
the following analog for m-character by combining Tukey reducibility with some of my results about
local Noetherian type.

Theorem 9. Suppose X is a compactum such that every point p has a local base B, that lacks
an uncountable subset of pairwise D-incomparable elements. Then some point in X has countable
w-character.

In the last few decades, some of the strongest independence results of set-theoretic topology
have used the technique of proper forcing to show that there are models of ZFC in which certain
topological objects of size 8y do not exist. Indeed, the Proper Forcing Axiom (PFA) implies that
for a point with character Ny, every local base at that point, when ordered by D, is Tukey equivalent
to one of ([w1]<¥, C), (w X w1, < x <), and (w1, <) (Todorcevié [15]). Moreover, in a homogeneous
compactum, no local base is Tukey equivalent to w; (because every point is a limit point of a
countably infinite set). Thus, there are only two possible Tukey classes. However, only one of these
two, [w1]<¥, is known to occur in a homogeneous compactum. I would love to answer whether PFA
rules out the other Tukey class.
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Question 10. Does PFA | or even ZFC alone, refute the existence of a homogeneous compactum in
which some (equivalently, every) local base B satisfies (B, D) =7 w X w;?

An affirmative answer to this question would be an important first step towards proving that
xNt(X) = Ny for every homogeneous compactum X. A counterexample would be even more
interesting, especially if it suggested a way to solve van Douwen’s Problem positively.

I have also investigated Tukey classes of local bases in SN\N [12]. It is known that the Continuum
Hypothesis (CH) implies SN \ N has a local base Tukey equivalent (and order isomorphic) to wy.
It is also known that ZFC alone implies SN \ N has a local base Tukey equivalent to ([2%0]<« C).
Assuming ¢, which is stronger than CH, I proved that there is a local base in SN \ N not Tukey
equivalent to either of wy and [2N0]<“’. This result prompts some interesting questions that I would
like to answer in the future. Also, insights about ultrafilters on w may lead to insights about
homogeneous compacta. The strongest precedent for this claim is Kunen’s proof that products of
compact F-spaces are not homogeneous [5]. The proof uses the existence of two weak P-points in
OGN\ N that are Rudin-Keisler incomparable.

Question 11. Does CH already imply that there are three pairwise Tukey inequivalent local bases
in AN\ N?

If the answer to the latter question is “no,” then this can probably be proved using a proper
forcing extension.

Saharon Shelah [14] has shown that there is a proper forcing extension in which SN\ N has no
P-points, that is, points with local bases that are o-directed with respect to 2. In particular, no
local base is Tukey equivalent to wj. It is natural to ask whether this result can be strengthened.

Question 12. Is there a model of ZFC in which yN¢(8N \ N) = Xy? Is there one in which every
local base in AN \ N is Tukey equivalent to [280]<«?

My research about Noetherian type and its cousins naturally led to many questions about Nt(fSw\
w) and TNt(fw \ w), as well as xNt(fw \ w). In [11], T obtained many independence results about
these cardinals. For example, Nt(Bw \ w) is at least s, but can consistently be Ry, 2%, (2N0)+,
or strictly between ®; and 2%°. Nt(Bw \ w) is closely related to the existence of special kinds of
splitting families. (A splitting family is a set S such that for all infinite x C w, there is an y € S

for which z Ny and z \ y are infinite.)

3. GoALS

With respect to set-theoretic topology, my primary research goal is to solve van Douwen’s Prob-
lem. My secondary research goal is to characterize the spectrum of Tukey classes of local bases that
occur in homogeneous compacta. The latter goal both appears easier to attain than the former
and likely to yield partial results about van Douwen’s Problem, if not its outright solution.

Along the way, I expect to continue to contribute to combinatorial set theory. Infinitary com-
binatorics and set-theoretic topology has always been intimately intertwined. I am also fascinated
by the inner model program in set theory.

Additionally, I am interested in finding new applications of set theory to other areas of mathe-
matics. For example, there is a particularly striking application of set theory (specifically, n-subtle
cardinals) to finite combinatorics due to Friedman [2]. Instead of reproducing the precise theorem
and its prerequisite definitions, I will quote Friedman’s proof strategy.

We start with a discrete (or finite) structure X obeying certain hypotheses H. We

wish to prove that a certain kind of finite configuration occurs in X, assuming that

H holds. We define a suitable concept of completion in the context of arbitrary

linearly ordered sets. We verify that if X has a completion with the desired kind
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of finite configuration, then X already has the desired kind of finite configuration.
We then show, using hypotheses H, that X has completions of every well-ordered
type. We now use the existence of a suitably large cardinal A. Using large cardinal
combinatorics, we show that in any completion of order type A, the desired kind
of finite configuration exists. Hence the desired kind of finite configuration already
exists in X.

I am interested both in applying heuristics like the one above and in finding new heuristics for
connecting the transfinite to the finite.

I also plan to attack some questions in finite combinatorics that do not appear to need any
infinitary set theory to solve them. I am particularly interested in problems of Ramsey theory and
combinatorial game theory. For example, as far as I can tell, the following two questions are open
and interesting.

Question 13. According to Li’s definition of three-player impartial games [7], if G is impartial, does
the last player always have a winning strategy for G + G + G? (The well-known answer to the
analogous question for two players is “yes.”)

Question 14. Does every finite Ky-free graph have a binary coloring of edges with no monochromatic
triangles?
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